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This work introduces ANB (Ant Algorithm for Non-Bifurcated Flows), a novel approach to capacitated static optimization
of flows in connection-oriented computer networks. The problem considered arises naturally from several optimization
problems that have recently received significant attention. The proposed ANB is an ant algorithm motivated by recent works
on the application of the ant algorithm to solving various problems related to computer networks. However, few works
concern the use of ant algorithms in the assignment of static flows in connection-oriented networks. We analyze the major
characteristics of the ANB and try to explain its performance. We report results of many experiments over various networks.
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1. Introduction

In recent years, we have been observing a growing role
of computer networks. Due to increasing expectations
for the quality of service and traffic engineering capabili-
ties, new technologies like ATM (Asynchronous Transfer
Mode) and MPLS (MultiProtocol Label Switching) are
introduced to overcome the disadvantages of old proto-
cols, e.g., the IP. Most of the new techniques apply the
connection-oriented model, where routing decisions are
made once, while establishing a virtual connection. Net-
work resources must be provisioned effectively to facili-
tate low-cost, reliable services. Furthermore, current net-
works are large, and the bandwidths of links and the vol-
ume of traffic grow. Therefore, methods of network op-
timization, both dynamic (on-line) and static (off-line),
are indispensable for the development of robust networks
that can fulfil high expectations of the users. In this work
we focus on capacitated static optimization of connection-
oriented flows. We assume that traffic demands are known
and must all be satisfied. Furthermore, we consider a ca-
pacitated problem with capacity constraint, i.e., the flow
of each link cannot exceed the capacity of that link. The
capacitated network design problems are much more diffi-
cult than the corresponding uncapacitated ones (Gendron
et al., 1998). Solving static problems is crucial for ef-
ficient design of new networks or updating the existing
networks (Kasprzak, 2001; Grover 2004).

Since various optimization problems encountered in
computer networks are NP-complete and some of the ex-
isting algorithms are not adequate to tackle the increas-
ing complexity of such problems for large networks, a
range of heuristic approaches are developed to deal with
these problems. Some of the most promising approaches
are algorithms taking inspiration from physics, biology or
social sciences. The most significant examples are: ge-
netic algorithms—simulated annealing, tabu-search, neu-
ral nets, and ant systems. These heuristics apply a certain
amount of repeated trials and employ one or more agends
operating using a mechanism of competition-cooperation.
Applications of these algorithms cover many combinato-
rial optimization problems. For some examples, refer to
(Colorni et al., 1996; Elbaum and Sidi, 1996). In our opin-
ion the exploitation of biological concepts might lead to
new approaches for many classical network optimization
problems.

In this work we focus on ant algorithms, a method
proposed in 1991 by Dorigo et al. (1991), also called an
ant system (AS) or ant colony optimization (ACO). For
clarity, in the remainder of the paper we will use the term
‘ant algorithm’ to refer to a broad class of ant-based al-
gorithms. The ant algorithm is a simulation of agents that
cooperate to solve an optimization problem by means of
communication. The inspiration comes from research on
the behavior of real ants. Ants are social insects living
in colonies. Their behavior is determined by the survival
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of the whole colony while the importance of individual
ants is not so significant. Ants can cooperate effectively
in a group to perform some tasks. For instance, almost
blind ants are able to find the shortest paths from their
colony to feeding sources and back. It was observed that
a moving ant lays some pheromone (in variable quanti-
ties) on the ground, hence marking the path it follows.
Next, ants moving towards the feeding area can detect the
pheromone left by the previous ant, decide with a high
probability to follow it, and reinforce the selected trail
with their own pheromones. This form of indirect com-
munication mediated by pheromone placing is called stig-
mergy. Another principal aspect of real ants’ behavior is
a coupling between the autocatalityc (positive feedback)
mechanism and an implicit evaluation of solutions, i.e.,
the more ants follow a trail, the more attractive that trail
becomes for being followed. A comprehensive treatment
of ants’ behavior and its impact on ant algorithms can be
found in (Colorni et al., 1996; Dorigo et al., 1991; 1999).
Researchers have found many applications of ant algo-
rithms that cover problems such as the traveling salesman
problem, the quadratic assignment problem, job schedul-
ing, vehicle routing, graph coloring, or network routing
(Dorigo et al., 1999).

Our discussion in this article focuses on the ap-
plication of an ant algorithm to a non-bifurcated flow
assignment (NBFA) problem. Connection-oriented net-
work techniques like ATM, Frame Relay and MPLS are
modeled using the non-bifurcated multicommodity flow.
These techniques have gained much attention in recent
years. Most optimization problems related to ATM and
MPLS are similar to the NBFA problem. However, since
NBFA is NP-complete, for relatively large networks only
heuristic algorithms can be applied. In this work we dis-
cuss and evaluate a new ant algorithm called ANB that
solves the NBFA problem. Our starting point is an algo-
rithm proposed in (Walkowiak, 2001b).

Network flows are usually optimized according to
additive or bottleneck weights (Szeto et al., 2002; Kar et
al., 2000). The former kind of metrics assume that the cost
function is computed as a sum of weights over all links. In
the latter approach, the objective function is given by the
maximum (or minimum) value of link weights. In this
work we concentrate on network optimization applying
additive weights. Additive metrics arise in many settings,
e.g., cost, end-to-end delay, jitter, survivability (Kasprzak,
2001; Walkowiak, 2003a). The ANB algorithm minimizes
the overall network flow—the function defined as the sum
of the link flows of all the links in the network. The link
flow is simply a sum of the bandwidths of the paths which
traverse that link. However, ANB can be easily adapted to
use also objective functions like network cost, delay, lost
flow.

The paper is organized as follows: In Section 2 we
briefly introduce non-bifurcated multicommodity flows.
In Section 3 we present background and previous research
in the field of ant algorithms applied to network problems.
Section 4 contains a detailed description of ANB. In Sec-
tion 5 we show the results of extensive simulations and
study three main issues that arise in applying the ANB al-
gorithm: the tuning of the algorithm parameters, conver-
gence and comparison with other heuristics proposed pre-
viously in the literature. In the last section we draw some
conclusions and outline directions for future research.

2. Multicommodity Flows

Routing algorithms used to assign network flows can be
classified as static or dynamic, and centralized or dis-
tributed. Static routing assumes that the network condi-
tions are time-invariant. Dynamic routing is applied in
networks where demands frequently change. Centralized
algorithms are usually applied in legacy routing systems
and may have problems with scalability and inordinate de-
mand for managing decisions requiring human attention.
Distributed systems usually work locally in each network
node and use only locally available information (Kassaba-
lidis et al., 2001). In this work we focus on static routing
using the centralized approach. We assume that the net-
work and all demands to be sent in the network are known
a priori.

Various network or transportation problems can be
modeled as multicommodity flow problems. The multi-
commodity flow problem consists in finding routes for all
such commodities which minimize (or maximize) a per-
formance function (e.g., a delay, a cost) such that a set of
constraints (e.g., arc capacity constraints) is satisfied (As-
sad, 1978; Fratta et al., 1973; Girard and Sanso, 1998;
Gendron et al., 1998; Grover, 2004; Kasprzak, 2001, Ott
et al., 2001; Pióro et al., 2003; Pióro and Medhi, 2004).

We are given a network ��� �� where � � �����
is a directed graph with � nodes and � arcs, and � �
� � �

� is a function that defines capacities of the arcs.
We assume that all commodities included in a set � are
numbered from 1 to �, where � denotes the number of
all commodities. For the 	-th commodity, 
� denotes
a source and �� denotes the destination of the commod-
ity. Each commodity of the flow requirement �� must be
routed from the node 
� to the node �� through a given
network. A multicommodity flow is a set of functions

� � �� �
� � ���� 	 � �� � � � � � (1)

for which the flow of the 	-th commodity in the arc ��� ��
���� �� for 	 � �� � � � � � satisfies the following condi-
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tions:�
������

���� ���
�

������

���� ��

�

���
��

�� ��� � � 
��

��� ��� � � ���

� �	
������

(2)

���� �� � � for ��� �� � � 	 � �� (3)

where ���� � �� � � � � and ��� �� � �� is a set
of destination nodes of edges leaving the node �, and
���� � �� � � � � and ��� �� � �� is a set of source
nodes of edges entering the node �. The condition (2) is
called the conservation of the flow at nodes. The condi-
tion (3) is a non-negativity of the flow in directed edges.
The definition of the multicommodity flow given by (1)–
(3) is called the node-path notation.

Here ��� �� denoting the flow of the arc ��� �� is
defined as

��� �� �
�
���

���� ��� (4)

Multicommodity flows are of two types: bifurcated and
non-bifurcated. The former is a flow in which one com-
modity can be transported using many paths. Each path
carries only a part of the commodity. For the non-
bifurcated flow each commodity flows along one path
only. An example of the bifurcated flow is the flow of the
Internet using the TCP�IP protocols. Connection-oriented
networks like ATM, MPLS, and Frame Relay are exam-
ples of networks applying non-bifurcated multicommod-
ity flows.

Many optimization problems related to computer
networks can be modeled as multicommodity flow prob-
lems. Kasprzak (2001) specifies the most important prob-
lems of computer network design:

� Flow Assignment (FA),

� Capacity and Flow Assignment (CFA),

� Topology, Capacity and Flow Assignment (TCFA).

The most common method to optimally solve prob-
lems of bifurcated multicommodity flow allocation is the
linear programming approach (Bienstock, 2002; Grover,
2004; Ott et al., 2001; Pióro et al., 2003; Pióro and
Medhi, 2004). Also, some heuristic algorithms are de-
veloped for the optimization problem considered. In (Bi-
enstock, 2002; Burns et al., 2003; Kasprzak, 2001; Mu-
rakami and Kim, 1996), algorithms based on the Flow De-
viation method proposed in (Fratta et al., 1973) are devel-
oped for various problems related to bifurcated multicom-
modity flows. Gendron et al. (1998) propose to apply the
Lagrangean relaxation to solve capacitated network prob-
lems. Another popular method used for the optimization

of bifurcated multicommodity flows are soft optimization
techniques (Corne et al., 2000; Grover, 2004). Other in-
teresting algorithms for the multicommodity flow assign-
ment problem are Extremal Flows (EF) (Cantor and Gerla,
1974) and Gradient Projection (GP) (Schwart and Che-
ung, 1976).

In this work we focus on a static flow assignment FA
problem for non-bifurcated flows. The global multicom-
modity flow denoted by  � ��� �� � � � � �� is defined
as a vector of flows in all arcs according to constraints
(1)–(4). Let �� be a set including all vectors  describ-
ing non-bifurcated multicommodity flows. An important
constraint in the optimization of computer networks is the
capacity constraint defined as follows:

�� � � � � 	 �� � (5)

The inequality (5) guarantees that in every arc the flow
does not exceed the capacity. Let ��	 denote a set of all
non-bifurcated flows  � �� for which the condition (5)
holds. In the rest of the paper we call a flow feasible if the
capacity constraint (5) is satisfied.

The non-bifurcated multicommodity flow assign-
ment (NBFA) problem can be formulated as follows:

��



��� �
�
���

� � (6)

subject to
 � ��	� (7)

The objective function (6) is the overall flow in the net-
work. In the problem (6)–(7) we wish to minimize
the overall flow over all feasible non-bifurcated flows.
According to (Karp, 1975), the NBFA problem is NP-
complete.

In this work we apply an equivalent representation
of non-bifurcated multicommodity flow assignment called
link-path formulation (Fratta et al., 1973; Pióro et al.,
2003). It is obtained by providing for each commodity
� � � a set of paths �� � ���� � 	 � �� � � � � ��� from the
node 
� to the node ��. For a non-bifurcated multicom-
modity flow, the commodity can use only one path � �

� .
Let ��� denote a ��� variable, which equals one if ���
is the path for the commodity � and is equal to 0 other-
wise. Another binary variable ���� indicates whether or
not the path ��� uses the arc � � �. Using this represen-
tation of the multicommodity flow, the NBFA problem is
as follows:

��



��� �
�
���

� (8)

subject to (2), (3), and�
�
�
���

��� � �� �� � � � (9)
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��� � ��� ��� �� � �� ��� � ��� (10)

� �
�
���

�
�
�
���

�����
�
���� (11)

� 	 �� � �� � �� (12)

The objective function (8) is the cost of the flow in the
network. To simplify the problem we assume that the cost
of every commodity is the same. Therefore, in (8) we
sum the flows of all links in the network. Since we con-
sider the non-bifurcated multicommodity flow, the con-
dition (9) states that each commodity can use only one
primary route. The constraint (10) ensures that decision
variables ��� are binary. The condition (11) is a definition
of a link flow. Finally, (12) is a capacity constraint. If we
change the constraint (10) to

� 	 ��� 	 �� �� � �� ��� � ���

we will obtain the bifurcated multicommodity flow prob-
lem.

The NBFA problem, like many other network design
problems, is very complex and numerically intractable
even for networks with a small number of nodes. Notice
that the NBFA problem is an integer 0–1 problem with lin-
ear constraints. However, the size of the problem is very
large even for relatively small networks. For instance, for
a sample network having 10 nodes and 42 arcs the aver-
age number of routes between a node pair is 237. For the
link-path formulation the number of binary variables rep-
resenting the selected route is about 90���.

A popular method to solve 0–1 problems is the
branch-and-bound approach. Such algorithms were ap-
plied to many problems related to NBFA (Kasprzak, 2001;
Walkowiak, 2002; 2004). Nevertheless, branch-and-
bound algorithms are intractable for networks of medium
and large sizes. The only way to solve the NBFA problem
by an exact algorithm that can produce an optimal solu-
tion is to reduce the problem size and consider only a part
of all possible routes. Such an approach, called the Path
Generation technique, is discussed in (Pióro et al., 2003).
Another possible method to reduce the size of the prob-
lem considered is the hop-limit approach (Herzberg et al.,
1995).

Some heuristic algorithms have been developed for
solving the non-bifurcated multicommodity flow problem.
One of the most substantial ones is the Flow Deviation
(FD) algorithm proposed in (Fratta et al., 1973). The
FD algorithm and its modifications have proven their ef-
fectiveness in many network design problems (Bienstock,
2002; Burns et al., 2003; Kasprzak, 2001; Murakami and
Kim, 1996; Walkowiak, 2002, 2003a, 2003b). Also, a
genetic algorithm has been proposed for the problem con-
sidered (Walkowiak, 2001a). However, it should be men-
tioned that most papers on flow optimization focus on bi-

furcated multicommodity flows. Much fewer works con-
sider problems of non-bifurcated flow allocation formu-
lated as 0–1 integer problems. Therefore, generally, there
are not many algorithms and methods for such problems.

3. Related Work

In this section we focus on example applications of ant al-
gorithms to various network problems. The related work
on multicommodity flows is provided in the previous sec-
tion.

First, we briefly present the main ideas of the Ant
Colony Optimization algorithm, which is a foundation
of many other ant algorithms. In ACO meta-heuristic
a colony of artificial ants cooperate in finding good so-
lutions to discrete optimization problems. Cooperation
is a major element of ACO algorithms. The choice is
to allocate the computational resources to a set of rela-
tively simple agents that communicate indirectly by stig-
mergy. Artificial ants have some common features with
real ants—they employ pheromone trails, which are used
for the shortest path finding in real ant colonies. How-
ever, artificial ants have been enriched with some capabil-
ities which are not encountered in nature. Actually, ACO
is an engineering approach to the design and implemen-
tation of software systems for the solution of optimiza-
tion problems. Therefore, artificial ants are provided with
some capabilities that make them more efficient. The most
important ideas of ACO derived from real ants are the
use of a colony of cooperating individuals, a (artificial)
pheromone trail for local stigmergetic communication, a
sequence of local moves to find the shortest paths, and a
stochastic decision policy using local information and no
lookahead. The major differences between artificial ants
used in ACO and real ants are: the discrete nature of arti-
ficial ants (they live in a discrete world and have discrete
states); artificial ants have internal state and memory to
save past actions; artificial ants can deposit a pheromone
according to the function of the quality associated with the
solution found; artificial ants can update pheromone trails
after having generated a solution; an ACO system can use
some extra capabilities like local optimization and back-
tracking (Dorigo et al., 1999).

ACO consists of a finite size colony of cooperating
artificial ants altogether seeking high quality solutions to
the optimization problem. Each individual ant constructs
a solution, or an element of it, starting from an initial state
chosen according to the problem considered. Each ant
gathers information on its own performance and on spe-
cial characteristics of the problem in order to change the
problem representation, as seen by the other ants. Each
ant leaves an amount of pheromone according to the qual-
ity of its solution that is expressed as the shortest path
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through a graph representing the optimization problem. A
single ant can find a feasible solution, but a much better
performance is achieved by a set of cooperating ants. The
moves of each ant are selected according to a local opti-
mization procedure that involves: ant private information,
pheromone trail and problem-specific local information.
Artificial ants have memory storing information about ant
history. This mechanism can be used to avoid cycles
by backtracking the ant from already visited nodes or to
save ant routes. It makes finding feasible solutions eas-
ier. Two approaches are used for releasing a pheromone
by an ant: an on-line step-by-step update and a global on-
line delayed update. In the former method each ant up-
dates the pheromone on each visited link according to a
selected formula. The latter approach assumes an update
of the pheromone trails after completing the ant’s route
and generating the whole solution. Ants make use of lo-
cal available ant-decision tables including information for
the decision of each incoming ant to direct their search
towards the most promising areas of the solution space.
After generating a solution and depositing pheromone in-
formation, the ant is deleted from the system. In order to
encourage ants to find new routes representing solutions,
the pheromone gradually evaporates. Consequently, old
solutions, if not reinforced by new ants, successively be-
come less important. Beside ants’ operations acting from
a local perspective, a special daemon can be used, which
applies a global representation of the problem in order to
improve the performance of the ant algorithm. A major
point in the application of the ant system to optimization
problems is a paper problem representation. For that rea-
son the first step to implement an ACO algorithm is to de-
velop a representation of the problem considered proper to
the ant algorithm. Problems related to computer networks
have many features that allow the application of the ACO.
The most meaningful of them are: computation distribu-
tion, asynchronous evolution of the network status, and
graph representation (Dorigo et al., 1999).

The paper by Schoonderwoerd et al. (1997) is the
earliest work including an application of the ant algo-
rithm to a routing problem. Schoonderwoerd et al. de-
veloped an ant-based control (ABC) algorithm and em-
ployed it to a model of the British Telecom telephone net-
work. Each node of the network has the same functional-
ity as a crossbar switch with limited capacity, while net-
work links have unlimited capacity. The major goal of the
ABC system is to find routes for new connections to ob-
tain load balancing of the network and avoid the conges-
tion of the network or the rejection of demands. Ants are
created at regular temporal intervals from all the nodes to-
wards randomly selected destination nodes. Ants deposit
a pheromone step-by-step on the links they traverse. The
pheromone is associated with routing information. After
that, ants moving in the opposite direction of the ant con-

sidered apply the pheromone information. An assumption
is made that the analysed network is cost-symmetric. It
simplifies the approach and ants do not have to remem-
ber their routes. The amount of the pheromone on the
link selected by an ant is reinforced according to a factor
that is a function of the ant’s age. For the normalization
of the pheromone values, which are used as probabilities,
the pheromone of other links decays proportionally. Rout-
ing tables for new calls are generated according to ant-
decision tables. This means that new calls build routes
starting from the source node and choosing sequentially
neighbor nodes with the highest probability value until the
destination node is reached. The node capacity is updated
accordingly to the call setup or termination.

Di Caro and Dorigo (1998a; 1998b) developed a sys-
tem called the AntNet for distributed routing in connec-
tionless networks. In the AntNet real-time trips experi-
enced by ants and a local-based statistical model are ap-
plied to estimate the path quality. This means that ants
move through the same real network and can have delays
like real data packets. The global update of the pheromone
is used. Once a path has been found, ants lay down the
on the visited nodes an amount of the pheromone propor-
tional to the quality of the found path. Ants move back
to source nodes using high priority queues to enable fast
propagation of pheromone information. In addition to the
pheromone information, local heuristic information repre-
senting the current link queues is used in the ant-decision
table. Di Caro and Dorigo also developed an enhanced
version of the AntNet for connection-oriented networks
(Dorigo et al., 1999).

White et al. (1998) developed the Routing By Ants
(RBA) system for routing in connection-oriented net-
works. The RBA algorithm applies a very similar ap-
proach to the classical Ant System (AS) proposed in
(Dorigo et al., 1991). An ant-based algorithm for dynamic
packet-switched networks is also presented in (Subrama-
nian et al., 1997).

The above examples of the ant algorithm focus on
dynamic routing problems. The work (Varela and Sinclair,
1999) is an attempt to apply the ant algorithm to a static
routing problem. It presents the problem of routing and
wavelength-allocation (RWA) in a multi-wavelength all
optical virtual-wavelength-path routed transport network.
The objective function is the network wavelength require-
ment that denotes a total number of distinct wavelengths
used in the network, which is equal to the maximum
number necessary on any link. Ants move from every
source to every destination, one link per algorithm step.
When all ants reach their destination and die, a new cy-
cle of the algorithm starts. Varela and Sinclair developed
three major versions of the ant algorithm according to
three update strategies: local update, global/distance and
global/occupancy. In the first version, each ant is attracted
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by a pheromone of its own type left by previous ants and
repelled by other ants’ pheromone. The pheromone is
updated on each algorithm step. The other two versions
apply the global update strategy. In the global/update
the pheromone is updated inversely proportionally to the
length of the ant’s path. The global/occupancy strategy
assumes that the weight of repulsion depends on the link
utilization, i.e., the number of ants of any type using the
link considered. All variants use pheromone evaporation.
Simulations show that the best results are produced by
the global/occupancy algorithm. Varela et al. applied a
backtracking operation, with each ant keeping a “tabu” list
of previously visited nodes. Backtracking prevents dead-
ends and cycles. When an ant is blocked, it analyzes its
“tabu” list and tries to proceed from the previous location.
This capability requires each ant’s memory to include a
list of nodes visited in order.

Garlick and Barr (2003) also consider the RWA prob-
lem with dynamic traffic, in which the number of wave-
lengths per fiber is fixed. The objective is to mini-
mize connection blocking using an ant-colony optimiza-
tion (ACO) algorithm. The main goal of the algorithm
is to quantify the importance of combining path-length
and congestion information in making routing decisions.
The ACO algorithm reaches lower blocking rates than an
exhaustive search over all available wavelengths for the
shortest path.

An overview of many ant algorithms applied to var-
ious static and dynamic optimization problems can be
found in (Dorigo et al., 1999). Generally, most of the
literature on the application of ant algorithms to network
problems we have found concerns either dynamic routing
or the RWA problem. To the best of our knowledge, the
first work presenting an ant algorithm applied to the prob-
lem of static flow assignment in connection-oriented net-
works with capacity constraint is the work (Walkowiak,
2001b). In this paper we present a much more compre-
hensive study of the algorithm proposed in (Walkowiak,
2001b) together with the results of extensive numerical
experiments.

4. Ant Algorithm for the Non-Bifurcated
Multicommodity Flow Assignment
Problem

In this section we introduce our approach to the NBFA
problem using an ant algorithm called hereafter the ANB
(Ants for Non-Bifurcated Flows) algorithm. The overall
framework of the ant algorithm for connection-oriented
flow problems was proposed in (Walkowiak, 2001b). The
ANB algorithm presented below is a continuation of that
work. Moreover, we also depict a second ant algorithm—
ANIBS (ANB with Initial Solution)—which is a slight

modification of ANB. The only difference between ANB
and ANBIS is the initialization of pheromone values. All
other procedures are the same. Therefore, if we refer to
ANB, also the ANBIS algorithm is kept in mind.

We use the link-path representation of the NBFA
problem presented in Section 2. For the sake of simplicity,
we introduce the following function:

���� �

�
� ��� � 	 ��

� ��� � � ��

When we tackle an optimization problem with an ant al-
gorithm, either the formulation of the algorithm should
guarantee that all constraints are satisfied or constraints
of the problem must be introduced in the objective func-
tion using a penalty method. To introduce the capacity
constraint (12), we modify the objective function of the
network flow and use the penalty method. The modified
objective function of the NBFA problem is as follows:

� ��� �
�
���

�
� � ��

�
��� � ���

��	
� (13)

The �� parameter is a penalty factor. It should be noted
that to find a feasible solution of the NBFA problem, it
is very important to select the value of the penalty factor
in a correct way. The algorithm should be forced to find
feasible solutions. In the objective function � � we must
‘promote’ feasible solutions and ‘punish’ solutions vio-
lating the capacity constraint. Other constraints of NBFA
connected with the non-bifurcated nature of the multicom-
modity flow are satisfied due to the formulation of the
ANB algorithm.

We begin the presentation of the algorithm by intro-
ducing the notation. We will keep the same notation in the
remainder of the paper.

Indices:

� used as a subscript, denotes the number of the ant
considered,

� used as a subscript, denotes the number of the node
considered,

� used as a superscript, denotes the number of the cur-
rent iteration (cycle) of the algorithm.

Algorithm parameters:

� number of ants which equals the number of com-
modities,

�� bandwidth requirement for the commodity associ-
ated with the ant �,

�� penalty factor used to scale the penalty function in
the objective function,

� constant used in the pheromone updating rule,
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� evaporation coefficient; at the end of each cycle � the
level of the pheromone on all links is reduced by �
(in the remainder of the paper this parameter is also
labeled as RHO),

� parameter that allows the user to control the relative
importance of the pheromone given by the variable
���� (in the remainder of the paper this parameter is
also labeled as ALPHA),

 parameter that allows the user to control the relative
importance of the local heuristic information repre-
sented by !��� (in the remainder of the paper this pa-
rameter is also labeled as BETA),

NOI number of iterations of the algorithm.

Variables

��� route used by the ant � in the iteration �,

" ��� amount of the �-th ant pheromone laid on the arc to
the �-th node in the iteration �,

#�� length of the route of the �-th ant selected in the cycle
�, i.e., a sum of metrics �� ������� � ����

�� of
the arcs 	 belonging to the route ��� followed by the
ant in the cycle �,

���� weight of attraction of the neighbor node � for the
�-th ant in terms of the pheromone laid on the arc �,

��
� set of nodes allowed to the ant � in the time cycle �

(this set is associated with the tabu list),

!��� visibility—local heuristic information of selecting
the node � by the ant � in the iteration � (visibility
is based on strictly local information and it measures
the attractiveness of the next node to be selected),

$��� ant decision probability of selecting the node � by
the �-th ant in the cycle � (the ant can select only
among all allowed nodes; since the variable $ ��� is a
probability, it is normalized).

The number of ants is equal to the number of com-
modities in the network, i.e., each commodity has its own
ant. Each ant deposits its own pheromone. An ant is
characterized with the attributes of the commodity: the
source and destination nodes, and the bandwidth require-
ment. Each ant possesses some memory to store the route
being traversed. Every cycle of the algorithm starts with
placing each ant in its source node and initiating the ant’s
memory. The framework of ANB and ANBIS is shown in
Fig. 1. The most substantial features of this algorithm are
explained in the following. It must be noted that ANB and
ANBIS are very similar. The only difference is included in
the InitializePheromoneValues (" ) procedure.

InitializePheromoneValues (" ): For the ANB
algorithm all pheromone values are set to the same pos-
itive constant value 1 in the first iteration of the algorithm,
i.e., "��� � �. For ANBIS we apply a feasible (in terms
of the capacity constraint) solution in the following way:

 1 InitializePheromoneValues(τ)
 2 for t=1 to NOI do
 3   for i=1 to p do InitializeAnt(i)
 4   while(ExistAnts()==TRUE) do
 5     for i=1 to p do
 6       if (ExistAnt(i)==TRUE) then
 7        MoveAnt(i)
 8       end if
 9     end for
10   end while

11   PheromoneUpdate(τ)
12   DaemonActions()
13 end for

//i – index of analyzed ant
14 procedure MoveAnt(i)
15   j=SourceNodeOfAnt(i)
16   do
17     Ai=CreateAllowedNodesSet(i,j)
18     if (Ai

t==∅) then j=0
19     else
20      for k∈Ait do
21       αikt=ComputeAttraction(i,j,k)
22       ηikt=ComputeLocalVisibility(i,j,k)
23      end for
24      for k∈Ait do

γikt=ComputeDecisionProbability(i,j,k)
25       j=SelectNextNode(γ)
26     end else
27     if (j==0) then
28       FindShortestRoute(a)
29       j=DestinationNodeOfAnt(i)
30     end if
31   while(j!=DestinationNodeOfAnt(i))
32 end procedure

//i – index of analyzed ant; j – number of
current node; k – number of //allowed node
for the ant i which is in node j
33 procedure ComputeLocalVisibility(i,j,k)
34   d=DestinationNodeOfAnt(i)
35   if (k==d) then
36    if (ResidualCapacity(j,k)>Qi) then

 ηikt=1
37    else ηikt=2⋅n
38   else
39    if (ResidualCapacity(j,k)>Qi) then

40    ηikt=LengthOfFeasibleShortestPath(i,k)
41    else ηikt=2⋅n
42   end else
43   return ηikt
44 end procedure

Fig. 1. ANB description in pseudo-code.

All pheromone values are also initially set to 1. However,
after that, each ant follows the path given by the feasi-
ble solution found by another algorithm. Next, we update
the pheromone according to formulas given below. This
means that the pheromone values are initiated according
to a feasible solution.
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The main loop of the program (the lines 2–13) is re-
peated for a given number of iterations. However, some
other termination criteria, e.g., when the evaluation of the
best found solution gives a positive result can be applied.
The variable � denoting the current cycle is a global vari-
able available in all procedures.

InitializeAnt (i): Each ant is placed in its source
node. The memory of the ant is cleared. The loop from
the line 4 to the line 10 is repeated until all ants reach their
destination nodes.

MoveAnt (i): An important part of the ANB algorithm.
This procedure is responsible for moving the ant through
the network. The detailed actions of an ant are given in
the lines 14–32. The ant continues its trip across the net-
work until it reaches the destination node (the lines 16–
31). According to the current state and the position in the
network, the ant applies its decision policy and selects a
next node to move to (the line 25). The ant is attracted to a
node of those adjacent to its current node excluding nodes
contained in the tabu list. The set ��

�, created in the line
17, includes all nodes allowed to the ant �. The weight of
attraction of the node � for the �-th ant is given by

���� �
" ���


����

�

" ���
� (14)

Moreover, in the ant decision table we apply some local
heuristic information !��� of selecting the node � by the
ant �. The calculation of !��� is done by the procedure
ComputeLocalVisibility (the line 22) discussed
below. The values of !��� are normalized in much the
same way as ���� .

The ant decision probability of selecting the node �
by the �-th ant is calculated as follows:

$��� �
������

��!����
�


����

�

�" ����
��!����

�
� (15)

The parameters � and  are used to find a trade-off be-
tween local heuristic information and pheromone inten-
sity.

Ants follow a route from a particular source node
to a particular destination. The route must not contain
loops. Therefore, each ant records its route in memory
to maintain a tabu list of nodes the ant must not revisit.
However, a loop may occur when the ant reaches a ‘dead
end’ (Varela and Sinclair, 1999). In order to overcome this
problem, we allow the ant to backtrack to the source node
and find the shortest route using the shortest path algo-
rithm skipping the pheromone information (the line 28).
We apply the Dijkstra algorithm with the hop metric, i.e.,

each arc has a weight equal to 1. As a matter of fact, in
our algorithm, we let the ant try 10 times to overcome the
loop. If after 10 attempts the ant cannot reach the destina-
tion node, we apply the shortest path algorithm to compute
the ant’s route.

ComputeLocalVisibility (i,j,k): This proce-
dure is responsible for providing some local, heuristic in-
formation to the ant. While we were developing and test-
ing the algorithm, we noticed that the selection of local
information is very important for correct functioning of
the algorithm. Therefore, we introduced some improve-
ments to the initial version of the algorithm (Walkowiak,
2001b). The modifications yielded much better results.
The detailed actions of the procedure are shown in the
lines 33–43. We use two kinds of local information: the
residual capacity of arcs and the distance from the current
node to the destination node of he ant.

ResidualCapacity (j,k): It returns the residual ca-
pacity of the arc ��� 	�, i.e., the difference between the arc
capacity and the flow.

LengthOfFeasibleShortestPath (i,k): It re-
turns the length (given in the number of arcs) of a fea-
sible path from the node 	 to the destination node of the
ant �. The feasibility of the route means that in order to
calculate the shortest path, we consider only those arcs in
which the residual capacity is bigger than the bandwidth
requirement of the ant �. If such a path does not exist, the
procedure returns the value ��—it is a kind of penalty
function.

PheromoneUpdate (" ): Ants update pheromone.
When all ants die, i.e., when ants reach their destina-
tion nodes, we update the pheromone value. We use an
approach related to the ant-cycle algorithm proposed in
(Dorigo et al., 1991) and the global update proposed in
(Varela and Sinclair, 1999). Pheromone information is
updated after all ants have completed their routes. If we
assume that in time cycle � the ant � uses the route � �� ,
the variable #�� denoting the length of the ant’s route is
calculated according to the formula

#�� �
�
���

����

�
� � ��

�
��� � ���

��	
� (16)

We use the following pheromone updating rule:

" ����� � " ��� �
�

#��
� (17)

where � is one of the parameters in the algorithm.

Pheromone evaporation reduces the level of the
pheromone on all links by a factor � (the evaporation co-
efficient) at the end of each cycle � (Dorigo et al., 1991):

" ����� � � " ��� � (18)
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DaemonActions (): When an ant reaches the destina-
tion node, it dies, i.e., it is removed from the system, but
the memory of the ant’s route it transferred to the global
daemon. Using this information, the value of the obtained
solution can be calculated. A global daemon can compute
some other information, e.g., network statistics.

The ANB algorithm has a large set of parameters that
has to be tuned in order to provide the best possible fea-
sible solutions of the NBFA problem. A detailed study of
the influence of parameter settings on the quality of solu-
tions is made in the next section.

An analysis of ANB algorithms shows that many
ideas are related to the algorithm presented in (Varela
and Sinclair, 1999). The most important similarities are
as follows: one ant using its own type of pheromone for
each commodity, backtracking, and a global update of the
pheromone. However, due to the specific capacity con-
straint, which is not considered in (Varela and Sinclair,
1999), we have to modify Varela and Sinclair’s algorithm
and use local heuristic information in the ant decision
probability formula. Consequently, the role of pheromone
information is less important in our algorithm.

It should be mentioned that many various versions
of ant algorithm were evaluated by the author, and the
ANB algorithm presented above is the best one in terms of
the obtained results. Many ant algorithms developed for
network optimization problems could not be applied di-
rectly to the NBFA problem due to the specific features of
that problem: static optimization, the non-bifurcated flow
(only one route for commodity) and capacity constraints.

5. Numerical Results

In this section, we present an analysis of the ANB and
ANBIS performances. Both the algorithms were imple-
mented in C++. Since we had not performed a mathemat-
ical analysis of the algorithm, which would have helped
to obtain an optimal parameter setting in each situation,
we ran many simulations to assemble statistical data for
this purpose. The results presented in this section are ob-
tained from simulations on 10 sample networks (Fig. 2).
The name of each network indicates the number of nodes
(two first digits) and the number of links (two last dig-
its). Table 1 summarizes the parameters of all sample net-
works. The heading of each column specifies the name of
the parameter, and various tested values are listed in the
respective column. In an experiment, it is assumed that
there is a requirement to establish a connection for each
direction of every node pair. Consequently, the total num-
ber of ants in the network is equal to ������. For a given
experiment, the value of the bandwidth requirement is the
same for each commodity. We study the performance of
the algorithm for an increasing traffic load, examining the

evolution of the network status toward a saturation condi-
tion. This means that experiments for a particular topol-
ogy have different traffic demands. The last column of
Table 1 shows the number of bandwidth requirements pat-
terns for each network. For instance, on the network 1034
we perform 4 experiments: 10340, 10345, 1034a, 1034e
with the bandwidth requirement of each commodity 40,
35, 30 and 26, respectively.

1 03 4 1 03 8 1 04 2

1 04 6 1 45 0 1 45 6

1 46 2 1 86 6

1 87 4 1 88 2

Fig. 2. Sample networks.

Table 1. Parameters of sample networks.

Name
of

network

Number
of

nodes

Number
of

links

Average
node

degree
(avnd)

Number
of

ants

Number
of

bandwidth
require-
ments

1034 10 34 3.40 90 4
1038 10 38 3.80 90 3
1042 10 42 4.20 90 5
1046 10 46 4.60 90 5
1450 14 50 3.57 182 7
1456 14 56 4.00 182 7
1462 14 62 4.43 182 7
1866 18 66 3.66 306 4
1874 18 74 4.11 306 4
1882 18 82 4.56 306 4
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5.1. ANB Parameters Setting

In this subsection we consider parameters that affect di-
rectly or indirectly the ANB algorithm. As was mentioned
above, the number of ants has always been set as the num-
ber of commodities in the network to be established. We
apply the same approach like in (Dorigo et al., 1991),
i.e., for each simulation, we vary only the value of one
parameter while keeping all other parameters constant.
Even though NBFA and TSP are quite different problems,
we decided to use as a starting point values similar to
those in (Dorigo et al., 1991), used in the ant algorithm
for the TSP problem: �� � ��� �� �� �� ��� ���� � �
��� ���� ������� � � ����� ���� ���� ���� ������� � �
��� ���� �� ���  � ��� �� �� �� ��� ���. We use the follow-
ing notation: Each experiment consists of 2160 simula-
tions of the ANB algorithm for different values of parame-
ters. An experiment differs from the others in terms of the
topology of the tested network and the traffic demand pat-
tern. A simulation differs from other simulations in terms
of the values of the parameters ��� �� �� � and  . Due
to tested values of parameters values, the overall number
of simulations for one experiment is �
 �
 �
 �
 � �
����. In all simulations, the number of iterations is set to
50. A result obtained for a particular simulation is the best
result among all 50 results obtained for each iteration of
the algorithm.

Analyzing the obtained results, we have noticed that
parameters ��, � and � generally do not have strong
influence on the value of the objective flow function given
by (13). Figures 3–5 show the results of running the same
set of simulations on the topology 1874 with values of the
parameters � and  fixed as 0.5 and 20, respectively.
The other three parameters were changed according to the
default values given above. It yields 90 simulations for
each set of the bandwidth requirement on the topology
1874. The �-axis represents the aggregate flow summed
over all tests. The �-axis represents the bandwidth re-
quirements. For the experiments 18744, 18746, 18748
and 1874a the value of the bandwidth requirement of each
commodity is 20, 19, 18 and 17, respectively.

The general trend shown in Figs. 3–5 is that chang-
ing the value of any three parameters considered does not
influence the flow in the network. Only for the experi-
ment 18744 the difference is slightly more significant than
for other cases. For example, in the experiment 18744,
the biggest gap between the values of the flow function
is 4.96%, while in experiments 18746, 18748 and 1874a,
it decreases to 0.34%. Analyzing the results of all 10800
simulations for various networks and different values of
parameters, we conclude that the default values of the pa-
rameters ��, � and � should be fixed as 2, 100 and 0.9,
respectively. However, the importance of these parame-
ters was uninfluential in most of the experiments.
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Fig. 5. Aggregate results for the network 1874
showing the influence of the � parameter.

Recall that the flow function is calculated accord-
ing to (13), which takes into account the penalty func-
tion. If a solution is not feasible (the capacity constraint
does not hold), the value of the flow function may be very
large. If we calculate the aggregate flow function as a sum
over many experiments, the presentation of results could
be difficult. Moreover, for various experiments different
values of bandwidth requirements are used, which results
in huge deviations of the flow function value. Therefore,
to make the performance evaluation easier, we introduce
the concept of the competitive ration. The competitive
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ration, which indicates how well an algorithm performs
for a given set of the parameters ��, �, �, � and  ,
is defined as the difference between the result obtained
for a particular simulation and the minimum value of the
flow function obtained in the experiment considered. For
instance, if for the experiment consisting of 2160 simula-
tions the minimum value of the flow function is 10000 and
the flow function of the simulation considered is 15000,
the competitive ration of this simulation is calculated as
������ � ������������ � ���. The competitive ration
indicates the quality of the obtained result of a given sim-
ulation compared with the results of other simulations for
a particular experiment. A low value of the competitive
ration means that the simulation result is very close to the
best results in a given experiment. For the presentation
of aggregate results, we apply the aggregate competitive
ration, which is the sum of competitive rations over all
experiments considered.

We now describe the influence of two parameters �
and  on the value of the objective function using the
competitive ration as the performance index. To exam-
ine the impact of these parameters, we fix three other pa-
rameters at default values and change the values using
� � ��� ���� �� �� and  � ��� �� �� �� ��� ���. For clarity,
we show aggregate results for all networks and for the net-
work 1874 discussed above concerning the tuning of the
parameters ��, � and �. Figure 6 shows the aggregate
competitive ration for all experiments. Figure 7 depicts
the same function only for the topology 1874. In both fig-
ures, the %-axis uses the logarithmical scale. The general
trend in both figures is that the best results are obtained for
� � ��� ���� �� and  � ���� ���. Due to the large dif-
ference in the tested topologies in terms of the number of
nodes and links, we have noticed that for networks having
10 nodes the best results are obtained for  � ��, while
for larger networks the parameter should be fixed at 20.
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Fig. 6. Aggregate results for all tested networks showing the in-
fluence of the � and � parameters.
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Fig. 7. Aggregate results for the network 1874 showing the in-
fluence of the � and � parameters.

An important observation compared with previous
works in the field of ant algorithms is that good results are
obtained for � � �. According to the description of the
algorithm presented in the previous section, setting � as 0
means that the pheromone information is not applied and
only local heuristic data are used to determine the routes.
This can be explained by the fact that local heuristic infor-
mation is calculated according to a complicated formula
using a lot of data on the current state of the network.
The second potential explanation of the fact is that rela-
tively many commodities are established between neigh-
bor nodes of networks, especially for smaller networks.
For instance, in the 1042 topology 42 of 90 demands,
i.e., 47% of all demands connect adjacent nodes. How-
ever, for the network 1874, the ratio of such connections is
24%. Since the distance between the source and destina-
tion nodes is only one hop, the importance of pheromone
information is reduced. Consequently, local heuristic in-
formation gains much more significance. To verify this
hypothesis, we repeat the same simulations as presented
above. However, we limit the number of commodities in
the network according to the minimum distance between
the source and destination nodes. This means that we ig-
nore those demands for which end nodes are too close in
terms of the number of hops. Table 2 summarizes the
parameters of these new simulations. As in Table 1, the
heading of each column specifies the name of the parame-
ter, and the various values tried are listed in the respective
column. In this experiment, it is assumed that there is a
requirement to establish a connection for each direction
of every node pair for which the distance is at least 3 hops
or 4 hops. For a particular test, the value of the bandwidth
requirement is the same for all commodities. The last col-
umn indicates the number of various traffic demand pat-
terns for each network. As above, the parameters ��, �
and � are fixed to default values 2, 100 and 0.9, respec-
tively.



K. Walkowiak216

Table 2. Parameters of experiments.

Name
of

network

Number
of

nodes

Number
of

links

Minimum
distance
in hops

Number
of

ants

Number
of

bandwidth
require-
ments

1866 18 66 3 126 6
1874 18 74 3 106 5
1882 18 82 3 94 6
1866 18 66 4 34 6
1874 18 74 4 20 6
1882 18 82 4 10 6

Figures 8 and 9 depict the impact of the � and
 parameters on the networks 1866, 1874 and 1882 for
the minimum distance between the source and destination
nodes of commodities fixed to 3 and 4 hops. The general
trend in these figures is similar to that in previous experi-
ments. However, comparing Figs. 8 and 9 against Figs. 6
and 7, we see that increasing the minimum distance be-
tween the end nodes of the commodities makes the results
for � � � relatively worse. For instance, in the experi-
ment with the minimum distance fixed at 4 hops, the best
results are obtained for � � ���,  � �� and � � �,
 � �� (Tables 3 and 4). This proves that the good results
obtained for � � � and presented above can be explained
partially by the tested traffic demand pattern.

The results obtained for the ANB algorithm are not
in agreement with the results of the algorithm presented in
(Dorigo et al., 1991). However, since in this work we do
not consider the traveling salesman problem but the non-
bifurcated multicommodity flow problem, a direct com-
parison is very difficult. A major difference is the capac-
ity constraint of the flow problem. In our opinion, the ca-
pacity constraint strongly influences the algorithm, which
results in great importance of local heuristic information
and a lower influence of pheromone information. It must

Table 3. Aggregate competitive ration of various simulation scenarios for � � ��.

Networks All 1866, 1874, 1882 1866, 1874, 1882 1866, 1874, 1882

Minimum distance 1 1 3 4

� 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Aggregate
competitive ration 0.7 0.8 1.8 0.23 0.18 0.20 0.36 0.25 0.35 13.2 19.4 8.1

Table 4. Aggregate competitive ration of various simulation scenarios for � � ��.

Networks All 1866, 1874, 1882 1866, 1874, 1882 1866, 1874, 1882

Minimum distance 1 1 3 4

� 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Aggregate
competitive ration 0.5 0.9 1.8 0.07 0.15 0.16 0.11 0.20 0.23 13.9 8.0 12.0

be noted that using � � � leads to an instability of the
algorithm, i.e., the algorithm cannot converge to one solu-
tion.
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Fig. 8. Aggregate results for the topologies 1866, 1874 and
1882 with the minimum hoop distance set as 3 showing
the influence of the � and � parameters.
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1882 with the minimum hoop distance set as 4 showing
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Summarizing the process of parameter setting, we
can list the main results:

1. The influence of the parameters ��, � and � on
the performance of the ANB algorithm is relatively
small. Only for strongly saturated networks the dif-
ference between the results obtained for various val-
ues of these parameters is larger than 1%.

2. The default values of the parameters ��, � and �
should be fixed as 2, 100 and 0.9, respectively.

3. The influence of the parameters � and  on the
performance of the ANB is strong for all tested net-
works.

4. The default values of the parameters � and  should
be � � ��� ���� �� and  � ���� ���.

5. Good results obtained for � � � suggest the signifi-
cance of local heuristic information.

6. The traffic demand pattern may change the param-
eters setting. If we consider only commodities be-
tween remote (in the number of hops) nodes, the
pheromone trail becomes more significant.

5.2. ANBIS Parameter Setting

In this subsection we find the best parameter setting
for ANBIS. As in the previous subsection, we con-
sider the following values of the parameters: �� �
��� �� �� �� ��� ���, � � ��� ���� ������, � �
����� ���� ���� ���� ������, � � ��� ���� �� ��,  �
��� �� �� �� ��� ���. The methodology of tests is the same
as for ANB. However, the parameter setting for ANIBS
differs from that for ANB. The best results are obtained
for the following values: �� � �, � � �����, � �
��� �� and  � ��. ANBIS is not strongly influenced
by �. For instance, for the topology 1874 modifying �
changes the result by no more than 1%. Recall that in
ANBIS we start with a feasible solution, for which the ca-
pacity constraint is satisfied. Therefore, the penalty factor
��, which is significant in searching for a feasible so-
lution, is set to 0. The importance of � grows because
the algorithm should stay in feasible regions of the solu-
tion space. Recall that the parameter � is used in the
pheromone updating rule (17). Therefore, � affects the
reinforcement of the pheromone according to the route se-
lected by ants in the current iteration. If � is relatively
small, the route selected by an ant has also little influence
on the pheromone lying and it is more probable that the
ant will select in the next iteration another route, much
different from the previous one. Consequently, in next it-
erations the solution may become infeasible. On the other
hand, when � is relatively large, it is more probable that
ants will use routes similar to previous ones and the ob-
tained solution will stay in a feasible region.

Figure 10 shows the aggregate competitive ration for
all experiments. Figure 11 depicts the same function only
for topology 1874. In both the figures the default values of
parameters ��, � and � are used. The general trend in
both the figures is that the best results are obtained for � �
��� �� and  � ��. It is consistent with the philosophy
of ant algorithms—the pheromone information plays an
important role in the algorithm.

0.
0

1.
0

2.
0

5.
0

10
.0

20
.0

0 .0 0.5
1.0

5.0

0.0

0.1

1.0

10.0

100.0

ag
gr

eg
at

e 
co

m
pe

ti
ti

ve
 r

at
io

n

BETAALPHA

Fig. 10. Aggregate results of ANBIS for the networks 1866,
1874, 1882 showing the influence of the � and � pa-
rameters.
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Fig. 11. Aggregate results of ANBIS for the network 1874
showing the influence of the � and � parameters.

The comparison of ANB and ANBIS parameter tun-
ing indicates that the major issue in the problem consid-
ered is the feasibility of results. The ANB algorithm must
be forced to search for the feasible solution. Therefore,
local heuristic information enforced by the  parameter
is more significant, while � is not so important. Since
ANBIS starts with a feasible solution, the major effort of
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the algorithm is to improve the result. Thus, the parameter
� becomes much more influential.

5.3. Comparison with Other Heuristics

In this subsection we compare the performance of the
ANB and ANBIS algorithms with that of other algo-
rithms applied to the assignment of non-bifurcated flows.
To assess the value of our approach applied to the non-
bifurcated multicommodity flow problem, we selected
for comparison two algorithms: a modification of the
Flow Deviation (FD) algorithm presented in (Fratta et al.,
1973), and a heuristic algorithm called AlgNB and devel-
oped by Walkowiak (2003b). Both algorithms require an
initial feasible solution that is provided by the initial phase
of the FD algorithm (FDInit) from (Fratta et al., 1973).
It must be noted that the Flow Deviation algorithm is
one of the most robust methods developed for the assign-
ment of multicommodity flows. The FD method and its
modifications are widely used for optimization problems
related to NBFA (Bienstock, 2002; Burns et al., 2003;
Kasprzak, 2001; Murakami and Kim, 1996; Walkowiak,
2002; 2003a; 2003b). More details on both algorithms
and results can be found in (Walkowiak, 2003b).

ANBIS, FD and AlgNB use the output of FDInit as
the starting feasible solution. In Table 5 we report the re-
sults for all tested algorithms. We show the aggregate flow
obtained for all 18-nodes networks (the second row of Ta-
ble 2) and detailed results for the networks 1866, 1874 and
1882 (rows 3–5). We find the ANBIS algorithm to be su-
perior to other algorithms. ANBIS improves the result of
FDInit from 0.09% to 1.03% for particular networks. The
second algorithm is AlgNB, which is only 0.10% worse
than ANBIS. The worst performance is revealed by ANB.
However, the maximum difference between the best and
worst results reported in Table 5 is less than 2.5%.

Table 5. Aggregate flow obtained for various algorithms.

Network ANB ANBIS FDInit FD AlgNB

18 135711 132974 133796 133106 133080

1866 32403 31770 31800 31770 31770

1874 50309 49216 49470 49176 49193

1882 52999 51988 52526 52160 52117

The results presented in Table 5 confirm that the main
problem of ANB is the feasibility of the result. The major
effort of ANB is to find a feasible solution—the parame-
ters are set and fixed according to this issue. The tuning of
ANBIS shows that if the algorithm finds a feasible solu-
tion, different values of parameters are needed in order to
improve the solution. Therefore, the results obtained for
ANB are not satisfactory.

Another important issue is the execution time of the
compared heuristics. The comparison shows that the com-
putational time of ANB and ANBIS is 15–45 times longer
than that of the other heuristics. However, our focus in
developing the implementation was on correctness, rather
than on program speed, and it is anticipated that this figure
could be significantly reduced. For instance, reducing the
number of iterations could decrease the decision time of
the ant algorithm.

6. Concluding Remarks

In this paper we have described how to apply an ant al-
gorithm to a non-bifurcated multicommodity flow assign-
ment problem. We have proposed and discussed com-
prehensively a novel ant algorithm. Since many static
optimization problems encountered in real connection-
oriented networks can be modeled as non-bifurcated mul-
ticommodity flow problems, the significance of this work
is substantial. Because of the different optimization prob-
lem considered, the algorithm and implementation details
tightly bound to the specific capacity constraint. There-
fore, it was impossible for us to re-implement the existing
ant algorithms approaches proposed in previous works. Is
should be underlined that our focus in developing and test-
ing ANB and ANBIS was on the correctness and evalua-
tion of the algorithm, rather than issues of its effective-
ness. By the correctness we mean that the algorithm can
find a feasible solution, i.e., a solution in which the flow
of each link does not exceed the link capacity.

The results of many simulations run on various net-
work topologies suggest that ANB can be used for capac-
itated optimization of static flows. Nevertheless, there is
still some room for further improvements. We have stud-
ied several issues that arise in tackling the NBFA problem
by the ant algorithm. The major problem is the tuning of
the algorithm. We observe that some parameters have an
effect on the performance of ANB and ANBIS much more
substantially than others. We proposed the best values of
parameters and noticed that wrong selection may lead to
completely incorrect results. A relatively strange, compar-
ing with other ant algorithms, parameter setting obtained
for ANB can be explained mainly by the specific capac-
ity constraint that influences robustly the algorithm, espe-
cially for congested networks in which only a very small
part of the solution space is feasible.

We also compared ANB and ANBIS with other
heuristics. During numerical experiments we noticed sev-
eral shortcomings of our approach which are listed as fol-
lows:

� for highly loaded networks the ANB algorithm can-
not find a feasible solution;
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� premature convergence—both algorithms stop too
early further exploration of the search space;

� ANB performs worse than the known algorithms,
and the difference in results is relatively small;

� running time of ANB and ANBIS is much longer
compared with other algorithms.

Many questions remain and many problems are open:
as a final remark we propose a brief catalogue of them. In
further work, it will be possible to carry out a more de-
tailed investigation of appropriate parameter settings for
our algorithm according to various network topologies
and traffic demands patterns. Another issue is the role of
experience: how to operate in parameter tuning, for bal-
ancing convergence speed and good results. Adopting a
feasible initial solution to pheromone initialization rather
than setting the pheromone to the same value may prove
beneficial, as ANB has sometimes trouble finding a feasi-
ble solution that conforms to the capacity constraint.

In future work we plan to make improvements to
ANB. The first proposal is to change parameter values
when the algorithm runs in the following way: We start
with values providing a feasible solution. Next, we change
the parameters to values promising convergence to better
results. The second suggestion is to modify the ANB algo-
rithm according to the initial phase of the Flow Deviation
algorithm as follows: ANB finds a solution. If the capac-
ity constraint is violated, the flows on all arcs are reduced
proportionally, until a feasible flow is obtained. Next,
ANB is run again and the flows are increased to a level
very close to saturation. The process terminates when
one of two cases occurs: either flows have starting val-
ues, or the network is saturated. In the former case ANB
yields a feasible solution. In the latter case the problem is
claimed to be infeasible. Furthermore, we plan to exam-
ine the possibility of applying ANB to the optimization
of static flows according to other functions, e.g., the lost
flow function introduced in (Walkowiak, 2002; 2003a) or
functions using the bottleneck metric. An analytic proof
and models of ANB algorithm performance are also open
problems.

Finally, we must mention that most of previous stud-
ies concerning applications of ant algorithms focus on dy-
namic routing problems. This paper shows that an ant al-
gorithm can be applied also to static network problems
with capacity constraints. The paper (Varela and Sinclair,
1999) includes an ant algorithm for a static routing prob-
lem without capacity constraints. However, according to
(Gendron et al., 1998) and the author’s experience, the ca-
pacity constraint makes the flow allocation problem very
difficult and the algorithm by Varela and Sinclair could
not be applied directly to the NBFA problem. Due to
the problem-dependent constraints, the original ant algo-
rithm has to be modified strongly in order to guarantee

the feasibility of the results. Therefore, two developed
algorithms for ANB and ANBIS have some features of
ant algorithms, but also many new elements are added.
The role of local heuristics is stronger that in many other
ant algorithms. However, when we tested some versions
of the algorithm without such complicated local heuris-
tics, the algorithm was unable to find a feasible solution.
This conclusion is consistent with the opinion presented
in (Dorigo et al., 1999) that the use of local heuristics im-
proves ant algorithm performance considerably. We be-
lieve that the results presented in this paper may provide
additional support for the development of ant algorithms
for static network problems with capacity constraints.
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