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We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable
metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random pertur-
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1. Introduction

Nonsmooth optimization problems are often found in eco-
nomics (Outrata, 1987; Outrata et al., 1998), control
(Mākelā and Neittaanmāki, 1992; Batukhtin et al., 1998)
data analysis (Bagirov et al., 2003), or design center-
ing (Nguyen and Strodiot, 1992). In such problems, a
typical situation is the determination of a column vector
x� ∈ E = R

n such that

x∗ = arg min
E

f, (1)

where the objective function f : E −→ R does not sat-
isfy convexity assumptions, is continuous but not differ-
entiable on a finite or countable subset of E (this is the
case when, e.g., f is assumed to be only locally Lipschitz
continuous, cf. (Mākelā and Neittaanmāki, 1992)). The
problem (1) is that of unconstrained optimization, since
no limitation is imposed on the design variables x. In
practice, lower and upper bounds the variables are often
introduced:

�i ≤ xi ≤ ui, �i ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞},

i = 1, . . . , n.
In this case, we set � = (�1, �2, . . . , �n)t and

u = (u1, u2, . . . , un)t, and we look for the minimum in

a box region:

x∗ = argmin
S

f,
(2)

S = [�, u] = {x ∈ E | � ≤ x ≤ u} .

Although some restrictions on the values of the de-
sign variables have been introduced, we shall also con-
sider the problem (2) as a member of a family of uncon-
strained ones. In fact, the numerical methods for its solu-
tion are strictly analogous to those of (1). In the sequel,
our model problem will be (3).

Due to the lack of differentiability, derivatives of the
objective function f are not available and specific meth-
ods must be considered, such as generalized gradients or
bundle methods. Both these approaches are based on the
idea of local underevaluating affine functions (overeval-
uating affine functions may also be considered), i.e., the
construction of a family {ϕλ}λ of affine functions such
that ϕλ ≤ f on a subset Eλ ⊂ E (usually, Eλ is a neigh-
bourhood of a given point xλ). Different approaches may
be found in the literature for the construction of such a
family, but a simple approach consists in using general-
ized gradients such as Clarke’s ones (note that, in general,
subgradients are not anywhere defined for nonconvex f ).

Bundle methods construct approximate underevalu-
ations of the objective function by gathering the general-
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ized gradients obtained in previous iterations into a bun-
dle. A search direction for the objective function can be
determined by solving a quadratic direction finding prob-
lem (Mākelā and Neittaanmāki, 1992) and, in convex op-
timization, global convergence of bundle methods with
limited past information can be guaranteed by using ag-
gregation strategies (Kiwiel, 1994) in order to accumulate
the information furnished by previous iterations (Hiriart-
Urruty and Lemaréchal, 1993; Lemaréchal et al., 1981;
Schramm and Zowe, 1992).

Generalized gradient methods construct underevalu-
ations or overevaluations by considering affine functions
supported by the generalized gradient, and extend the
methods of smooth optimization to the nonsmooth situ-
ation by using a generalized gradient p instead of the gra-
dient ∇f , which may be undefined. Consider a standard
descent method starting at an initial guess x0 and gener-
ating a sequence of points {xk}k≥0 ⊂ S as follows:

x0 ∈ S given, ∀k ≥ 0: xk+1 = Q (xk, dk, ωk) , (3)

where
Q (x, d, ω) = x + ωd, (4)

dk ∈ E is a descent direction (i.e., f(xk+1) ≤ f(xk))
and ωk ∈ R (ωk ≥ 0 and) is a step length. It is expected
that ωk > 0 and d �= 0 while convergence is not obtained.
Usually, the descent direction is obtained from informa-
tion furnished by gradients. For instance, the classical
steepest descent uses dk = −gk, where gk = ∇f(xk).
When ∇f(xk) is not defined but a generalized gradient
pk at the point xk is available, we may use gk = pk in or-
der to get a descent direction: the method extends directly
to the nonsmooth situation. In practice, subgradients or
gradients at points close to xk may also be used (Clarke,
1975).

At present, subgradient methods are regarded as the
most effective and reliable methods for nonsmooth un-
constrained problems (Boyd et al., 2003; Ellaia, 1992;
Hiriart-Urruty and Lemaréchal, 1993; Kiwiel, 1985; Lars-
son et al., 1996). Due to their simple structure, they are
widely used, but several difficulties persist in nonsmooth
optimization. For instance, directions generated by using
generalized gradients may lead to nondescent search di-
rections, and arbitrarily generalized gradients do not nec-
essarily become small in the neighbourhood of an opti-
mal point, which makes the definition of stopping crite-
ria difficult. In addition, the convergence of the sequence
{xk}k≥0 to a global minimum x� is not ensured under the
lack of convexity.

In this work, we consider variable metric methods
(Fletcher, 1980), which have been proven efficient and ro-
bust for nonsmooth problems (Lemaréchal, 1982; Urya-
sev, 1991). In these methods, the descent direction is usu-
ally given by

dk = uk (xk, xk−1, Bk) , (5)

where Bk is an n × n matrix. In order to simplify the
analysis, we assume that there is a constant M ∈ R

+ (see
also Remark 1) for which we have

‖dk‖ ≤ M. (6)

The determination of a step ωk ≥ 0 often involves a
one-dimensional search and a previously established max-
imal step ω. For instance, the optimal step is

ωk = argmin
W

f (xk + ωdk) ,
(7)

W = {ω | xk + ωdk ∈ S, 0 ≤ ω ≤ ω} .

Accordingly, the step is given by a function ω : E ×
E → R, so that

ωk = ω (xk, dk) , 0 ≤ ω (xk, dk) ≤ ω. (8)

We shall use the optimal step defined above in our numer-
ical experiments (cf. Section 4).

In order to prevent the algorithm from convergence
to a local minimum and the above-mentioned difficulties
concerning the descent direction in the nonconvex frame-
work, we introduce a controlled random search (Bouleau,
1986; Carson and Maria, 1997; Dorea, 1990; Ellaia and
Elmouatasim, 2004; Pogu and Souza, 1994; Souza de
Cursi, 1992a; Souza de Cursi et al., 2003; 2005; Wang and
Spall, 1999). In this approach, the sequences {xk}k≥0,
{dk}k≥0, {ωk}k≥0 become those of random variables
{Xk}k≥0, {Dk}k≥0 , {Ωk}k≥0 and the descent iterations
are modified as follows:

X0 = x0 ∈ S given,

∀k ≥ 0: Xk+1 = Q (Xk, Dk, Ωk) + Pk, (9)

Dk = uk (Xk, Xk−1) , (10)

Ωk = ω (Xk, Dk) , 0 ≤ ω (Xk, Dk) ≤ ω, (11)

where Pk is a suitable random vector of stochastic per-
turbation. A convenient choice of {Pk}k≥0 ensures the
convergence of the sequence {Xk}k≥0 to a solution (see
Section 4). If x� is not unique, the limit random variable
X = limk→+∞Xk describes the set of solutions (i.e., X
is supported by the set of solutions). A practical imple-
mentation of (9)–(11) involves finite samples of Pk that
will be detailed in Section 4.3: only a finite number of Xk

are generated and the iterations lead to an approximation
of one from among all of the global minimizers.

2. Notation and Assumptions

We denote by R the set of real numbers (−∞, +∞). R
+

stands for the set of nonnegative real numbers [0, +∞)
and E = R

n means the n-dimensional real Euclidean
space. For x = (x1, x2, . . . , xn)t ∈ E, xt denotes
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the transpose of x. We denote by ‖x‖ =
√

xtx =
(x2

1 + · · · + x2
n)1/2 the Euclidean norm of x, and by

(x,y) = xty the scalar product on E. We shall denote
by Id the n × n identity matrix.

The objective function is f : S −→ R, and we as-
sume that f has a lower bound in S, which is denoted
by l∗:

min
S

f = l∗ ∈ R. (12)

Let us introduce Sα = Cα ∩ S, Cα = {x ∈ E |
f(x) ≤ α}. We assume that

f is locally Lipschitz continuous on S, (13)

∀α > l∗ : Sα is not empty, closed and bounded, (14)

∀α > l� : meas (Sα) > 0, (15)

where meas (Sα) is the measure of Sα.
Since E is a finite dimensional space, the assump-

tion (14) is satisfied, e.g., for either S bounded or f coer-
cive, i.e.,

lim
‖x‖→+∞

f(x) = +∞.

Equation (15) is equivalent to the assumption that S con-
tains a sequence of neighbourhoods of an optimal point
x� having a strictly positive measure, i.e., x� can be ap-
proximated by a sequence of points of the interior of S.
As has previously been remarked, x� is not assumed to be
unique and the iterations generate approximations of one
from among all of the global minimizers.

From (6), (8) and (14), we get

β(α, ω) = sup
{ ‖y − Q (x, d, ω)‖ :

(x, y) ∈ Sα × Sα, 0 ≤ ω ≤ ω
}

< +∞. (16)

In addition, we assume that

f is not constant in S. (17)

3. Generalized Gradient and Variable Metric
Descent

As has already been mentioned, the objective function f :
E −→ R is assumed to be locally Lipschitz continuous,
i.e., at any point x ∈ E, there exists a nonnegative scalar
K (x) and ε (x) > 0 such that

‖y − x‖ ≤ ε (x) and ‖y′ − x‖ ≤ ε (x)

=⇒ |f (y) − f (y′) | ≤ K (x) ‖y − y′‖ . (18)

Nonsmooth Lipschitz continuous functions may have
a countable number of points of nondifferentiability. In
addition, f is not assumed to be convex: the subdiffer-
ential may be empty and generalized gradients, such as
Clarke’s ones, must be used. Recall that Dcf(x)(v), the

Clarke directional derivative of f at x along the direction
v, is defined by (Clarke, 1983):

Dcf(x)(v)= lim sup
y→x, θ→0+

f (y + θv) − f(y)
θ

= inf
α,θ

(
sup

‖y−x‖≤α, 0<t<θ

f (y+tv)−f(y)
t

)
. (19)

The generalized gradients are elements of the set

∂f (x) = {p ∈ E | (p,v) ≤ Dcf(x)(v), ∀v ∈ E} .

If f is continuously differentiable at x, then
Dcf(x)(v) = (∇f(x),v) and we have ∂f (x) =
{∇f(x)}. The generalized gradients are connected with
affine underevaluations of f . Consider an affine function
ϕ : E −→ R given by

ϕ (y) = (p,y − x) + f(x),

which underevaluates f on a ball Bη (x) with a centre x
and a radius η > 0:

∀y ∈ Bη (x) : ϕ (y) ≤ f (y) .

Let B denote the ball with a centre 0 and a radius 1,
and Iη the interval (0, η), i.e.,

B = {v ∈ E | ‖v‖ ≤ 1} , Iη = (0, η) .

Then

∀ (v,t) ∈ B × Iη: t (p,v) + f(x) ≤ f (x+tv) .

Thus, for θ > η,

(p,v) ≤ f (x+tv) − f(x)
t

≤ sup
‖y−x‖≤α, 0<t<θ

f (y + tv) − f(y)
t

and, by (19),

(p,v) ≤ lim sup
y→x, θ→0+

f (y + θv) − f(y)
θ

= Dcf(x)(v).

Since both v → Dcf(x)(v) and v → (p,v) are
positively homogeneous, this inequality shows that p is a
generalized gradient. Analogous calculations can be per-
formed for overevaluations. If

∀y ∈ Bη (x) : ϕ (y) ≥ f (y) ,

then p is a generalized gradient:

(p,v) ≤ Dc (−f) (x)(−v) = Dcf(x)(v).
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As has previously been observed, these deliberations
provide a simple way to extend descent methods based
on the gradient to the nonsmooth situation under con-
sideration: if the objective function f is differentiable
at xk, the descent direction dk is determined by using
the standard gradient gk = ∇f (xk). Otherwise, we
consider a local affine underevaluation or overevaluation
ϕk (y) = (pk,y − xk) + f(xk), and we use gk = pk for
the determination of the descent direction. In practice, ϕk

may be numerically approximated using the values of f
or ∇f at points close to xk. This approach is particularly
suitable for the situation under consideration, since f is
differentiable almost everywhere (i.e., except in a set hav-
ing a zero Lebesgue measure (Mākelā and Neittaanmāki,
1992)). For instance, if f is not differentiable at xk and
fails to be convex in the neighbourhood of x k, the evalu-
ation may be performed at a different point, close to x k,
where f is differentiable.

As has previously been observed, we consider vari-
able metric methods, which are regarded as efficient and
robust. This class of methods includes, e.g., the popular
Davidon-Fletcher-Powell method (Davidon, 1991), where
the descent direction is

uk (xk, xk−1, Bk) = −Bkgk,

and {Bk}k≥0 is a sequence of n × n matrices such that
B0 = Id is the n × n identity matrix, and

Bk = Bk−1 +
(xk − xk−1) (xk − xk−1)

t

(xk − xk−1)
t (gk − gk−1)

− Bk−1 (gk − gk−1) (gk − gk−1)
t Bk−1

(gk − gk−1)
t
Bk−1 (gk − gk−1)

.

In the sequel, we consider a general variable metric
descent method satisfying Eqns. (5)–(8). The mathemat-
ical results given in Section 4 are valid for any method
satisfying these assumptions.

In our numerical examples, we shall consider a par-
ticular method where the descent direction is

uk (xk, xk−1, Bk)=

⎧⎪⎨⎪⎩
− Bkgk

‖Bkgk‖ if Bkgk �= 0,

0 if Bkgk = 0,

(20)

and the sequence {Bk}k≥0 is formed by B0 = Id and
Bk recursively defined from Bk−1:

(Bk)ij = bstep

j−1∑
s=1

(Bk−1)is

×
[

n∑
l=1

(Bk−1)li (gk)i (gk−1)l+(gk−1)i (gk)l

]
,

1 ≤ i ≤ n, 1 ≤ j ≤ n, (21)

where bstep is a step size with respect to the matrix Bk−1

and 0 < bstep < 1, see, e.g., Algorithm 7.2 in (Uryasev,
1991), where a recommended value is b step = α3 = 0.55.

This choice leads to a descent method such that
‖dk‖ ≤ 1, and the assumption (6) is thus satisfied.

The step ωk has to be determined by an independent
rule. The classical choices are, e.g., a fixed step, Wolfe’s
rule or an optimal step. In our calculations, we shall use
the optimal step approach.

Remark 1. This approach extends to the alternative
method where

uk (xk, xk−1, Bk) = −Bkgk.

Let f be Lipschitz of rank K (x) near x. Then

(a) ∂f(x) is a nonempty, convex, weakly-compact sub-
set of E, and ‖p‖ ≤ K (x) for every p in ∂f(x).

(b) For every v in E, we have that Dcf(x)(v) =
max{(p, v) : p ∈ ∂f(x)},

see Proposition 2.1.2, p. 27, in (Clarke, 1983).
From (13) and (14), we get

γ1 = sup {‖p‖ : x ∈ Cα, p ∈ ∂f(x)} < +∞. (22)

Using (22) and (21), it follows (by recurrence) that

γ2 = sup {‖Bk‖ : xk ∈ Cα} < +∞

and

M = sup {‖d‖ : x ∈ Cα} < +∞. (23)

Thus, we have that Eqn. (16) as well as Lemmas 1 and 2
(see next section) remain valid.

4. Random Perturbation of the Variable
Metric (RPVM)

The main difficulty remains the lack of convexity: if f is
not convex, the Kuhn-Tucker points may not correspond
to the global minima. In the sequel, we shall improve this
by using an appropriate random perturbation: as has pre-
viously been observed, the real quantities are replaced by
random variables (cf. Eqns. (9)–(11)). Since

Q (Xk, Dk, Ωk) + Pk = Q (Xk, Dk + Pk/Ωk, Ωk) ,

the stochastic iterations may be considered as perturba-
tions in the descent direction dk. In the sequel, we de-
scribe the general properties of these elements leading
to convenient sequences and we show that sequences of
Gaussian vectors may be used.
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4.1. General Properties of the Random Perturbation.
A simple way for the generation of a convenient sequence
of perturbations {Pk}k≥O is

Pk = ξkZk, (24)

where

(1) {ξk}k≥0 is a nonincreasing sequence of strictly pos-
itive real numbers converging to zero and such that
ξ0 ≤ 1.

(2) {Zk}k≥0 is a sequence of random vectors taking their
values in E. We assume that there exists a decreasing
function t �→ gk(t), gk(t) > 0 on R

+ such that the
probability density function φk of Zk satisfies

φk (z) ≥ gk (‖z‖) > 0, ∀z ∈ E.

We write x < y if there exist 1 ≤ i ≤ n such that
xi < yi.

Let us denote by Φk the cumulative distribution func-
tion of Zk:

Φk (y) = P (Zk < y) ,

and by Fk+1 (y | Xk = x) the conditional cumulative
distribution function of Xk+1:

Fk+1 (y | Xk = x) = P (Xk+1 < y | Xk = x) .

The conditional probability density function of
Xk+1 is denoted by ρk+1. By (9) and (24) we have that if
Xk = x, then

Xk+1 = Q (x, d, ω) + ξkZk.

We also have

Fk+1 (y | Xk = x) = P

(
Zk <

y − Q (x, d, ω)
ξk

)
and

Fk+1 (y | Xk = x) = Φk

(
y − Q (x, d, ω)

ξk

)
.

Thus,

ρk+1 (y | Xk = x)

=
1
ξn
k

φk

(
y − Q (x, d, ω)

ξk

)
: y ∈ E, (25)

where n = dim(E), and (16) shows that

y ∈ Sα ⇒ φk

(
y − Q (x, d, ω)

ξk

)
≥ gk

(
β(α, ω)

ξk

)
.

(26)

4.2. Convergence to a Global Minimum. Let us in-
troduce Uk = f(Xk). Since, at each iteration number
k ≥ 0, the step ωk is determined in a way that reduces the
value of the objective function (cf. Eqn. (7)), the sequence
{Uk}k≥O is decreasing by construction. Moreover, it has
a lower bound given by l∗ (cf. Eqn. (12)),

∀k ≥ 0 : l∗ ≤ Uk+1 ≤ Uk. (27)

Thus, {Uk}k≥0 is decreasing and bounded from be-
low by l∗, i.e., there exists U ≥ l∗ such that Uk → U for
k → +∞. The aim is to establish that U = l∗.

We need the following auxiliary result:

Lemma 1. Let Pk = ξkZk and γ = f(x0), Ŝθ =
{x ∈ E | f(x) < θ}. Then there exists ν > 0 such that

∀k ≥ 0 : P (Uk+1 < θ | Uk ≥ θ)

≥ meas(Ŝθ)
ξn
k

gk

(
β(γ, ω)

ξk

)
> 0, ∀θ ∈ (l∗, l∗+ν],

where n = dim(E).

Proof.
Step 1. Let ν > 0 and θ ∈ (l∗, l∗ + ν]. Since Sα ⊂ Ŝθ ,

for l∗ < α < θ, from (15) it follows that Ŝθ is not
empty and has a strictly positive measure.

Step 2. Assume that, for any k > 0, there exists θk ∈
(l∗, l∗ + 1/k] such that meas

(
S − Ŝθk

)
= 0. Then

l∗ +
1
k
≥ θk =⇒ Ŝθk

⊂ Ŝl∗+ 1
k

=⇒ S − Ŝl∗+ 1
k
⊂ S − Ŝθk

=⇒ meas
(
S − Ŝl∗+ 1

k

)
= 0.

Let
A = {x ∈ S | f(x) > l∗} .

We have

A =
+∞∪
k=1

Ak,

Ak =
{

x ∈ S | f(x) ≥ l∗ +
1
k

}
= S − Ŝl∗+ 1

k
.

Since meas (A k) = 0, from the Borel-Cantelli
lemma it follows that meas (A) = 0. Thus, f(x) = l∗

almost everywhere on S and f is constant on S, which
contradicts (17).

Step 3. Consequently, there is ν = 1/k > 0 such that
meas(S − Ŝθ) > 0 for θ ∈ (l∗, l∗ + ν]. For any such
θ we have

P
(
Xk �∈ Ŝθ

)
= P

(
Xk ∈ S − Ŝθ

)
= P

(
Xk ∈ S − Ŝθ | Xk−1 ∈ S

)
.
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Thus,

P
(
Xk �∈ Ŝθ

)
=
∫

S

P (Xk ∈ dx)
∫

S−Ŝθ

ρk (y | Xk−1 = x) dy.

Since the sequence {Ui}i≥0 is decreasing, we have

{Xi}i≥0 ⊂ Sγ ⊂ S. (28)

Thus, Eqns. (25) and (26) show that

ρk (y | Xk = x) ≥ 1
ξn
k−1

gk−1

(
β(γ, ω)
ξk−1

)
> 0, ∀k ≥ 1.

Consequently,

P
(
Xk �∈ Ŝθ

)
≥
∫

S

P (Xk ∈ dx)

×
∫

S−Ŝθ

1
ξn
k−1

gk−1

(
β(γ, ω)
ξk−1

)
dy,

and we have

P
(
Xk �∈ Ŝθ

)
≥ meas(S − Ŝθ)

ξn
k−1

gk−1

(
β(γ, ω)
ξk−1

)

×
∫

S

P (Xk ∈ dx) . (29)

Equation (28) gives∫
S

P (Xk ∈ dx) = P (Xk ∈ S) = 1.

Thus, (29) yields

P
(
Xk �∈ Ŝθ

)
≥ meas(S − Ŝθ)

ξn
k−1

gk−1

(
β(γ, ω)
ξk−1

)
> 0 for any θ ∈ (l∗, l∗ + ν].

Step 4. We have (see, e.g., Eqn. (27)):

P (Uk+1 <θ | Uk ≥ θ)=P
(
Xk+1∈ Ŝθ | Xk �∈ Ŝθ

)
.

Since P (Xk �∈ Ŝθ) > 0, we get

P
(
Xk+1∈ Ŝθ | Xk �∈ Ŝθ

)
=

P
(
Xk+1∈ Ŝθ, Xk �∈ Ŝθ

)
P
(
Xk �∈ Ŝθ

) .

Accordingly,

P
(
Xk+1 ∈ Ŝθ, Xk �∈ Ŝθ

)
=
∫

S−Ŝθ

P (Xk ∈ dx)
∫

Ŝθ

ρk+1 (yXk =x) dy.

From Eqns. (28) and (26) it follows that

P
(
Xk+1 ∈ Ŝθ, Xk �∈ Ŝθ

)
≥
∫

Sγ−Ŝθ

P (Xk ∈ dx)
∫

Ŝθ

1
ξn
k

gk

(
β(γ, ω)

ξk

)
dy,

and

P
(
Xk+1 ∈ Ŝθ, Xk �∈ Ŝθ

)
≥ meas(Ŝθ)

ξn
k

gk

(
β(γ, ω)

ξk

)∫
Sγ−Ŝθ

P (Xk ∈ dx) .

Consequently,

P
(
Xk+1 ∈ Ŝθ, Xk �∈ Ŝθ

)
≥ meas(Ŝθ)

ξn
k

gk

(
β(γ, ω)

ξk

)
P
(
Xk �∈ Ŝθ

)
,

and

P
(
Xk+1∈ Ŝθ | Xk �∈ Ŝθ

)
≥ meas(Ŝθ)

ξn
k

gk

(
β(γ, ω)

ξk

)
.

Global convergence follows from the Borel-Cantelli
lemma:

Lemma 2. Let {Uk}k≥0 be a decreasing sequence,
bounded from below by l∗. Then there exists U such that
Uk → U for k → +∞. Assume that there exists ν > 0
such that, for any θ ∈ (l∗, l∗ + ν], there is a sequence of
strictly positive real numbers {ck(θ)}k≥0 which satisfies

∀k ≥ 0 : P (Uk+1 < θ | Uk ≥ θ) ≥ ck(θ) > 0,

+∞∑
k=0

ck(θ) = +∞. (30)

Then U = l∗ almost surely.

Proof. See, e.g., (Pierre and Renée, 1996; Pogu and
Souza, 1994).

Proposition 1. Let γ = f(x0). Assume that the sequence
{ξk}k≥0 is nonincreasing and

+∞∑
k=0

gk

(
β(γ, ω)

ξk

)
= +∞. (31)

Then U = l∗ almost surely.
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Proof. Let

ck(θ) =
meas(Ŝθ)

ξn
k

gk

(
β(γ, ω)

ξk

)
> 0. (32)

Since the sequence {ξk}k≥0 is nonincreasing, we
have

ck(θ) ≥ meas(Ŝθ)
ξn
0

gk

(
β(γ, ω)

ξk

)
> 0.

From Eqn. (31) it follows that

+∞∑
k=0

ck(θ) ≥ meas(Ŝθ)
ξn
0

+∞∑
k=0

gk

(
β(γ, ω)

ξk

)
= +∞.

Using Lemmas 1 and 2, we have U = l∗ almost
surely.

Theorem 1. Let Zk = Z, where Z is a random variable
following N (0, σId), σ > 0, and let

ξk =
√

a

ln (k + d)
, (33)

where a > 0, d > 0 and k is the iteration number. Then,
for a sufficiently large, U = l∗ almost surely.

Proof. We have

φk (z) =
1(

σ
√

2π
)n exp

(
−1

2

∥∥∥z

σ

∥∥∥2
)

= gk (‖z‖) > 0.

Consequently,

gk

(
β(γ, ω)

ξk

)
=

1(
σ
√

2π
)n

(k + d)β(γ,ω)2/(2σ2a)
.

For a such that

0 <
β(γ, ω)2

2σa
< 1,

we have
+∞∑
k=0

gk

(
β(γ, ω)

ξk

)
= +∞,

and, from the preceding proposition, we have U = l ∗ al-
most surely.

4.3. Practical Implementation. The above results sug-
gest the following numerical algorithm:

(1) An initial guess x0 ∈ S is given.

(2) At the iteration number k ≥ 0, xk is known and xk+1

is determined by performing the following three sub-
steps:

(2.1) Unperturbed descent: We determine the de-
scent direction dk and the step ωk using the
standard descent method (3)–(8). This gener-
ates the first trial point:

T 0
k+1 = Q (xk, dk, ωk) .

(2.2) Perturbation: We determine a sample
(P 1

k , . . . , P nsto

k ) of nsto (k) variates from Pk.
This generates nsto (k) new trial points:

T i
k+1 = T 0

k+1 + P i
k, i = 1, . . . , nsto (k) .

(2.3) Dynamics: We determine xk+1 by selecting it
from the set of available points:

Ak =
{
xk, T 0

k+1, . . . , T
nsto

k+1

}
.

In order to satisfy the assumptions leading to math-
ematical results, Substep (2.1) may use a descent method
satisfying Eqns. (3)–(8). As was shown in Theorem 1,
Substep (2.2) may use P i

k = ξkZi, where Z =(
Z1, . . . , Znsto

)
is a sample of N (0, σId) and ξk is given

by Eqn. (33). The choice in Substep (2.3) must fulfil
Lemma 2. For instance, we can consider elitistic dynam-
ics:

xk+1 = arg min
{
f(x) : x ∈ Ak

}
. (34)

In practice, a maximum iteration number kmax has to
be considered: the iterations are stopped when k = kmax.

Remark 2. The dynamics of Metropolis do not satisfy
Lemma 2. An alternative formulation, compatible with
this dynamics, can be found, e.g., in (Souza de Cursi,
1992b).

5. Numerical Experiments

In this section, we present the results of some numerical
experiments performed using the algorithm described in
Section 4.3.

In Substep (2.1), we use the variable metric descent
method given by Eqns. (3)–(8), (20) and (21). The de-
scent directions are generated using generalized gradients
(see Section 3): in the neighbourhood of a point where the
objective function is nondifferentiable, a random convex
combination of two elements of the generalized gradient
provides a descent direction. The main parameters of the
method are ω and bstep . Their influence has been studied.

In Substep (2.2), we use a fixed size for all the sam-
ples, nsto (k) = nsto , independent of the iteration num-
ber k. Z is a sample of N (0, Id) (thus, σ = 1) and
ξk =

√
a/ln(k + 2). The main parameters are nsto and

a > 0. Their influence has been studied.
In Substep (2.3), we use the elitistic dynamics de-

scribed by Eqn. (34).
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The experiments were performed on a work-
station IBM Intel(R) Pentium(R) 4 CPU 3.00 GHz,
504 MB RAM. The serial CPU yields the mean CPU time
counted in seconds for one run.

5.1. Examples. Owing to volume limitations, we do
not present here a complete set of numerical experiments
performed and we focus our attention on some classical
test functions.

Example 1. (Crescent, see (Mākelā and Neittaanmāki,
1992))

f (x) = max
{
x2

1 + (x2 − 1)2 + x2 − 1,−x2
1

− (x2 − 1)2 + x2 + 1
}
.

The starting point is

x1 = −1.5, x2 = 2.0.

Example 2. (Mifflin 2, see (Mākelā and Neittaanmāki,
1992))

f (x) = −x1 + 2(x2
1 + x2

2 − 1) + 1.75|x2
1 + x2

2 − 1|.
The starting point is

x1 = −1, x2 = −1.

Example 3. (Wolfe, see (Zowe, 1985))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) = f1 (x) , x1 > |x2| ,
f (x) = f2 (x) , 0 < x1 ≤ |x2| ,
f (x) = f3 (x) , x1 ≤ 0,

f1 (x) = 5
√

9x2
1 + 16x2

2,

f2 (x) = 9x1 + 16 |x2| ,
f3 (x) = 9x1 + 16 |x2| − x9

1.

The starting point is

x1 = 3, x2 = 2.

Example 4. (Colville 1, see (Bihain , 1984))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f (x) =
5∑

i=1

dix
3
5 +

5∑
i=1

5∑
j=1

cijxjxi

+
5∑

j=1

ejxj

subject to:
5∑

j=1

aijxj ≥ bi, i = 1, . . . , 10,

xj ≥ 0, j = 1, . . . , 5.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 16 2 0 1 0
0 − 2 0 4 2

−3.5 0 2 0 0
0 − 2 0 − 4 − 1
0 − 9 − 2 1 − 2.8
2 0 − 4 0 0

− 1 − 1 − 1 − 1 − 1
− 1 − 2 − 3 − 2 − 1
1 2 3 4 5
1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛⎜⎜⎜⎜⎜⎜⎝
30 − 20 −10 32 − 10

− 20 39 − 6 −31 32
− 10 − 6 10 − 6 − 10
32 − 31 − 6 39 − 20

− 10 32 −10 −20 30

⎞⎟⎟⎟⎟⎟⎟⎠ ,

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 40
− 2

−0.25
− 4
− 4
− 1
− 40
− 60

5
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, d =

⎛⎜⎜⎜⎜⎜⎜⎝
4
8

10
6
2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

et =
(

−15 −27 −36 −18 −12
)

.

The starting point is

x1 = 0, x2 = 0, x3 = 0, x4 = 0 and x5 = 1.

The restrictions are penalized using the term

p (x) = max

⎡⎣0, max
1≤i≤10

⎛⎝bi −
5∑

j=1

aijxj

⎞⎠⎤⎦
+

5∑
i=1

max (0,−xi ) .

Thus, we minimize fλ = f + λp. The calculations use
λ = 100.
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Example 5. (Gill, see (Kiwiel, 1989))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) = max {f1 (x) , f2 (x) , f3 (x)} ,

f1 (x) =
10∑

i=1

(xi − 1)2 + 103
10∑

i=1

(
x2

i −
1
4

)2

,

f2 (x) =
30∑

i=2

⎡⎣ 10∑
j=2

xj (j − 1)
(

i − 1
29

)j−2

−
⎛⎝ 10∑

j=1

xj

(
i − 1
29

)j−1
⎞⎠2

− 1

]2

+x2
1 +

(
x2 − x2

1 − 1
)2

,

f3 (x) =
10∑

i=2

[
100(xi − x2

i−1)
2 + (1 − xi)

2
]
.

The starting point is

xi = −0.1, 1 ≤ i ≤ 10.

5.2. Results. In order to analyze the influence of vari-
ous parameters, we consider two basic sets of values:

Case 1: ω̄ = 100, kmax = 100, nsto = 500,
bstep = 0.1 and a = 1.

Case 2: ω̄ = 100, kmax = 500, nsto = 500,
bstep = 0.1 and a = 1.

In Tables 1 and 2, we show the observed influence
of the variation of a single parameter while the others re-
main at their original values for Cases 1 and 2, respec-
tively. The minimal values of the objective functions
f(x∗) = 0, −1, −8 and 8.24 in Examples Crescent, Mif-
flin 2, Wolfe and Gill were respectively found for Cases 1
and 2, but the minimal value of the objective function
f(x∗) = −32.34 was produced in Example Colville 1
for Case 2. The other local minimum values are shown
in Tables 1 and 2. We give the iteration number kmax in
Table 1 since it is the same in Cases 1 and 2.

Example 4 may be also solved by considering a box
bounded situation where � = 0 and u = +∞. In this
case, the penalty term becomes

p (x) = max

⎡⎣0, max
1≤i≤10

⎛⎝bi −
5∑

j=1

aijxj

⎞⎠⎤⎦ .

This approach led to analogous results.

In Table 3 we give results of comparison with:

• the New Variable Metric Algorithm (NVMA), see,
e.g., (Uryasev, 1991), and

Table 1. Optimal values obtained in Case 1. The most influen-
tial parameter is the number of generated points.

Example Crescent Mifflin 2 Wolfe Colville 1 Gill

1 0.00000 −1.00000 −8.0000 −32.2795 8.2452

10 0.00001 −0.99998 −7.9994 −32.2714 8.2976

100 0.00015 −0.99952 −7.9855 −32.1958 10.7980

ω̄ 500 0.00379 −0.99647 −7.9521 −32.2835 189.022

1000 0.00585 −0.98763 −7.7064 −32.2835 189.022

10 0.00384 −0.99706 −7.9855 −30.7826 66.4160

50 0.00015 −0.99827 −7.9855 −32.1562 15.3921

kmax 100 0.00015 −0.99952 −7.9855 −32.1958 10.7980

500 0.00003 −1.00000 −7.9912 −32.3344 10.7980

1000 0.00003 −1.00000 −7.9978 −32.3365 10.0830

0 4.25000 4.75000 60.208 20.0000 189.022

10 0.01022 −0.99127 −7.7394 −32.0894 22.2780

50 0.00699 −0.99879 −7.9888 −32.0173 31.4441

nsto 100 0.00101 −0.99983 −7.9815 −32.1694 17.4487

500 0.00015 −0.99952 −7.9855 −32.1958 10.7980

1000 0.00011 −0.99997 −7.9889 −32.3253 13.8606

0.001 0.00015 −0.99952 −7.9855 −32.2500 14.1922

bstep 0.01 0.00015 −0.99952 −7.9855 −32.2500 15.2089

0.1 0.00015 −0.99952 −7.9855 −32.1958 10.7980

0.01 0.00000 −1.00000 −8.0000 −32.2795 8.2460

a 0.1 0.00002 −0.99999 −8.0000 −32.2714 8.2940

1 0.00015 −0.99952 −7.9855 −32.1958 10.7980

CPU time 1.39 0.95 1.31 17.60 91.13

Table 2. Optimal values obtained in Case 2. The most influen-
tial parameter is the number of generated points.

Example Crescent Mifflin 2 Wolfe Colville 1 Gill

1 0.00000 −1.00000 −8.0000 −32.2860 8.2444

10 0.00000 −1.00000 −7.9999 −32.3385 8.2876

100 0.00002 −1.00000 −7.9912 −32.3344 10.0830

ω̄ 500 0.00101 −0.99898 −7.9968 −32.3226 189.022

1000 0.00172 −0.99939 −7.9343 −32.3226 189.022

0 4.25000 4.75000 60.2079 20.0000 189.022

10 0.00166 −0.99942 −7.8961 −32.1431 19.9605

50 0.00058 −0.99943 −7.9933 −32.1960 14.2083

nsto 100 0.00078 −0.99982 −7.9937 −32.2367 13.2332

500 0.00002 −1.00000 −7.9912 −32.3344 10.0830

1000 0.00003 −0.99997 −7.9979 −32.3362 11.7762

0.001 0.00002 −1.00000 −7.9912 −32.3344 10.9185

bstep 0.01 0.00002 −1.00000 −7.9912 −32.3344 10.7423

0.1 0.00002 −1.00000 −7.9912 −32.3344 10.0830

0.01 0.00000 −1.00000 −8.0000 −32.2860 8.2444

a 0.1 0.00000 −1.00000 −8.0000 −32.3464 8.2904

1 0.00002 −1.00000 −7.9912 −32.3344 10.0830

CPU time 6.56 4.87 6.29 87.29 463.01
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Table 3. Results of the estimation of the minimal value of
the objective obtained by using three methods.

Example Crescent Mifflin 2 Wolfe Colville 1 Gill

NVMA 0.00000 −1.00000 −8.0000 −32.3306 9.7873

SIGMA 0.00000 −1.00000 −8.0000 −32.3386 8.2722

RPVM 0.00000 −1.00000 −8.0000 −32.3464 8.2444

• the Stochastic Integration Global Minimization Al-
gorithm (SIGMA), see, e.g., (Aluffi-Pentini et al.,
1988).

The RPVM method has high reliability, as shown
by the presented results: convergence to global optima
was obtained independently of the starting point. The
method is also less sensitive to the choice of the parame-
ters than pure stochastic methods. The presented combi-
nation of deterministic and stochastic descents increases
robustness.

In order to get some information about the robust-
ness, we studied the behavior of the method when using
various samples of random vectors. We denote by l̂∗ and
x̂∗ the estimates of the optimal values of l∗ and x∗ pro-
vided by the method, respectively. Run i yields the vari-
ates l̂∗i and x̂∗

i : a set of nr runs yields nr-samples of l̂∗

and x̂∗, which allows us to get the estimates of their mean
values and variances. In Table 4 we show the results ob-
tained from nr = 100 independent runs. We denote by
E(l̂∗) and V (l̂∗) the estimates of the mean and the vari-
ance of l̂∗ provided by the produced results. Analogous
notation is used for x̂∗. We observe that the results are
stable, with small variance.

6. Concluding Remarks and Future Work

We have considered a general problem of unconstrained
continuous optimization where the objective function may
be nonsmooth. Standard methods for smooth functions
usually generate a descent direction by using the gradient

Table 4. Analysis of robustness on 100 tests.

Example Crescent Mifflin 2 Wolfe Colville 1 Gill

E
��l∗� 0.000 −1.000 −8.000 −32.3464 8.245

V (�l∗) 5E−28 2E−15 1E−13 1.8E−12 3E−07

�x∗
1 = 0.001 �x∗

1 = 1.000 �x∗
1 = −1.000 �x∗

1 = 0.2999 �x∗
1 = 0.456, �x∗

6 = 0.441

�x∗ �x∗
2 = 0.000 �x∗

2 = 0.000 �x∗
2 = 0.000 �x∗

2 = 0.3329 �x∗
2 = 0.362, �x∗

7 = 0.256

�x∗
3 = 0.3999 �x∗

3 = 0.164, �x∗
8 = 0.110

�x∗
4 = 0.4284 �x∗

4 = 0.087, �x∗
9 = 0.077

�x∗
5 = 0.2255 �x∗

5 = 0.071, �x∗
10 = 0.060

and may be extended to nonsmooth situations by using a
generalized gradient instead of the standard one whenever
necessary. For instance, Clarke’s generalized gradients or
more general affine local underevaluations (or overevalu-
ations) can be used at the points where the objective func-
tion is not differentiable. In accordance with this obser-
vation, we considered a general variable metric descent
method and introduced suitable affine local approxima-
tions to be used.

However, in the lack of convexity assumptions, con-
vergence to a global minimum cannot be ensured. We
also introduced a stochastic modification of the descent
method involving the incorporation of a random pertur-
bation Pk, which may be interpreted as a perturbation of
the descent direction. This approach leads to a stochas-
tic descent method where the deterministic sequence gen-
erated by the variable metric descent method is replaced
by a sequence of random variables. A mathematical re-
sult concerning convergence to a global minimum was es-
tablished for a convenient class of random perturbations.
We established that perturbations such that Pk = ξkZ
belong to this class if Z is a Gaussian random vector
(N (0, Id) variate), and {ξk}k≥0 is a nonincreasing se-
quence of strictly positive real numbers converging to zero
and such that ξ0 ≤ 1. This provides a simple method for
generation of convenient perturbations.

We proposed an algorithm for the implementation
of the method and presented the results of some numer-
ical experiments. The results show that, on the one hand,
the method is effective and, on the other, the introduction
of stochastic perturbations significantly improves perfor-
mance. Robustness was analyzed using different samples
generated at independent runs: the results are stable with
small variance, as shown in Table 4.

The main difficulty in the practical use of stochastic
methods is connected with the tuning of parameters. We
analyzed the practical effect of variations in the main pa-
rameters of the proposed algorithm: a, ω, kmax, bstep and
nsto . As is shown in Tables 1 and 2, the influence of bstep

is small. The parameters a and ω have slight influence:
a large set of values led to good results. A more influential
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parameter is the number of trial points generated, kmax ×
nsto : for a small number of iterations kmax, a large num-
ber of perturbations nsto is needed, while small nsto re-
quires large kmax.

Variable metric descent methods can be extended to
constrained optimization. Future work will consider gen-
eralization to affine and nonlinear constraints.
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