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This paper proposes various lower bounds to the makespan of the flexible job shop scheduling problem (FJSP). The FJSP
is known in the literature as one of the most difficult combinatorial optimisation problems (NP-hard). We will use genetic
algorithms for the optimisation of this type of problems. The list of the demands is divided in two sets: the actual demand,
which is considered as certain (a list of jobs with known characteristics), and the predicted demand, which is a list of
uncertain jobs. The actual demand is scheduled in priority by the genetic algorithm. Then, the predicted demand is inserted
using various methods in order to generate different scheduling solutions. Two lower bounds are given for the makespan
before and after the insertion of the predicted demand. The performance of solutions is evaluated by comparing the real
values obtained on many static and dynamic scheduling examples with the corresponding lower bounds.
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1. Introduction

In order to solve a scheduling problem, one needs to find
an adequacy between the tasks to be processed in the
workshop, and the available means to carry out the pro-
duction. The objective is to allocate resources to oper-
ations or tasks in order to optimize some criteria under
various constraints of workshops: the duration of the op-
erations, the availability of resources, priority constraints,
and precedence constraints. There are two types of meth-
ods to solve this kind of problems (Alvarez-Valdes et al.,
1987; Brucker, 2003; Carlier and Chrétienne, 1988; De-
meulemeester and Herrolein, 1990; Pinedo, 2002). The
first group are exact methods such as the branch-and-
bound algorithm, which are able to find optimal solutions
but are not efficient for problems of a larger size because
of their computation times. The other type of methods
includes approximate methods, which are faster but the
obtained solution is not guaranteed to be optimal. These
methods are usually applied when the scheduling problem
is known to be NP-hard.

Our previous work tackles the problem of job shop
scheduling with partially and completely flexible devices
(Mesghouni, 1999). In order to obtain solutions under
a reasonable computation time, genetic algorithms can
provide effective results for scheduling problems (Della

Croce et al., 1995; Kobayashi et al., 1995; Mattfeld and
Bierwirth, 2004; Mesghouni, 1999; Ponnambalam et al.,
2001; Sevaux and Dauzère-Pérès, 2003). As introduced
by Holland (Goldberg, 1989; Holland, 1992), these ge-
netic algorithms are able to find solutions very close to
the global optimum. Their principle is to evolve an initial
set of solutions to a final one while making a total im-
provement according to a criterion fixed as a preliminary.
The use of these algorithms requires the definition of a
problem coding and genetic operators such as crossover
and mutation. The rate of convergence and the quality of
the solution are improved with a coding specifically con-
ceived for problems of scheduling as presented in (Mes-
ghouni, 1999; Mesghouni et al., 2004).

In our previous work, we set up a new approach to
solve the problem of a flexible job shop with uncertain
demands (Berkoune et al., 2004; Mesghouni and Rabena-
solo, 2002). Among various heuristic methods that were
proposed to solve these problems, a certain number of
heuristics of valid insertion of additional tasks on cumula-
tive resources were presented in (Artigues, 1997; Artigues
et al., 2003). There exist several models of uncertainty: a
machine breakdown and, more generally, uncertainty on
the availability of resources, uncertainty on the process-
ing time, on the release date, or on the delivery time. In
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our problem, we will study uncertainty on the demands:
the possibility to sell or not to sell a product whenever
it is manufactured in advance without a customer order.
This situation arises, e.g., in production systems with a
make-to-stock and make-to-order mixed strategy. The list
of the demands is divided into the actual demands, which
are scheduled in priority by the genetic algorithm, and the
predicted demands, which are inserted in the remaining
availability of the production resources, by using various
insertion methods. These predicted demands are neces-
sary for exploiting better the availabilities of the machines
and increasing their productivity, and also to minimize the
idle periods and cost of restarting the machines. The ob-
jective is to minimize the impact of insertion over the total
duration of the production. In order to measure the effi-
ciency and robustness of the approach, we should compare
the results obtained by this method with the optimal one.
But since this optimal solution is not always available, we
should compare it with its lower bounds.

Thus, this paper will propose a method of calcu-
lating lower bounds for the makespan by extending the
procedure of (Carlier, 1987) for the problem of job shop
scheduling in the case of predicted scheduling. The cal-
culation of lower bounds was used in the literature for
several scheduling problems, in particular, the single ma-
chine problem (Carlier, 1982), parallel machines (Car-
lier, 1987), hybrid problems of the flow shop (Billaut et
al., 2002) and job shops scheduling (Carlier and Pinson,
1989). Generally, these methods are based on the relax-
ation of a set of constraints (the preemption of tasks, the
disjunctive constraint) to underestimate the makespan of
optimal scheduling.

This paper is organized as follows: In the second sec-
tion we present the specifity of the flexible job shop, and
the notation we use throughout the paper. Some solution
methods used to deal with such a problem are given in
Section 3. In the fourth section we propose a new method
for calculating the lower bounds of the predicted demands.
Finally, the last sections will be devoted to the presenta-
tion of the results on illustrative examples and the conclu-
sions concerning this research work.

2. Problem Statement and Notation

The flexible job shop scheduling problem consists in the
organization of the execution of N jobs on M machines.
Each job Jj represents a number nj of operations. Each
operation i of a job Jj denoted by Oij can be carried out
on a machine k with a duration pijk , which depends on
this machine. The actual processing time for each opera-
tion will only be fixed after the final assignment on a given
machine.

Notation:
N the total number of jobs;

n the number of firm jobs, and N − n the
number of predicted jobs, n ≤ N ;

pijk the processing time for the operation Oij

on the machine k;

γij the shortest execution time of the operation
Oij : γij = min1≤k≤M (pijk);

Cfmax the makespan of the firm jobs;

Cp max the makespan of the predictive jobs;

Cfmax∗ the lower bound to the makespan of the
firm jobs;

Cp max∗ the lower bound to the makespan of the
predictive jobs;

rij the earliest beginning date/release date of
the operation Oij ;

rj the earliest beginning date of the job j,
rj = r1,j , ∀1 ≤ j ≤ N ;

r′k the earliest date of the availability of the
machine k;

[A, B]k the availability interval of the machine k;

Rk the set of possible starting dates on the ma-
chine k (heads of the availability interval);

TPsk the s-th element in Rk .

In this problem, we make the following hypotheses:

• All the machines are available at r′k, ∀1 ≤ k ≤ M ;

• The firm jobs J = {J1, . . . , Jn} will be sched-
uled in priority, and the predicted jobs J ′ =
{Jn+1, . . . , JN} will be inserted in the remaining
availability of production resources.

• One machine can process only one operation at a
given moment (resource constraints);

• A started operation runs to completion (no preemp-
tion condition);

• The following constraint of precedence exists be-
tween two successive operations of the job Jj :
ri+1,j ≥ rij + pijk;

• All jobs are independent of each other.

The solution of such a problem thus requires two de-
cisions: the assignment of each operation Oij to one ma-
chine k, and the calculation of the date when to start each
operation.

3. Solution Methods

The problem considered presents two main difficulties.
The first one is the scheduling of the firm demands. The
other difficulty is the insertion of the predicted operations
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in the existing solutions. Figure 1 shows the use of the
different procedures for solving the scheduling problem.

3.1. Principal Scheduling. The list of demands is di-
vided into the firm demands, which will be scheduled in
accordance with their priorities by genetic algorithms, and
the predicted demands, which will be inserted in previ-
ous solutions using various heuristic methods (Berkoune
et al., 2004). This approach is normally simpler to imple-
ment, and it can be justified by the priority consideration
of the firm jobs and the optimal use of the machines by
filling their available production capacities with the pre-
dicted jobs. These different procedures are applied to each
change in the problem data, e.g., the change in the status
of the predicted jobs into the firm jobs.

In order to evaluate better the quality of the solutions,
we set up a whole range of lower bounds, and compare
them with the results of total scheduling of the whole jobs
(J∪J ′) in one global step without considering the priority
of the firm jobs.

S c h e d u le  th e  a c tu a l jo b s  in  th e  s e t  J  
(g e n e t ic  a lg o r ith m ) 

 
 

A p p ly  g e n e tic  o p e ra to rs : c ro sso v e r ,  
m u ta tio n , se le c tio n  

In it ia l p o p u la tio n  w ith  th e  P J sR  c o d in g  

C o m p u te  th e  s ta r tin g  d a te  o f e a c h  
o p e ra tio n  
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Fig. 1. Flow chart of the proposed scheduling algorithm.

3.2. Genetic Algorithm for the Scheduling Problem.
Genetic algorithms (GAs) are algorithms which belong to
the group of evolutionary algorithms. They allow us to
make an initial set of solutions evolve to a final set of so-
lutions while making a total improvement according to a
fixed criterion. These algorithms were developed at the
Michigan University by Holland and his co-workers in
the 1960s (Goldberg, 1989; Holland, 1992). They are
based on the natural selection mechanism in biological
systems. GAs are iterative search algorithms where the
goal is to optimize a preset function called the criterion
or function “fitness”, and work in parallel on a whole set

of candidate solutions, called the “population” of individ-
uals or chromosomes. The latter consist of a set of ele-
ments called “genes” which can take several values called
“alleles” (Renders, 1995). A chromosome is a represen-
tation or a coding of a solution to the given problem in
the form of a chain. The first population is selected either
randomly, by some heuristics or methods that are specific
to the problem, or still by a mixture of random and heuris-
tic solutions. GAs generate new individuals so that they
are more suitable or promising than their predecessors.
The process of the improvement of individuals is carried
out by genetic operators, which are: selection, crossover
and mutation (Ponnambalam et al., 2001; Renders, 1995;
Syswerda, 1990).

3.2.1. Problem Coding. We use a representation of
the chromosome called the Parallel Jobs Representation
(PJsR), cf. (Mesghouni, 1999). In the genetic algorithm,
the chromosome is represented by a matrix where each
row is an ordered series of the operation sequence of this
job, and each element of this row contains two terms.
The first on is the machine which performs this operation
and the other one is the starting time of this operation if
the assignment of this operation to this machine is defin-
itive. This starting time is calculated taking into account
resource constraints (Goldberg, 1989; Syswerda, 1990).
Genetic operators such as the crossover operator and the
mutation operator have been adapted to the PJsR chromo-
some representation.

3.2.2. Genetic Operators. We define the following op-
erators:

• Crossover operators. The goal of the crossover is
to obtain, by a mixture of solutions, other chromo-
somes likely to improve the results. In our case,
there are two operators of crossover (Mesghouni,
1999): the operator of the line crossover handles the
jobs, and the operator of the column crossover han-
dles a set of operations.

• Mutation operators. The essential role of the muta-
tion is to introduce some diversification into the pop-
ulation which the crossover operator cannot bring.

• Selection operators. This operator consists in choos-
ing the individuals from which one will create the
next generation. In our case we used the principle of
the roulette wheel, which reinforces the probability
of retaining the most promising individuals in terms
of the fitness function.

3.3. Algorithms of Insertion of the Predicted Jobs:
This procedure uses the Earliest Completion Time rule
(ECT). The ECT rule schedules in priority the operation
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with the earliest possible completion time among all un-
scheduled operations. This algorithm finds the position of
insertion corresponding to the execution time of the oper-
ation i on the machine k by minimizing the total execution
time under precedence constraints.

4. Lower Bounds

To solve the FJSP, we choose to use an approximate
method, a genetic algorithm, which is likely to give a near-
optimal solution. In order to measure the efficiency and
robustness of our approach, we should compare the results
obtained by our method with the optimal one. But since
this optimal solution is not available, we should compare it
with its lower bounds. We propose to calculate two lower
bounds for the makespan, before and after the insertion of
the predicted demand. These predicted lower bounds will
permit us to choose the best solution for the insertion of
the predicted jobs and to measure the performance of the
proposed approach. Our proposition generalizes certain
bounds offered in the literature for the problems of par-
allel machines. We consider non-preemption tasks, take
into account precedence constraints and include the esti-
mated cost of each predicted job. We associate two lower
bounds Cfmax∗ and Cp max∗ with each subset of the jobs
J and J ′ which is not empty. In our problem, the lower
bounds are calculated, on the one hand, for the firm jobs J
by the method of calculation of the bounds which general-
izes those proposed in (Carlier, 1987). On the other hand,
we developed a new method of calculation of the lower
bounds for the predicted jobs J ′, which is a function of
the availability of the machines.

4.1. Lower Bounds for the Makespan of the Firm Jobs

Proposition 1. The parameter

C1
fmax∗ = max

1≤j≤n

(
rj +

nj∑
i=1

γij

)
, (1)

where γij = min1≤k≤M (pijk), constitutes a lower bound
to the makespan of the firm jobs in the FSJP a problem.

Proof. For any assignment of the operations to the ma-
chines, the makespan is the completion time of all oper-
ations, Cfmax = max{Cj | j = 1, . . . , n}. However,
for each operation, pijk ≥ γij = min1≤k≤M (pijk) by
definition and, supposing that there is no waiting interval
between two successive operations, we get the minoriza-
tion (1) from

Cfmax ≥ Cj ≥ rj +
nj∑
i=1

pijk ≥ rj +
nj∑
i=1

γij ,

where k labels the machine assigned to Oij .

Remark 1. If the cardinality of a set of jobs J is higher
than the number of machines, or in the case of the relax-
ation of constraints such as preemption of tasks or a dis-
junctive constraint on resources, there is no solution which
reaches the lower the bound in Proposition 1. In this case,
we use another method for the calculation of a possible
lower bound. This method is defined below.

Proposition 2. The parameter

C2
fmax∗ =

1
M

⎛
⎝ M∑

k=1

r′k +
n∑

j=1

nj∑
i=1

γij

⎞
⎠ , (2)

constitutes a lower bound to the makespan of the firm jobs
in the FSJP.

Proof. Equation (2) gives a lower bound to the makespan
of firm jobs for the FJSP in the case where the number of
jobs N is higher than the number of machines M , know-
ing that each machine k has an availability time denoted
by r′k (in our case, r′k = 0, ∀1 ≤ k ≤ M). Using
the same reasoning as in the classical calculation of the
lower limits (Carlier, 1987), and by relaxing the non-pre-
emption constraint of the tasks, we obtain the following
minorization:

r′1 + r′2 + r′3 · · · + r′k + · · · +
n∑

j=1

nj∑
i=1

γij ≤ MCfmax.

Consequently,

Cfmax ≥ 1
M

⎛
⎝r′1 + r′2 + · · · + r′k +

n∑
j=1

nj∑
i=1

γi,j

⎞
⎠ .

The lower bound is the sum of the availability times of all
the machines and the smallest processing time of all the
operations divided by the number of the machines.

Concluding, the lower bounds (1) and (2) allow us
to deduce limits for the criterion considered. These limits
are defined by the following relationship:

Cfmax∗ = max(C1
fmax∗ , C2

fmax∗)

= max

⎛
⎝ 1

M

( M∑
k=1

r′k+
n∑

j=1

nj∑
i=1

γij

)
, max
1≤j≤n

(
rj+

nj∑
i=1

γij

)⎞⎠.

(3)

Equation (3) is a simple combination of Propositions 1
and 2.

4.2. Lower Bounds for the Makespan of the Predicted
Jobs. The lower bounds of the predicted jobs are a func-
tion of the remaining availability of the machines after
scheduling the firm jobs.
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Proposition 3. The parameter

Cp max∗ = max
n+1≤j≤N

( nj∑
i=1

min
1≤k≤M

×
(
pijk +

(
min(Rk) −

i−1∑
x=1

γ′
x−1,j

)))
(4)

constitutes a lower bound to the makespan of predicted
jobs in the FJSP with uncertain demands inserted, where
Rk is the set of the possibilities of the insertion times on
the machine k, γ ′

0,j = 0 and γ ′
ij = minkp′ijk , p′ijk =

pijk + mink Rk −∑i−1
x=1 γ′

x−1,j .

Proof. Assume that the time of the availability of the ma-
chine k is D′

k ≥ r′k. The equivalent processing time p ′
ijk

of the operation Oij on the machine k is calculated below.
First, define A representing the earliest possible time of
starting Oij for a specific machine availability time D ′

k:

A =

{
rij if D′

k ≤ rij ,

D′
k otherwise,

(5)

with r′k being the release time of Oij . We have two meth-
ods for calculating the lower limit of Cp max.

If the interval of availability of the machine satisfies
[A, B] ≥ pijk , then a possible time of the insertion of
Oij on the machine k will be TPgk = A, with g standing
for the rank of insertion on the machine k. We obtain
the final set of possible insertion times for each machine
Rk = {TP1k, TP2k . . . TPgk}. Let TPsk = min(Rk),
which we will use for all the operations inserted on this
machine. In this case,

p′ijk = pijk + TPsk −
i−1∑
x=1

γ′
x−1,j, (6)

with γ′
0j = 0 and γ ′

ij = minkp′ijk .
The definition of equivalent processing times includ-

ing the times of waiting for the availability of the first ma-
chine is then

p′ijk = pijk +

(
min(Rk) −

i−1∑
x=1

γ′
x−1,j

)
. (7)

The available times Rk depend on the starting times (5).
Each predicted job is processed during the interval of time
[0, Cp max]. We have

Cp max ≥ max
j∈J′

(
nj∑
i=1

γ′
ij

)
, (8)

with

γ′
ij = min

1≤k≤M

(
p′ijk

)

= min
1≤k≤M

(
pijk +

(
min(Rk) −

i−1∑
x=1

γ′
x−1,j

))
.

Finally, a lower bound to the makespan of the FJSP with
uncertain demands is

Cmax∗ = max (Cfmax∗ , CP max∗) . (9)

5. Illustrative Examples

Let us illustrate the above results with examples of various
sizes. Part of these tests with firm jobs comes from the lit-
erature (Berkoune et al., 2004; Kacem, 2003; Mesghouni,
1999), while others were generated randomly. The exam-
ple comprises a number of firm jobs n, between 3 and 22,
and a number of predicted jobs n ′, between 2 and 10, with
a number of machines between 3 and 10 with total flexi-
bility. For each solution, we present the value of the lower
bounds and the value of the criterion obtained.

Example 1. The first columns of Table 1 concerns the
result produced by the genetic algorithm for the firm jobs
while the last three columns show the actual Cmax and
its lower bounds after the insertion of the predicted jobs.
The columns labelled as “Rate (%)” give the percentage
of busy periods of machines over the interval [0, Cmax].
The other columns are expressed in time units (ut).

The solutions with only firm jobs show inactivity
times which are evaluated between one fifth and one third
of the time allowed for the manufacturing process. Ac-
cordingly, in order to increase the productivity rate and to
reduce the inactivity period of the machines, we should
use this period to add extra jobs.

The scheduling of all the jobs (J ∪ J ′) without con-
sidering the priority to the firm jobs gives the results in
Table 2. Comparing the lower bounds of the schedul-
ing methods (insertion and rescheduling) and those found
with total scheduling by considering all the tasks on the
same level of priority, we find that the differences between
these bounds are small. These indicate the suitability of
the obtained solutions.

Moreover, the small variations found between the
values of the criteria and those of the corresponding lower
bounds are due to the difficulty of the optimization prob-
lem which involves several non-homogeneous constraints
such as the precedence constraints and the availabilities of
machines. �
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Table 1. Scheduling of firm jobs with GAs and the insertion of predicted jobs.

n × n′ × M
Scheduling of the firm jobs After insertion of the predicted jobs

Cmax∗ (ut) Cmax (ut) Rate (%) Cmax∗ (ut) Cmax (ut) Rate (%)

Ex01 3×3×3 6 7 71.42 10 11 87.88

Ex02 4×2×5 16 16 47.50 17 20 62.00

Ex03 5×3×5 17 17 71.76 20 22 78.18

Ex04 5×3×7 6 6 61.90 11 12 61.38

Ex05 6×6×6 8 9 83.33 15 16 80.13

Ex06 7×2×9 5 6 68.52 9 11 70.00

Ex07 7×6×5 10 11 83.63 17 19 88.42

Ex08 7×6×8 6 7 67.85 12 12 68.75

Ex09 10×5×10 7 7 67.15 8 9 83.33

Ex10 10×2×7 15 16 66.07 17 17 72.26

Ex11 10×10×8 7 9 76.39 11 14 85.72

Ex12 12×7×10 7 7 74.28 8 10 83.00

Ex13 20×7×10 8 9 92.22 12 13 93.84

Ex14 22×5×10 9 11 90.00 12 14 90.00

Table 2. Scheduling of all jobs with genetic
algorithms in one global step.

N × M
Scheduling of all jobs with GAs

Cmax∗ (ut) Cmax (ut) Rate (%)

Ex01 6×3 9 10 96.67

Ex02 6×5 16 16 72.94

Ex03 8×5 17 17 96.47

Ex04 8×7 7 9 73.01

Ex05 12×6 11 13 93.59

Ex06 9×9 7 7 82.53

Ex07 13×5 15 17 96.47

Ex08 13×8 10 12 97.91

Ex09 15×10 7 8 87.50

Ex10 12×7 15 17 67.22

Ex11 20×8 8 10 81.25

Ex12 19×10 8 10 87.00

Ex13 27×10 10 13 93.84

Ex14 27×10 10 13 93.84

6. Conclusion

In this study, we analyzed a method of scheduling which
makes it possible to determine optimized execution times
of tasks on parallel machines in the case of a flexible job
shop scheduling problem with the insertion of predicted
tasks. A genetic algorithm is applied to build a set of good
solutions for the jobs known with certainty in the first step.
In the second step, a method of insertion is applied to in-
crease the productivity of the initial solutions by inserting

jobs which may be uncertain but likely to be ordered. The
method takes into account all the constraints and speci-
fications of the problem. The quality and robustness of
this heuristic method can be verified through the compu-
tation of lower bounds to the makespan. The bounds for
the firm list of jobs generalize those in the literature on
parallel machines. We also propose new lower bounds to
the makespan of the predicted jobs. Simulations show that
a small distance between the lower bounds and the values
of the criteria obtained for the solutions generated by the
proposed approach is generally satisfactory and promis-
ing. These results demonstrate good quality of the dif-
ferent lower bounds and the adequacy of the proposed
method.
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