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An observability problem for a class of linear, uncertain-parameter, time-invariant dynamic SISO systems is discussed. The
class of systems under consideration is described by a finite dimensional state-space equation with an interval diagonal state
matrix, known control and output matrices and a two-dimensional uncertain parameter space. For the system considered a
simple geometric interpretation of the system spectrum can be given. The geometric interpretation of the system spectrum is
the base for defining observability and non-observability areas for the discussed system. The duality principle allows us to
test observablity using controllability criteria. For the uncertain-parameter system considered, some controllability criteria
presented in the author’s previous papers are used. The results are illustrated with numerical examples.
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1. Introduction

In most real situations, while building a mathematical
model for a real system, we are not able to perform an ac-
curate identification of model parameters. The reasons be-
hind this situation are well known. Mathematical models
with unknown, interval or uncertain parameters describe a
very broad class of control systems. In order to steer these
objects, special versions of control algorithms should be
used. Systems with uncertain parameters can be analysed
using various approaches. One is the application of inter-
val analysis.

Most papers are concentrated on stability analysis of
interval dynamic systems, because the stability of a con-
trol system is a fundamental issue. But not only the sat-
isfaction of stability conditions guarantees a proper con-
struction and work of the control system. Another impor-
tant feature, which often has be to be considered during
control system construction, is observability. Observabil-
ity always has to be tested during the construction of a
state observer. For LQG purposes, an observability prob-
lem may be continuously monitored by on-line identifica-
tion, e. g., with the Instrumental Variable Method.

In this paper observability analysis for a class of
uncertain-parameter dynamic systems will be presented.
The system under consideration is described by a lin-
ear, finite-dimensional, time-invariant state-space equa-
tion with an uncertain diagonal state matrix and known
control and output matrices. As an example of this class
of systems, an interval parabolic system, described by an

abstract state-space equation in the Hilbert space, can be
given (Oprzędkiewicz, 2003, Example 3).

2. Uncertain–Parameter Linear Dynamic
System with a Diagonal State Matrix
and a Two–Dimensional Uncertain
Parameter Space

The definiton of the interval dynamic system can be
found in many papers, (Jakubowska, 1999). In this pa-
per we shall deal with the SISO uncertain-parameter time-
invariant linear dynamic system described by the follow-
ing state-space equation:

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)

where x(t) ∈ R
n, u(t) ∈ R, y(t) ∈ R. Denote by q the

vector of uncertain model parameters. It can be expressed
as q = [q1, q2]T , q ∈ Q, where Q denotes the whole set
of uncertain parameters. The elements of the vector q can
be described as the following interval numbers:

q1 = [q1, q1], (2)

q2 = [q2, q2]. (3)
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The set of uncertain model parameters Q has four ver-
tices, defined as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qll = [q1, q2],
qlh = [q1, q2],
qhl = [q1, q2],
qhh = [q1, q2].

(4)

As an example of a real system described by (1)–(4), the
interval parabolic system discussed in (Oprzędkiewicz,
2003), Example 3, can be given.

Assume that the eigenvalues λi of the state matrix
A are linear functions of uncertain model parameters.
This can be expressed as

λi(q) = c1iq1 + c2iq2 + di, (5)

where c1i , c2i and di denote known real constants. The
above implies that the state matrix A is an interval matrix
(for a definition of the interval matrix, see, e.g., (Białas,
2002; Jakubowska, 1999)), dependent on uncertain model
parameters. In the case considered the matrix A has the
following form:

A =

⎡
⎢⎢⎢⎢⎣

λ1 · · · · · · 0
0 λ2 · · · 0
...

...
...

...

0 · · · 0 λn

⎤
⎥⎥⎥⎥⎦

n×n

, (6)

where λi is defined by (5). The interval state matrix A
has four vertex matrices, which can be expressed as fol-
lows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
All(q) = A(qll),
Alh(q) = A(qlh),
Ahl(q) = A(qhl),
Ahh(q) = A(qhh),

(7)

where qll, qlh, qhl and qhh denote the vertex vectors de-
fined by (4). Now, we have to make elementary assump-
tions about the control matrix B and the output matrix C.
We assume that the elements of these matrices are known
real numbers and they are non-zero. These matrices have
the following form:

B = [b1, b2, . . . , bn]T , (8)

where bi �= 0 for i = 1, . . . , n,

C = [c1, c2, . . . , cn], (9)

where ci �= 0 for i = 1, . . . , n.

3. Geometric Interpretation of the Interval
Spectrum

In the case considered the dimension of the uncertain pa-
rameter space equals 2. This fact allows us to formulate
a simple geometric interpretation of the system spectrum
in R

3 (Oprzędkiewicz, 2003). At the beginning, note that
the set of uncertain parameters Q in the plane of uncer-
tain parameters q1 and q2 constitutes the rectangle

Q = {q ∈ R
2 : q1 ≤ q1 ≤ q1, q2 ≤ q2 ≤ q2}. (10)

The vertices of the rectangle Q have coordinates defined
by (4). Furthermore, each eigenvalue λi of the interval
diagonal state matrix A can be interpreted as a tetrahedron
in R

3:

Λi =
{
λi(q) : q = [q1, q2]T ∈ Q,

λi = ci1q1 + ci2q2 + di

}
, (11)

where Q denotes the set of uncertain model parameters
defined by (10). Consequently, the interval spectrum of
the system considered can be defined as a set of tetrahe-
drons (11) in R

3:

Λ(q) =
n⋃

i=1

Λi. (12)

4. Observability Problem for the System
in Question

Observability for a system with uncertain parameters can
be formulated in much the same way as in the case of a
system with known parameters.

Definition 1. (Observability of an uncertain-parameter
system) An uncertain-parameter finite-dimensional linear
dynamic system described by the interval model (1)–(9) is
controllable if and only if it is controllable for each vector
q ∈ Q.

If system observability is equivalent to that of the pair
of matrices (C, A), then the following definition can be
given:

Definition 2. (Observability of the pair (C, A(q))) A pair
of matrices (C, A(q)) (here C is a real matrix and A(q)
is an interval matrix) is observable if and only if it is ob-
servable for each vector q ∈ Q.

The definitions formulated above are very general
and do not allow us to simply test the observability of
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an uncertain system with observability criteria for sys-
tems with known parameters. Fortunately, we can expect
that the duality principle holds for the discussed uncertain-
parameter system. Consequently, the controllability con-
ditions formulated for the discussed uncertain-parameter
system (Oprzędkiewicz, 2004) can be used for testing ob-
servability. A further analysis of the observability prob-
lem is dual to controllability analysis for the discussed
system. It will be presented in the sequel.

5. Observability and Non-Observability
Areas and Their Geometric Interpretation

Observability analysis for the uncertain system discussed
in the previous sections will be continued after formu-
lating additional assumptions and presenting some new
ideas.

At the beginning, note that observability for an
uncertain-parameter system is not a synonymous idea, be-
cause in the domain of uncertain parameters we can ex-
pect subareas where the system will not be observable
and subareas where it will be observable. That is why we
should now define the notions of observability and non-
observability areas.

Definition 3. The set of uncertain system parameters for
which the system is observable is called the observability
area and will be denoted by Qo.

Definition 4. The set of uncertain system parameters for
which the system is not observable is called the non-
observability area and will be denoted by Qno.

The observability and non-observability areas have
the following elementary properties:

Qo ∩ Qno = Q, Qo ∪ Qno = 0. (13)

Observability analysis for the discussed uncertain-
parameter system will consist in a simple determination
of observability or non-observability areas inside the area
of uncertain model parameters Q.

To determine these areas in accordance with the du-
ality principle, the approach presented in (Oprzędkiewicz,
2004) will be used.

First note that, according to the duality principle, the
observability test requires that of the controllability of the
pair (AT , CT ). In our case, in accordance with (6) and
(9), these matrices are

AT = A, CT = [c1, . . . , cn]T . (14)

Next we construct the controllability matrix So for the
pair (AT , CT ). It has the following general form:

So =
[
CT |AT CT | . . . (AT )n−1CT

]
. (15)

It is easy to see that So = RT . This implies that the
approach proposed in (Oprzędkiewicz, 2004) can be also
applied to So or R. In our further deliberations we shall
deal with the matrix So.

Furthermore, we can remark that if the state ma-
trix A is a function of the vector of uncertain param-
eters q, then the matrix So is a function of this vec-
tor, too. This can be expressed as So = So(q). It is
easy to notice that at each point from the observability
area rank(So(q)) = n and at each point from the non-
observability area rank(So(q)) �= n.

In the case of a SISO system with known parameters,
the observability test consists in rank checking for the ma-
trix So(q). In the case considered, this matrix is a square
matrix of size n × n. It is known that the rank of this
matrix equals n if and only if all rows and all columns
of this matrix are linearly independent. In the case of the
system considered this condition can be interpreted as fol-
lows: for the observability area all rows and all columns of
the matrix So(q) are linearly independent, while for the
non-observability area there exist rows or columns which
are linearly dependent. For the discussed system, the ob-
servability matrix So(q) has the following form:

So(q) =

⎡
⎢⎢⎣

c1 λ1(q)c1 · · · λn−1
1 (q)c1

...
... · · · ...

cn λncn(q) · · · λn−1
n (q)cn

⎤
⎥⎥⎦ , (16)

where λ1(q),. . . , λn(q) are the interval eigenvalues of the
state matrix defined by (5) and described by (12). The i-th
row of the observability matrix So(q) expressed by (16)
has the following form:

Soi(q) = ci

[
1 λi(q) λi

2(q) · · · λi
n−1(q)

]
. (17)

In the case of a SISO system with known parameters it is
well known that the rank of the matrix So(q) is less than
n if and only if the system’s spectrum consists of two (or
more) different eigenvalues which are equal.

This simple condition was used for the determina-
tion of non-controllability areas inside the set of uncertain
parameters Q (Oprzędkiewicz, 2004) and it can be anal-
ogously applied now. First, the following remarks can be
given:

1. In the case of the discussed uncertain-parameter sys-
tem there might exist vectors q such that the eigen-
values λi(q) and λj(q) will be equal. These vectors
form the non-observability area Qno.

2. There might exist vectors q such that the eigenvalues
will not be equal. These vectors form the observabil-
ity area Qo.
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More formally, the non-observability area can be defined
as follows:

Qno = {q ∈ Q : λi(q) = λj(q),

i, j = 1, . . . , n, i �= j}, (18)

and, analogously, we can express the observability area as

Qo = {q ∈ Q : λi(q) �= λj(q),

i, j = 1, . . . , n, i �= j}. (19)

Interval eigenvalues are the linear functions of uncertain
parameters described by (5). Denote by λij the common
part of the eigenvalues λi and λj in the space R

3:

λij = Λi ∩ Λj . (20)

Remember that interval eigenvalues form tetrahe-
drons in R

3. This implies that the set λij described by
(20) may have various forms: an empty set, a single point,
a segment or a tetrahedron.

Next consider a projection of the set λij onto the set
of uncertain parameters Q. Denote by qij this projec-
tion. The elements of the set pij must meet the following
condition:

(c1i − c1j )q1 + (c2i − c2j )q2 = di − dj , (21)

where c1i ,c2i ,c1j ,c2j ,di,dj ∈ R, q = [q1, q2]T , q ∈ Q.
The set qij describes the part of the non-observability
area Qno generated by two eigenvalues only. Then the
whole non-observability area Qno can be expressed as a
sum of the sets qij for each pair i and j:

Qno =
n⋃

i,j=1i�=j

qij . (22)

The above deliberations are illustrated in Fig. 1.
The relations (26) and (21) can be used for the de-

termination of the non-observability area Qno for a given
uncertain parameter area Q. This reduces to the determi-
nation of the sets qij for all pairs of the eigenvalues λi

and λj . The sum of all qij is the desired set Qno.

The set qij determined by the solution of (21) has
different forms depending on different values of the pa-
rameters c1i ,c2i ,c1j ,c2j ,di and dj . This issue will be dis-
cussed below:

1. c1i = c1j , c2i = c2j and di = dj : the eigenvalues
λi and λj are equal for each vector q ∈ Q. In this
case Qno = Q and Qo = 0.

2. c1i = c1j , c2i = c2j and di �= dj : the eigenvalues
λi and λj are “parallel” and qij is an empty set for
each vector q ∈ R

2.

Fig. 1. Geometric interpretation of
the non-observability area.

3. c1i = c1j and c2i �= c2j : the set qij has the form
of a sector parallel to the q1-axis, which can be ex-
pressed as follows:

qij =
{
q ∈ Q : q2 =

di − dj

c2i − c2j

}
. (23)

4. c1i �= c1j and c2i = c2j : the set qij has the form
of a sector parallel to the q2-axis, which can be ex-
pressed as follows:

qij =
{
q ∈ Q : q2 =

di − dj

c1j − c1i

}
. (24)

5. c1i �= c1j , c2i �= c2j , c1i �= 0, c2i �= 0 : the set qij

has the form of the following sector:

qij =
{
q ∈ Q : q2 =q1

c1i − c1j

c2i − c2j

+
dj − di

c2i − c2j

}
. (25)

Here we can immediately notice that the set qij described
by (23), (24) or (25) can have different forms:

• An empty set—this solution occurs if the solution of
(21) is in the exterior of the set Q.

• A single point—it occurs if two eigenvalues have a
common vertex.

• A sector—this is the most typical situation, when part
of the solution of (21) lies inside the area Q.

From the above discussion we can deduce a simple
method for determining non-observability areas. To lo-
calize them, we need to find the common parts of all inter-
val eigenvalues. The vectors q for which the eigenvalues
have common parts form the non-observability area. This
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assignment can be performed using analytical or simula-
tion methods. This issue will be illustrated with examples
in Section 7. In the next section, simple observability cri-
teria for the interval system will be proposed.

6. Observability Conditions

The discussion in the previous section allows us to for-
mulate observability criteria for the uncertain-parameter
dynamic system considered.

Proposition 1. (Necessary and sufficient cotrollability
condition for the entire area Q) Consider the linear
uncertain-parameter dynamic SISO system described by
(1), (5), (6) and (10). The following expressions are equiv-
alent:

• The uncertain-parameter linear dynamic system de-
scribed by the state equation (1) is controllable in the
whole uncertain-paramater area Q.

• The non-observability subspace Qnc is an empty set
and the observability subspace Qo is equal to the
set Q.

• Equation (21) does not have any solution inside the
set of uncertain parameters Q.

• There are no interval eigenvalues which have a com-
mon part for each vector q ∈ Q.

The proof of the above proposition directly follows
from the deliberations of Section 6. The above propo-
sition formulates observability conditions for the whole
area of uncertain parameters Q. This issue is important,
but the analysis of the problem considered would be by far
incomplete if it was finished at this moment. In the case
of the discussed uncertain-parameter system, a complete
analysis requires formulating a simple condition for the
non-observability area Qno.

Proposition 2. (Necessary and sufficient condition for the
existence of non-observability areas inside Q) Consider
the system defined in Proposition 1. The following expres-
sions are equivalent:

• There are vectors q ∈ Q for which the system is not
controllable.

• A solution to (21) exists which lies inside the
uncertain-parameter area Q, defined by (23), (24)
or (25).

• There are at least two different interval eigenvalues
λi and λj defined by (5) such that their common
part λij defined by (20) is a non-empty set.

The above condition collects all existence conditions
for the non-observability area for the uncertain-parameter
linear dynamic system considered. A particular case of
the above deliberations covers the situation when there
exist multiple eigenvalues. This situation implies the
non-observability of the system considered in the whole
area Q:

Proposition 3. (Necessary and sufficient condition for
the non-observability of the whole area Q) Consider
the system discussed in the previous propositions. The
following expressions are equivalent:

• The system is uncontrollable in the whole area of un-
certain parameters Q.

• There exist different interval eigenvalues λi and λj

such that their parameters c1i ,c2i ,c1j ,c2j ,di and dj

meet the following conditions:

c1i = c1j , c2i = c2j , di = dj .

• The non-observability area Qno is equal to the
whole set Q.

The conditions formulated above describe all the
possibilities for observability in the discussed case: the
system observable in the whole area Q, the system ob-
servable in a part of the area Q and the system unobserv-
able in the whole area Q.

7. Examples

Example 1. Consider the linear, time invariant SISO sys-

tem with the diagonal interval state matrix, described by
(1) with the following matrices A, B and C:

A(q) =

⎡
⎢⎣ λ1(q) 0 0

0 λ2(q) 0
0 0 λ3(q)

⎤
⎥⎦ ,

B =

⎡
⎢⎣ 1.2

−2.0
3.0

⎤
⎥⎦ ,

C =
[

1.0 −1.2 2.5
]
.

The uncertain parameters of the system are described by
(3) and have the following form:

q1 = [1.0, 5.2], q2 = [0.7, 1.2].

Then the set of uncertain parameters in (10) is

Q = {q ∈ R
2 : 1.0 ≤ q1 ≤ 5.2, 0.7 ≤ q2 ≤ 1.2}.
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Interval eigenvalues are linear functions of the uncertain
parameters and are described by (5). The coefficient val-
ues of (5) for i = 1, 2, 3 are shown in Table 1.

Table 1. Parameters c1i and c2i .

i c1i c2i di

1 2.0 0.5 2.0

2 2.0 -0.2 3.12

3 1.9 -0.1 2.5

To determine the non-observability area, we have to
find the sets qij for i, j = 1, 2, 3 and i �= j. To do it, we
use (21). In our example they have the following forms
for all pairs of i and j:

(c11 − c12)q1 + (c21 − c22)q2 + (d1 − d2) = 0, (26)

(c11 − c13)q1 + (c21 − c23)q2 + (d1 − d3) = 0, (27)

(c12 − c13)q1 + (c22 − c23)q2 + (d2 − d3) = 0. (28)

After inserting the coefficients from Table 1 into (26)–(28)
and performing elementary transformations, we obtain the
following sets q12, q13 and q23:

q12 = {q ∈ Q : q2 = 1.6}, (29)

q13 = {q ∈ Q : q2 = q1 + 6.2}, (30)

q23 = {q ∈ Q : q2 = −(1/6)q1 + 5/6}. (31)

It is easy to see that the sets q12, q13 and q23 described
by (29)–(31) are empty sets, because all the solutions to
(21) are located outside the set Q. The general conclu-
sion from the above deliberations is that the uncertain
parameter system deliberations is observable in the whole
area Q. �

Example 2. Consider the system from the previous exam-
ple. Assume that the uncertain parameters of the system
are described by (3) and in the case considered they are

q1 = [1.0, 5.2], q2 = [0.2, 1.8].

Then the set of uncertain parameters in (10) is

Q = {q ∈ R
2 : 1.0 ≤ q1 ≤ 5.2, 0.2 ≤ q2 ≤ 1.8}.

Furthermore, assume that the coefficients of interval
eigenvalues are the same as in the previous example (see
Table 1). The further analysis will proceed in much the
same way as above. The sets q11, q12 and q23 are de-
fined by (29)–(31) too, but the set Q is different, as in
Example 1. This implies that the sets q12 and q23 are not

empty sets and the set q13 is an empty set. Then the non-
observability area is determined in accordance with (26)
as

Qno = q12 ∪ q23,

where q12 and q23 are described by (29) and (31), re-
spectively. The geometric interpretation of the above is
shown in Fig. 2, and the area of uncertain parameters Q
with the non-observability area is shown in Fig. 3.
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Fig. 2. Interval eigenvalues in R
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Fig. 3. Non-observability area inside the area of
uncertain parameters Q for Example 2.

The conclusion from this example is that here the
area of uncertain parameters Q consists of the non-
observability subarea Qno.

A more general conclusion from both the examples
is that the expanding of the uncertain-parameter area Q
may cause a non-observability area appear inside the area
Q. �
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Example 3. In the third example the observability problem
for the interval parabolic system discussed in (Oprzęd-
kiewicz, 2003) will be presented. The system under con-
sideration is a heat conduction process shown in Fig. 4.
Its main part is a thin copper rod with an electric heater
at one end and a temperature sensor at the other end. The
input u(t) and the output y(t) of this system are electric
signals. The length of the heater equals xu and the length
of the temperature sensor is Δx = x2 − x1.

Fig. 4. Real experimental heat system.

A fundamental mathematical model describing heat
conduction is a partial differential equation of the
parabolic type with homogeneous Neuman boundary con-
ditions at both ends, a homogeneous initial condition, heat
exchange along the length of the rod and distributed con-
trol and observation. This equation has the following
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q(x, t)
∂t

=a
∂2Q(x, t)

∂x2
−RaQ(x, t)+b(x)u(t),

0 ≤ x ≤ 1, t ≥ 0,

∂Q(0, t)
∂x

=0, t ≥ 0,

∂Q(1, t)
∂x

=0, t ≥ 0,

∂Q(x, 0)
∂t

=0, 0 ≤ x ≤ 1,

y(t) = y0

∫ 1

0

Q(x, t)c(x) dx,

(32)

where Q(x, t) denotes temperature at the moment t and
the point x, Ra, and a denote uncertain coefficients of
heat conduction and heat exchange, respectively, b(x)
denotes the control function, c(x) is an observation
function and y0 denotes the steady-state gain of the
system.

The heat equation (32) can be expressed as an equiv-
alent abstract initial problem in the Hilbert space X =
L2(0, 1) with a standard scalar product. In the case con-
sidered the abstract form of the heat equation (32) is as

follows (Oprzędkiewicz, 2003):⎧⎪⎨
⎪⎩

Q̇(t) = AQ(t) + bu(t),
Q(0) = 0,

y(t) = CQ(t),
(33)

where

AQ = aQ′′ − RaQ, D(A)

=
{
u ∈ H2(0, 1) : Q′(0) = 0, Q′(1) = 0

}
,

a, Ra > 0,

H2(0, 1) =
{
u ∈ L2(0, 1) : u′, u′′ ∈ L2(0, 1)

}
,

CQ(t) = 〈c, Q(t)〉,
Bu(t) = bu(t),

〈u, v〉 =
∫ 1

0

u(x)v(x)dx

(the standard scalar product).

The following set of eigenvectors for the state opera-
tor A forms the orthonormal basis of the state space:

hi =

{
0, i = 0,√

2cos(iπx), i = 1, 2, . . . .
(34)

The coefficients of (1) expressing the interval eigenvalues
of the discussed system are

c1i = −i2π2, c2i = −1, di = 0. (35)

The discrete spectrum of the state operator A is a set of
single, real eigenvalues, which are expressed as follows:

λi = −aπ2i2 − Ra, i = 0, 1, 2, 3, . . . . (36)

In the state-space basis defined by the set of eigen-
vectors (34), the operators A, B and C have the follow-
ing matrix representation:

A = diag {λ0, λ1, λ2, . . . } , (37)

B = [b0, b1, b2, . . . ]T , (38)

where bi = 〈b, hi〉, b(x) denotes the control function,

b(x) =

{
1, x ∈ [0, x0],
0, x �∈ [0, x0],

(39)

C = [c0, c1, c2, . . . ], (40)

where ci = 〈c, hi〉, c(x) denotes the output of the sensor,

c(x) =

{
y0, x ∈ [x1, x2],
0, x �∈ [x1, x2].

(41)
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The general equation (21) along with (35) gives

π2
(
j2 − i2

)
a = 0. (42)

From (42) we can immediately deduce that observability
for the discussed interval parabolic system is not deter-
mined by the uncertain parameters a and Ra. �

8. Conclusions

The main conclusions can be formulated as follows:

• The most characteristic feature of the discussed
uncertain-parameter dynamic system is that inside
the area of uncertain parameters there might exist
subareas where the system is observable and subar-
eas where the system is not observable.

• The assumptions about the type of system uncer-
tainty allows us to formulate a simple method of de-
termining non-observability areas,

• From the presented examples we can deduce that ex-
tending the area of uncertain parameters may cause
the non-observability area appear inside the set of un-
certain parameters Q. This observation can be gen-
eralized: it can be expected that a suitable contrac-
tion of the area Q (e.g., by dynamic feedback) may
remove non-observability areas.

• The presented results can be very useful in stability
testing for linear interval parabolic systems with a
two-dimensional space of uncertain parameters.

• The presented results can be thought of as a starting
point for a further analysis of the observability prob-
lem for interval systems. As other problems appear-
ing here, the following can be mentioned:

– an extension to a general form of parameter un-
certainty,

– the formulation of observability conditions for
a system with an interval control matrix,

– observability analysis for uncertain-parameter
MIMO systems.
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