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This paper examines the inverse control problem of nonlinear systems with stable dynamics using a fuzzy modeling ap-
proach. Indeed, based on the ability of fuzzy systems to approximate any nonlinear mapping, the nonlinear system is
represented by a Takagi-Sugeno (TS) fuzzy system, which is then inverted for designing a fuzzy controller. As an appli-
cation of the proposed inverse control methodology, two popular control structures, namely, feedback linearization and
Nonlinear Internal Model Control (NIMC) are investigated. Moreover, the paper points out that, under some conditions,
both of the control structures are equivalent and naturally implement a Smith predictor in the presence of time delays.
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1. Introduction

Inverting systems is an important issue in engineering ap-
plications, especially in linear and nonlinear control prob-
lems (Baoming et al., 2002; Boukezzoula et al., 2001;
Boukezzoula et al., 2003; Boukezzoula et al., 2006; Cabr-
era and Narendra, 1999; Devanathan et al., 2000; Li and
Deng, 2006; Rivals and Personnaz, 2000). The underly-
ing principle of inverse control is based on the following
remark: Since a plant model can be viewed as a map-
ping from control inputs to future outputs according to
the process history, one can use the inverse mapping from
the desired outputs to the inputs as a design control pro-
cedure. Actually, even when not clearly specified, an in-
version mechanism is often included in nonlinear control
structures. Feedback linearizing control (Devanathan et
al., 2000; Kang et al., 1998; Kwanghee, 1999; Ying, 1999)
as well as internal model control (Babuska, 1998; Baom-
ing et al., 2002; Boukezzoula et al., 2001; Boukezzoula et
al., 2003; Fang and Rad, 2000; Li and Deng, 2006; Light-
body and Irwin, 1997) are typical application examples of
such as an inversion based control methodology.

If both control strategies are promising approaches
for controlling input-output stable nonlinear systems, their
applicability is related to an accurate representation of the
nonlinear plants under consideration. As control prob-
lems arising in a large variety of engineering fields are
characterized by uncertain environments and nonlineari-

ties, the identification of accurate process models accord-
ing to first principles remains difficult or at least time-
consuming. Moreover, for an efficient implementation
of inverse based techniques, an exact inversion proce-
dure must be available. This latter requirement repre-
sents a major obstacle in handling general nonlinear sys-
tems. Indeed, as analytic inverse solutions cannot gen-
erally be determined, one must resort to numerical in-
version techniques (Economou et al., 1986; Lightbody
and Irwin, 1997; Nahas et al., 1992), which necessar-
ily introduce difficulties inherent in iterative algorithms
(initialization values, convergence conditions, approxima-
tion errors). These drawbacks weaken the potential use
of inverse based methods in nonlinear control strategies.
It follows that many proposed methodologies are usu-
ally restricted to affine-in-control nonlinear systems that
can be analytically inverted (Jagannathan, 1998; Jagan-
nathan, 1999; Wang, 1993).

Overpassing the limitation of having an accurate rep-
resentation of nonlinear plants is the first motivation for
introducing fuzzy systems and/or artificial neural net-
works in recent control architectures. Indeed, both system
categories are now known as being universal approxima-
tors and can thus be used to represent nonlinear systems
and/or to implement nonlinear regulators (Narendra and
Mukhopadhyay, 1997; Sugeno, 1999; Zeng and Singh,
1996b). In this framework, inverse control based tech-
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niques have been extensively applied to nonlinear control.
In many cases, the control signals are computed by nu-
merically inverting the neural network and/or the fuzzy
model, which induces the restrictions mentioned previ-
ously in implementing the corresponding control strate-
gies. One way of avoiding the problems associated with
the use of iterative inversion algorithms consists in sup-
pressing the on-line inversion by applying an inverse con-
trol learning method (Cabrera and Narendra, 1999; Park
and Han, 2000; Rivals and Personnaz, 2000). In that case,
the inverse system is trained by minimizing the devia-
tion between the controlled system output and the desired
one by means of adaptive techniques. Unfortunately, the
flaw of this alternative approach resides in the need of a
cautious initialization of the inverse controller. In other
words, special attention must be paid to this preliminary
task, which has an important repercussion on the con-
trol signal quality and can even lead to unstable situations
when the inverse system structure is not correctly chosen
or when the corresponding parameters are randomly ini-
tialized.

Finally, even if neural networks or fuzzy systems
are efficient tools for modeling complex systems, they
are not especially well suited for implementing the on-
line model inversion. This weakness clearly appears in
several published papers that mostly consider simplified
models when inverse control is concerned. This restric-
tion implies the use of specific neural networks or fuzzy
models whose approximation capacity is usually limited
to affine-in-control systems (Jagannathan, 1998; Jagan-
nathan, 1999; Leland, 1998; Nahas et al., 1992). This
remark concerns two main classes of inversion based con-
trol structures, i.e., feedback linearizing control and inter-
nal model control. Indeed, many referenced works are re-
stricted to affine-in-control nonlinear systems even when
discrete-time systems are considered (Jagannathan, 1998;
Jagannathan, 1999) or when particular fuzzy systems are
implemented, as in (Kang et al., 1998), where a PDC (Par-
allel Distributed Compensation) structure is chosen, or in
(Leland, 1998), where fuzzy inputs are considered.

In this paper, the inverse control methodology pro-
posed in (Boukezzoula et al., 2003; Galichet et al., 2004)
for handling nonaffine-in-control nonlinear systems is
used. In this framework, the proposed controller design
is based on the on-line analytic inversion of the fuzzy
plant model. The chosen fuzzy formalism guarantees
fuzzy model decomposability and consequently makes
analytic processing possible. Indeed, as the fuzzy sys-
tem can be viewed as a collection of elementary sub-
systems (Rovatti, 1998; Ying and Chen, 1997; Zeng and
Singh, 1996a), its inversion can be addressed in a local
way, i.e., on all elementary subsystems that may provide
an inverse solution. The proposed inversion methodol-
ogy is exact, noniterative and makes the determination
of multiple solutions possible, thus allowing the handling

of more general systems than the ones usually consid-
ered in the fuzzy control literature. A detailed discus-
sion concerning our inversion method with regard to other
fuzzy inversion techniques (Babuska, 1998; Baranyi et
al., 1998) is given in (Boukezzoula et al., 2003; Galichet
et al., 2004). Consequently, the developed inversion
mechanism can be easily used for implementing inverse
control strategies, as shown in the paper for dealing with
feedback linearizing control and internal model control.
Besides, the equivalence between both the studied control
structures is established.

The paper is structured in the following way: After
a brief statement of the inverse control problem in Sec-
tion 2, the formalism associated with decomposable TS
fuzzy systems is introduced in Section 3. As an exact in-
version of such TS fuzzy models is possible, an inverse
model control strategy, together with the practical imple-
mentation of the analytic inversion, is proposed in Sec-
tion 4. The sequel of the paper is devoted to the applica-
tion of the inverse principle to nonlinear control. In this
context, two classical control structures, namely, feedback
linearization and nonlinear internal model control are in-
vestigated in Section 5, where the equivalence between
both strategies is exhibited. Section 6 gives simulation
examples to demonstrate the feasibility of the proposed
method. Although all developments are presented for sys-
tems without effective delay in Sections 5 and 6, it is pos-
sible to generalize the approach to systems with general
relative degree. That is the purpose of Section 7, which
shows that the proposed fuzzy inverse methodology im-
plicitly introduces a Smith predictor. Finally, discussions
and remarks are summarized in Section 8.

2. Problem Statement

Let us consider a nonlinear plant in the form of a gen-
eral Nonlinear Auto Regressive Moving Average model
(NARMA) given by the following equation:
y(k + r)

= Ψ
[
y(k−n+1), . . . , y(k), u(k), . . . , u(k−m+1)

]

(1)

with m ≤ n, where y and u are the output and input vari-
ables, respectively. Ψ represents a nonlinear mapping and
r is the relative degree of the system.

For the sake of simplicity, let us first consider sys-
tems without effective delay, i.e., r = 1 (an extension to
general relative degree systems will be developed in a fur-
ther section). In this case, the system (1) is reduced to

y(k + 1) = Ψ
[
Z(k)

]

= Ψ
[
y(k − n + 1), . . . , y(k), u(k), . . . ,

u(k − m + 1)
]
. (2)

In control applications, the objective consists in forcing
the plant output to follow a specified desired setpoint
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sp(k). In other words, one has to determine a control ac-
tion u which guarantees that y converges to sp. If the
system (2) is invertible, there exists a function Ω such that
the input u(k) can be expressed in the form
u(k) = Ω

[
y(k+1), y(k−n+1), . . . , y(k), u(k−1) . . . ,

u(k − m + 1)
]

= Ω
[
y(k + 1), Z1(k)

]
, (3)

where Z1(k) = [y(k − n + 1), . . . , y(k), u(k − 1), . . . ,
u(k − m + 1)].

In this case, since the control objective is to reach the
setpoint sp, the control u(k) can be obtained by replacing
the next system output by the desired one in (3), i.e.,
u(k) = Ω

[
sp(k + 1), y(k − n + 1), . . . , y(k),

u(k − 1), . . . , u(k − m + 1)
]
. (4)

When in the system under consideration Ψ can be written
in an affine-in-control form, i.e.,

Ψ
[
Z(k)

]
= α

[
Z1(k)

]
+ β

[
Z1(k)

]
u(k), (5)

where β[Z1(k)] �= 0 for Z1 ∈ R
n+m−1, the mapping Ω is

easily determined and the controller can be implemented
using the analytical inversion of (5), i.e.,

u(k) =
sp(k + 1) − α

[
Z1(k)

]

β
[
Z1(k)

] . (6)

However, this simple method cannot be directly applied to
nonaffine-in-control systems in the general form (2), even
when the dynamics of Ψ are exactly known. Indeed, when
the analytic inverse of (2) cannot be determined, one must
resort to numerical inversion techniques, which necessar-
ily introduce difficulties inherent in iterative algorithms
(initialization values, convergence conditions, approxima-
tion errors).

Moreover, when the dynamics of (2) are unknown,
it is even more difficult to design the controller. As an
alternative, when the plant dynamics are represented by
a fuzzy system, an exact and noniterative inverse model
controller can then be designed based on the local in-
version of the fuzzy model. Indeed, TS fuzzy systems
with singleton consequences (Sugeno, 1999) can be eas-
ily and exactly inverted provided that the inputs are de-
scribed using strict triangular partitions (Boukezzoula et
al., 2003; Galichet et al., 2004).

Before detailing the proposed control strategies, the
next section briefly presents the formalism associated with
the TS fuzzy system that will be used in the global control
structure.

3. Decomposable Takagi-Sugeno Fuzzy
Systems

The attractive benefit of using fuzzy systems is that the
precise understanding and the development of a mathe-
matical model are not necessary. In return, the success-
ful determination of a fuzzy model requires a significant

amount of informative data, and the resulting model is un-
reliable outside the operating domains to which learning
data belong. In addition, the fuzzy model input-output re-
lationship does not contain any physical knowledge about
the plant. Despite these limitations, the nonlinear plant (2)
is represented by a TS system identified from input-output
data.

Let TS be a zeroth-order Takagi-Sugeno fuzzy model
(sometimes also called the Wang-Mendel model (Wang,
1994)) of (2) whose rulebase consists of fuzzy rules with
singleton consequences in the form

If y(k) is Ai1
1 and y(k − 1) is Ai2

2 and . . .and

y(k − n + 1) is Ain
n and u(k) is Bj1

1 and . . .and
u(k − m + 1) is Bjm

m

then yf(k + 1) = φi1,...,in,j1,...,jm, (7)

where A
ip
p and B

jq
q are linguistic terms associated respec-

tively with the variables y(k − p + 1) and u(k − q + 1),
φi1,...,in,j1,...,jm being a real constant.

As fuzzy systems are universal approximators, it can
be guaranteed that as long as the plant evolves on a com-
pact set, there is always a fuzzy system in the form (7) ca-
pable of approximating its input-output mapping for any
tolerance level. Accordingly, as far as the TS fuzzy model
(7) is considered, the plant output can be rewritten as fol-
lows:

y(k + 1) = yf(k + 1) + Δ(k + 1), (8)

where yf (k + 1) is the output generated by the fuzzy sys-
tem and Δ is the fuzzy approximation error, which is as-
sumed to be bounded by Δ0, i.e., |Δ| ≤ Δ0.

When assuming a strict partitioning of the differ-
ent input universes of discourse with triangular member-
ship functions, at each sampling time an input variable
is described with at most two linguistic terms (Zeng and
Singh, 1996a). Thus, in the case of a system with n + m
inputs, at most 2n+m rules are activated for any vector of
inputs. The output generated by the fuzzy system is then
reduced to that produced by the 2n+m fired rules. This
property permits computational efficiency and offers an
advantage over neural-fuzzy approaches.

The global fuzzy system can thus be viewed as a col-
lection of elementary fuzzy subsystems. Each of them is
defined on a fuzzy mesh built from the modal input val-
ues delimiting it. In this context, the study of a fuzzy
system can be handled from a generic analysis of an el-
ementary fuzzy subsystem. Indeed, according to the de-
composition principle given in (Zeng and Singh, 1996a),
when considering Np and Mq possible linguistic terms
for describing respectively the inputs y(k − p + 1) and
u(k−q+1), i.e., ip ∈ Ip = {1, 2, . . . , Np}, p = 1, . . . , n
and jq ∈ Jq = {1, 2, . . . , Mq}, q = 1, . . . , m, the fuzzy
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system (7) is composed of a collection of

Nb_Subsyst =
n∏

p=1

(Np − 1)
m∏

q=1

(Mq − 1)

subsystems, each being defined by a collection of 2n+m

fired rules. In this case, at each sampling time, the out-
put of the global fuzzy system (7) is equal to the output
generated by one active subsystem.

According to the multi-linearity property of fuzzy
subsystems as established in (Rovatti, 1998; Ying and
Chen, 1997; Zeng and Singh, 1996a), it can be shown
(Boukezzoula et al., 2003; Galichet et al., 2004) that the
output of a fired fuzzy subsystem can be rewritten as fol-
lows:

yf (k + 1) = α(λ)
[
Z1(k)

]
+ β(λ)

[
Z1(k)

]
u(k), (9)

where λ ∈ {1, 2, . . . , Nb_Subsyst}. In this case, at each
sampling time, the output of the fuzzy system (7) is given
by (9).

4. Fuzzy Model Inverse Control Strategy

When a TS fuzzy model (7) is used, an exact and nonit-
erative inverse model can be designed based on the local
inversion of the fuzzy model (Boukezzoula et al., 2003;
Galichet et al., 2004). Indeed, when considering u(k)
as the inversion control variable, the problem consists in
finding all u(k)-solutions, the variables y(k), . . . , y(k −
n+1), u(k−1), . . . , u(k−m+1) having known values.
According to the fuzzy system decomposition, the global
task can be decomposed into elementary subtasks which
aim at analyzing subsystems that may provide solutions.
The first remark relative to subsystem exploration con-
cerns the limited number of subsystems that must be stud-
ied. Indeed, as y(k), . . . , y(k−n+1), u(k−1), . . . , u(k−
m + 1) have known values, it is possible to determine the
fuzzy meshes to which they belong. In other words, as
u(k) is the single free variable, M1 − 1 subsystems are
concerned if M1 represents the number of symbols used
to describe u(k). In this case, at each sampling time, if
the objective is to reach a desired signal v(k), the inverse
control law u(k) is computed from (9) as

u(k) =
v(k) − α(λ)

[
Z1(k)

]

β(λ)
[
Z1(k)

] . (10)

When considering a subsystem λ, the control law (10) is
only defined on the corresponding subsystem. Although
this subsystem can be determined, it is easier to evalu-
ate (10) and to post-validate the obtained result with re-
gard to its belonging to this subsystem. Moreover, the ex-
istence of the inverse control law is related to β(λ)[Z1(k)].

As analyzed in (Galichet et al., 2004), when
β(λ)[Z1(k)] = 0, two cases have to be distinguished ac-
cording to the respective values of v(k) and α(λ)[Z1(k)].

Indeed, if v(k) �= α(λ)[Z1(k)], the inverse control
law (10) has no solution. On the contrary, when the
desired output v(k) = α(λ)[Z1(k)], there is an infin-
ity of solutions. Generally, the inverse problem requires
β(λ)[Z1(k)] �= 0 (no fuzzy model singularities).

Moreover, the fuzzy model inversibility is related to
the zero dynamic stability. For a given fuzzy model in
the form (7), the zero dynamic behavior can be character-
ized by a control sequence u0(k) which is chosen so that
v(k), y(k), . . . , y(k−n+1) are equal to zero. In this case,
according to (10), the zero dynamics are given by

u0(k)

= −α(λ)[0, . . . , 0, u0(k−1) . . . , u0(k−m+1)]
β(λ)[0, . . . , 0, u0(k−1) . . . , u0(k−m+1)]

. (11)

If the fuzzy model has no zero dynamics, the feed-
back control inputs u(k − 1), . . . , u(k − m + 1) are not
used by the fuzzy inverse. In this case, if no singularities
are present, i.e., β(λ)[Z1(k)] �= 0, Eqn. (11) is stable and
the system is always inversible.

In the case where the fuzzy model has zero dy-
namics, the control input u(k) is dependent not only on
v(k), y(k), . . . , y(k − n + 1), but also on the past values
of u(k). Then the system is inversible if Eqn. (11) is sta-
ble. A detailed study concerning this problem is given in
(Boukezzoula et al., 2003).

Finally, if the model is invertible, the inverse prob-
lem has always one or several solutions. In the presence
of multiple solutions, a criterion has to be considered. As
studied in (Boukezzoula et al., 2003), the latter can influ-
ence the control signal behavior and the stability of the
zero dynamics. Criteria leading to abrupt switching be-
tween fuzzy subsystems (high frequency inputs) should
be avoided because they can damage the actuators. In this
context, the minimal energy criterion which is relevant to
the physical properties of the actuators is frequently used.

5. Application in Nonlinear Control

5.1. Fuzzy Feedback Linearization Controller (FLC).
The objective of this section is to illustrate the proposed
inverse control methodology for the implementation of
feedback linearization. Generally, two approaches to
feedback linearization can be distinguished: feedback lin-
earization which results in an input-output relation and
input-state linearization, where the input-state mapping is
linear. In this paper, only the first approach is considered
because the fuzzy systems used are input-output models.

The basic idea of feedback linearization is to trans-
form a nonlinear system into new coordinates where non-
linearities can be canceled fully or partially by feed-
back. Indeed, in an ideal situation, when the system in-
verse is placed upstream with the original system, the
input-output behavior becomes linear. The simplicity
of this approach, in addition to the advantage of being
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Fig. 1. Fuzzy control structure augmented with a linear controller.

Fig. 2. Fuzzy NIMC implementation.

able to use linear control theory on the resulting system
once feedback is linearized, has fostered its application
in many areas (Knospe and Lindlau, 2000). Generally,
feedback linearization is deeply connected to the inverse
control methodology (Chen and Khalil, 1995; Slotine and
Li, 1991) and can be thought of as its generalization.

Under the assumptions that the fuzzy model and its
inverse are stable and by adopting the feedback lineariza-
tion principle (Slotine and Li, 1991), if the control law is
chosen as (10), then the input-output behavior of the plant
output (8) becomes the following linear one:

y(k + 1) = v(k) + Δ(k + 1). (12)

If no model mismatch and no disturbances are present, it
can be demonstrated that perfect control is obtained when
the input v(k) is chosen as the desired setpoint. How-
ever, in the presence of uncertainties and disturbances, the
linearization controller is not able to cancel them in the
steady state. In this case, a linear controller can be used.
Indeed, as the controlled system obtained by implement-
ing the control law (10) is linear, a linear control strategy
can be used to guarantee desired control performances.
Then the control structure is augmented by a linear con-
troller as illustrated in Fig. 1.

According to the fuzzy plant representation and
based on the exact fuzzy inversion property, it can be
shown that if the control loop contains an integrator, then
constant disturbances and the model mismatch can be can-
celed in the steady state. In order to ensure the open loop
integrator presence, the linear controller C is taken as

C(z−1) =
T

1 − z−1
=

Tz

z − 1
. (13)

The parameter T in (13) determines the transient state
form and must be chosen to provide a compromise be-
tween stability-robustness and performance.

5.2. Fuzzy Nonlinear Internal Model Control Struc-
ture (FNIMC). The principle of the NIMC methodol-
ogy, introduced by Economou et al. (1986), is based on
the inclusion of a nonlinear plant model within the con-
trol structure. Indeed, when a plant model is available,
the nonlinear controller can be directly obtained by model
inversion. By doing so, an offset-free response can be
achieved even in the presence of constant disturbances act-
ing on the plant output. A robustness filter is generally
designed to alleviate sensitivity problems (Boukezzoula
et al., 2003; Lightbody and Irwin, 1997; Morari and
Zafiriou, 1989; Nahas et al., 1992; Rivals and Person-
naz, 2000). The NIMC advantages, which are the motivat-
ing factors for using this technique in control applications,
are summarized by Economou et al. (1986).

Based on this control principle, a fuzzy version of the
NIMC structure can be obtained as illustrated in Fig. 2,
where the analytical model is replaced by a fuzzy model.
By applying the inversion mechanism, the control input
u(k) is then determined in the presence of the input v.
Under the assumptions that the fuzzy model and its in-
verse are stable, the effect of constant disturbances and
the model mismatch are compensated in the steady state.
In this case, an integral action is achieved.

The filter F0, which guarantees the robustness of sta-
bility with respect to the plant-model mismatch, is gener-
ally chosen as follows (Boukezzoula et al., 2001; Nahas
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Fig. 3. Transformation of the FNIMC structure.

et al., 1992):

F0(z−1) =
T

1 − (1 − T )z−1
=

Tz

z − (1 − T )
. (14)

By comparing linear (Morari and Zafiriou, 1989) and non-
linear IMC cases, it can be stated that the filter F0 plays
the same role as the robustness filter in the linear IMC.

5.3. Equivalence Between Feedback Linearization
and the NIMC Structure. The objective of this section
is to demonstrate that the developed fuzzy feedback lin-
earization controller is equivalent to the FNIMC strategy.
It can be shown that the FNIMC structure of Fig. 2 can be
transformed into a closed-loop feedback control structure
according to the scheme given in Fig. 3.

When the robustness filter F0 is chosen as (14), the
transfer function Q(z−1) is given by

Q(z−1) =
T

1 − z−1
=

Tz

z − 1
. (15)

Now, the FNIMC structure can be compared with the
feedback control structure of Fig. 1. Thus, as Q = C,
the equivalence between both control structures is estab-
lished.

From the control point of view, both of the control
structures (FLC and FNIMC) are strictly equivalent. How-
ever, in practical implementations, the FNIMC is slightly
greedier for computations than FLC. Indeed, using a di-
rect implementation of the FNIMC stucture, at each sam-
pling time it is required not only to determine the control
value by inverting the fuzzy model, but also to compare
the fuzzy model output with the process output in order
to compute the fuzzy model error. This second step is
avoided in the FLC implementation, where only the fuzzy
model inversion is needed. In other words, from an im-
plementation point of view, the FLC implementation is
preferable.

6. Simulation Examples

In this section, simulation results using the proposed con-
trol structures are presented. Two nonaffine nonlinear

plants are considered. The first example, which repre-
sents a classical control problem (see, e.g., (Hunt and
Sbarbaro, 1991; Kambhampati et al., 2000; Narendra and
Parthasarathy, 1990), where inverse learning control is
used), is dedicated to an illustration of the fuzzy inverse
control methodology. The second one is a complex sys-
tem (Rivals and Personnaz, 2000) used to show the po-
tential of the proposed technique for the control of com-
plex nonlinear plants. The inversion principle is imple-
mented by means of Simulink S-functions. Indeed, Mat-
lab/Simulink tools are widely used by the control commu-
nity, but they do not provide specific functions for dealing
with the fuzzy inversion control problem. Therefore, we
have implemented a minimal set of blocks that are needed
to experimentally verify the previous concepts:

• SymbFuz is an S-function that implements the fuzzi-
fication procedure. The S-function parameter is a
text file providing the definition of the fuzzy parti-
tions.

• SymbInfSug is an S-function that computes the out-
put of a Takagi-Sugeno inference. The S-function
parameter is a text file providing the definition of the
rule base.

• FuzzyInversion is an S-function that computes the
fuzzy inverse solutions.

It can be noted that SymbFuz and SymbInfSug are two
components of the Matlab/Simulink toolbox Floulib
freely available at

http://www.listic.univ-savoie.fr
see (Foulloy et al., 2006).

In all simulation examples, if the inversion algorithm
produces multiple solutions, the minimal energy choice
criterion, which is relevant to the physical properties of
the actuators, is used (Boukezzoula et al., 2003).

6.1. First Example. The main objective of this ex-
ample is to detail step-by-step how the above-mentioned
generic fuzzy components can be combined for imple-
menting FLC and FNIMC control structures. We thus
focus on the possible integration of a FuzzyInversion
Simulink block into control structures developed using the
Floulib toolbox (Foulloy et al., 2006).
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Fig. 4. Fuzzy model input-output mapping.

Fig. 5. Fuzzy inverse in series with its model.

The plant under consideration is described by the
nonlinear equation

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k). (16)

Let us assume that a fuzzy model has been identified (the
identification method will be detailed in the second exam-
ple). The identified fuzzy system is composed of 45 rules
in the form

If y(k) is Ai1
1 and u(k) is Bj1

1 then

yf (k + 1) = φi1,j1 , i1 = 1, . . . , 5 and j1 = 1, . . . , 9.
(17)

The input and output universes of discourse are respec-
tively [−2.0, 2.0] and [−7.5, 7.5]. In this case, 5 and 9
linguistic terms are defined for y(k) and u(k), respec-
tively. When the input is a random one over the inter-
val [−2, 2], the maximum magnitude of the identification
error is about 0.3, which represents 4% of the output max-
imum magnitude.

The identified fuzzy model input-output mapping
when y(k) and u(k) belong to the corresponding uni-
verses of discourse is illustrated in Fig. 4. According to
the decomposition principle, the fuzzy system can be writ-
ten as a collection of 32 fuzzy subsystems. At each sam-
pling time, the fuzzy system output is then delivered by
the fired subsystem indexed by λ, i.e.,

yf (k + 1) = α(λ)
[
y(k)

]
+ β(λ)

[
y(k)

]
u(k), (18)

where λ ∈ {1, . . . , 32}. Our objective now is to apply the
inversion principle in order to determine the control law

u(k) so that the fuzzy system output follows the given
desired setpoint.

Let us start with a simple illustration of the inversion
implementation. Figure 5 shows the inversion algorithm
results for v(k) = 2.50 and y(k) = 1 when the fuzzy in-
verse is placed in series with its model. It can be demon-
strated that the inversion is exact, i.e., yf(k + 1) = v(k)
= 2.5.

Let us now assume that the inputs v(k) and y(k) both
vary in their corresponding universes of discourse. The
control mapping obtained by using the proposed inversion
method is illustrated in Fig. 6. Now, the fuzzy model and

Fig. 6. Inverse model input-output mapping.

its inverse are used to implement the proposed fuzzy feed-
back linearizing controller and the FNIMC structure ac-
cording to Figs. 7 and 8.

In both cases, the same simulation results illustrated
in Fig. 9 are obtained, which is in accordance with the
proved equivalence between both control structures. The
first plot (Fig. 9(a)) shows the system response to changes
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Fig. 7. Implementation of fuzzy feedback linearization.

Fig. 8. Fuzzy NIMC implementation.

(a) (b)

Fig. 9. Control performance: (a) the response to changes in the reference signal width an additive disturbance d(k),
(b) the control action.

in the reference signal in the presence of an additive dis-
turbance. The evolution of the corresponding control law
is illustrated in Fig. 9(b).

From these results, it is seen that good control per-
formances (comparable to those reported in (Hunt and
Sbarbaro, 1991; Kambhampati et al., 2000; Narendra and
Parthasarathy, 1990) for various reference signals) are ob-
tained. Indeed, the system output converges rapidly to the
setpoint. The errors observed after each transition are due
to the modeling errors or to some disturbance transitions.
The effect of constant disturbances is compensated in the
steady state.

6.2. Second Example. The objective of this example is to
illustrate the performance of the proposed technique and

to compare it with the neural network internal model con-
trol given in (Rivals and Personnaz, 2000), where an in-
verse model controller obtained by a learning technique
is used. In order to be able to compare the performances
of the two techniques, the same simulation conditions are
considered.

The plant under consideration is described by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k) =
24+x(k−1)

30
x(k−1)

−0.8
u2(k−1)

1+u2(k−1)
x(k − 2) + 0.5u(k − 1),

y(k) = x(k) = d(k).
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It can be shown that the system input-output behavior can
be written in the following form:

y(k + 1) = Ψ
[
y(k), y(k − 1), u(k)

]
. (19)

6.2.1. Model Identification and Validation. The
identification input consists of a pulse sequence of random
amplitude uniformly distributed over the interval [−5, 5]
with a duration of 10 sampling periods.

Let us briefly describe the employed fuzzy identifi-
cation method given in (Nakoula et al., 1997). The algo-
rithm is composed of two steps. The first one is an initial-
ization phase, during which the extreme training points are
selected to create an initial partition of the input universes
of discourse and to generate an initial fuzzy rule base. The
second step is an iterative process, which refines the initial
input partitions and the rule base. At each iteration, the
model is tested over the training set. The training point
that provides the maximal approximation error is learned,
i.e., the fuzzy system is modified so that it produces a zero
or at least very small approximation error for the point
considered. This modification simply consists in generat-
ing a new linguistic term on the analysed input partitions
whose modal value is set to the corresponding component
of the training point that has to be learned. A new rule
is then added to the rule base whose premise involves the
newly created symbols and whose conclusion is the output
component of the selected training point. Furthermore, a
completion method is elaborated in order to determine the
conclusion of all possible rules that have been artificially
produced by the generation of new input symbols. This
method makes it possible to obtain nonregular partitions
with a different number of symbols on each universe of
discourse. This property is well suited for a nonlinear sys-
tem representation.

By using this identification technique, 7, 8 and 5 lin-
guistic terms were generated for describing y(k−1), y(k)
and u(k), respectively. In this case, the identified fuzzy
model was thus composed of 280 rules of the form

If y(k) is Ai1
1 and y(k − 1) is Ai2

2 and u(k) is Bj1
1

then yf (k + 1) = φi1,i2,j1 , (20)

with i1 = 1, . . . , 7, i2 = 1, . . . , 8 and j1 = 1, . . . , 5.
In order to assess the quality of the identified fuzzy

model, a pulse sequence of a random amplitude in the in-
terval [−5, 5] with a duration of 10 sampling periods was
used as the control input. The identification results are
shown in Fig. 10, which shows the performance of the
identified fuzzy model of the plant.

6.2.2. Control Strategy Implementation. As the
feedback linearization controller and the FNIMC struc-
ture are strictly equivalent from the point of view of the

achieved control performances, only the latter (also stud-
ied in (Rivals and Personnaz, 2000) with a neural network
based approach) is presented in this example.

The reference model used (Rivals and Personnaz,
2000) is given by the following linear equation:

yr(k + 1) − 0.803yr(k) + 0.160yr(k − 1)
= 0.232sp(k) + 0.126sp(k − 1), (21)

where sp(k) consists of pulses of an amplitude in the in-
terval [−2, 1.75]. The total length of the sequence is 330.
The plant is affected by an output disturbance d(k), which
consists of randomly occurring pulses of an amplitude
of −1.

The control structure obtained by the application of
FNIMC according to Fig. 2 is illustrated in Fig. 11. The
simulation results are illustrated in Fig. 12. It can be seen
that good control performances are obtained. Indeed, the
mean square error between the plant output and the ref-
erence signal is equal to 0.0286. In (Rivals and Person-
naz, 2000), where neural internal model control was used,
similar results were obtained (the mean square error was
equal to 0.03).

Let us now discuss the advantages of our method
compared with those given in (Rivals and Personnaz,
2000), where the inverse controller is directly trained in
a closed-loop control structure. If the latter has the advan-
tage to learn the controller in the desired operating regions
and solves problems encountered when numerical inver-
sion algorithms are used, it may cause nonconvergence or
instability problems, which can be dangerous for the con-
trolled plant. Indeed, if the controller initialisation para-
meters are chosen in an arbitrary way, unstable situations
may be produced. In this case, it is necessary to spend sig-
nificant time on the parameter preparation of the inverse
initial controller. As the plant dynamics are supposed to
be unknown, it is difficult to deal with this task.

In the proposed method the controller design is based
on the local inversion of a decomposable fuzzy model
identified off-line from plant input-output data. Moreover,
the developed inversion procedure is exact and nonitera-
tive.

From the control implementation point of view, as
the identified fuzzy system is decomposable, at each sam-
pling time only one subsystem is used to elaborate the
controller (composed of 8 fired rules in this example).
This property permits computational efficiency, especially
in real-time applications, and represents an advantage
with regard to neural or fuzzy-neural control approaches.

7. Generalization for Systems with General
Relative Degree

7.1. Control Architecture. In control applications,
many plants contain time delays which can affect the con-
trol synthesis. In other words, if the relative degree is
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(a)

(b)

Fig. 10. Fuzzy identification performances: (a) the control input and the fuzzy model output,
(b) the fuzzy model output and the plant output.

Fig. 11. Fuzzy NIMC implementation.
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(a)

(a) (b)

Fig. 12. Control NIMC performances: (a) the response to changes in the reference signal with an additive disturbance d(k),
(b) the control signal, (c) the evolution of the error signal.

greater than one, it may have a significant effect on the
control system performances.

A useful method to overcome the effect of time de-
lays consists in using the prediction approach. In this
framework, it is important to determine the delay elements
within the model. Several techniques have been devel-
oped to deal with this problem. For example, in (Liao and
Chen, 1997), a dispersion function technique based on an
orthogonal projection is used. In this paper, this task is
not considered. In other words, the system time delay is
supposed to be known or to have been identified off-line
from input-output data.

According to the general representation given in (1)
and by generalizing the fuzzy representation (8), at each
sampling time the fuzzy system output can be reformu-
lated as

y(k + r) = y(k + θ + 1)
= yf (k + θ + 1) + Δ(k + θ + 1)

= α(λ)
[
Z1(k)

]
+ β(λ)

[
Z1(k)

]
u(k)

+Δ(k + θ + 1), (22)

where θ = r−1 is the effective time-delay. The nonlinear
functions α(λ) and β(λ) are deduced from the decomposi-

tion of the TS fuzzy model given by a collection of rules
of the form

If y(k) is Ai1
1 and y(k − 1) is Ai2

2 and . . .and

y(k − n + 1) is Ain
n and u(k) is Bj1

1 and . . .and

u(k − m + 1) is Bjm
m

then yf (k + θ + 1) = φi1,...,in,j1,...,jm . (23)

Let us now study both of the control structures given
in the previous sections. In the same spirit of synthe-
sis, if the feedback linearizing control law u(k) is chosen
as (10), then the following linear equation is obtained:

y(k + r) = y(k + θ + 1) = v(k) + Δ(k + θ + 1). (24)

In order to ensure the desired control performances in the
presence of uncertainties and disturbances, the lineariza-
tion controller is augmented by a linear controller. As be-
fore, one can design the linear controller C so that the
open loop contains an integrator.

In this case, the controller C is chosen as

C(z−1) =
T

1 − (1 − T )z−1 − Tz−θ−1
. (25)
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Fig. 13. Transformation of the fuzzy internal model control structure.

Fig. 14. Fuzzy IMC structure with a Smith predictor.

As for the FNIMC structure, in the presence of θ time
delays, the control structure can be transformed into the
feedback scheme given in Fig. 13.

If the robustness filter F0 is chosen as (14), it follows
that

Q(z−1) =
T

1 − (1 − T )z−1 − Tz−θ−1
. (26)

From (25) and (26), the equivalence between the FNIMC
and the feedback linearization controller is established.

Let us now show that, in the presence of time delays,
the FNIMC structure includes naturally a Smith predictor.
The robustness filter output can be written as

v(k) = v(k − 1)
+ T

{[
sp(k + r) − e(k)

] − v(k − 1)
}

. (27)

As the model inversion is exact, i.e., yf (k + r) = y(k +
θ+1) = v(k), it follows that v(k−1) = yf (k+θ), which
implies

v(k) = v(k−1)+T
{[

sp(k+r)−e(k)
]−yf(k+θ)

}

= v(k−1)+T
{
sp(k+r)−[

e(k)+yf(k+θ)
]}

. (28)

According to the definition of the Smith predictor,
the FNIMC control structure can be transformed into that

of Fig. 14. From this it appears clear that the control struc-
ture integrates a Smith predictor. Indeed, the input is fed
to the true plant, and to the fuzzy model with and without
time delays. In this case, it can be stated that the effect
of the time-delay has been eliminated and the predictor
output can be used as a feedback signal in the controller
design.

7.2. Illustrative Example. The plant under considera-
tion is the same as the one studied in Section 6.2, but now
with 10 time delays (Rivals and Personnaz, 2000):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X(k) =
24 + x(k − 1)

30
x(k − 1)

−0.8
u2(k−9)

1+u2(k−9)
x(k−2)+0.5u(k−9),

y(k) = x(k) + d(k).

It follows that the system input-output behavior can be
written in the following form:

y(k + θ + 1) = y(k + 10)
= Ψ

[
y(k), y(k − 1), u(k − 9)

]
. (29)

By adopting the fuzzy identification strategy detailed in
Section 6.2.1, a fuzzy model of the plant is determined.
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Fig. 15. FLC implementation.

Fig. 16. FNIMC implementation.

The latter is used to synthesize a fuzzy inverse controller
which is implemented either in the FLC or in the FNIMC
structure. The implemented control structures are illus-
trated in Figs. 15 and 16. Figure 15 shows the FLC imple-
mentation with the introduction of the required time delay
as expressed by (26). Figure 16 illustrates the FNIMC im-
plementation and exhibits the occurrence of a Smith pre-
dictor.

As expected, the obtained simulation results (dis-
played in Figs. 17 and 18) are exactly the same for both ar-
chitectures. If we accept the errors due to the pure time de-
lay and the disturbance transitions, it can be deduced that
the control performances are good (comparable to those
obtained in (Rivals and Personnaz, 2000)), which illus-
trates that the proposed technique is able to control sys-
tems even in the presence of time delays. In other words,



246 R. Boukezzoula et al.

Fig. 17. Response to changes in the reference signal with an additive disturbance d(k).

Fig. 18. Control signal.

the avantages of the fuzzy inverse approach expressed at
the end of Section 6.2.2 are still valid.

8. Discussion and Conclusions

This paper has demonstrated how fuzzy systems and their
inverses can be used in inverse model based control for
stable nonlinear systems. In this context, two main ap-
proaches have been studied according to the proposed in-
version principle.

Some remarks and design considerations can now
be outlined concerning the implementation of the control
methodologies previously presented:

• For the implementation of the proposed control tech-
niques, some prior knowledge concerning the input-
output behavior of the plant is needed for identifi-
cation. The required information includes the sys-
tem order, the relative degree of the system and
the stability of the zero dynamics. A study of the
fuzzy model zero dynamic stability was performed
in (Boukezzoula et al., 2003).

• In this paper, the fuzzy identification procedure
was implemented using the technique developed in
(Nakoula et al., 1997). But other methods published

in the literature, which guarantee the system decom-
posability property, can also be used (Johansen and
Foss, 1995).

• Whatever the chosen identification methodology, it
is necessary to select a rich excitation signal plant
input. Generally, a random signal with a uniformly
distributed amplitude is used to generate the input-
output identification data. If it had to be employed
in industrial applications, a more realistic excitation
signal would have to be chosen.

• In order to overcome the effect of time delays on
control performances, prediction approaches are fre-
quently used, especially the Smith predictor. In this
context, it was shown that in the presence of time-
delays, the FNIMC structure, which is equivalent to
the fuzzy feedback linearization controller, includes
a Smith predictor.

• From the controller design point of view, the pro-
posed inversion technique is exact and noniterative,
and it can be applied to nonaffine-in-control nonlin-
ear systems. These properties are major advantages
compared with other nonlinear fuzzy and/or neural
techniques given in the literature.

• The use of TS fuzzy systems with singleton conse-
quences may produce a significant number of rules
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compared with TS fuzzy systems with nonlinear in-
put membership functions and/or polynomial conclu-
sions. In the proposed methodology, this problem
does not have a significant impact because when as-
suming decomposable fuzzy systems, only one sub-
system is fired at each sampling time, which de-
creases the number of rules to be actually considered.

• Although the proposed techniques are dedicated to
fuzzy TS systems with singleton conclusions, they
can be directly applied to Mamdani fuzzy systems
subject to the constraints of the product-sum gravity
inference method (Mizumoto, 1993). Furthermore,
the developed strategy can be easily extended to any
fuzzy system which is piecewise affine in the inver-
sion variable.

• The proposed control structures can also be inte-
grated into conventional adaptive and model refer-
ence control schemes to deal with plants with vary-
ing parameters. Indeed, the fuzzy model and the
inverse model controller parameters can be deter-
mined on-line using closed-loop input-output data
(Boukezzoula et al., 2001; Boukezzoula et al., 2004).
In this context, the advantage of using decomposable
fuzzy systems is that they can be viewed as collec-
tions of affine-in-control systems and permit the ap-
plication of the adaptive control methodology in a lo-
cal way.
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