
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 7–21
DOI: 10.2478/v10006-010-0001-y

NONLINEAR PREDICTIVE CONTROL BASED ON NEURAL MULTI–MODELS

MACIEJ ŁAWRYŃCZUK, PIOTR TATJEWSKI

Institute of Control and Computation Engineering
Warsaw University of Technology, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland

e-mail: {M.Lawrynczuk,P.Tatjewski}@ia.pw.edu.pl

This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally effi-
cient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it
calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Re-
gressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not
propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model
is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.

Keywords: process control, model predictive control, neural networks, optimisation, linearisation.

1. Introduction

Model Predictive Control (MPC) is recognised as the only
advanced control technique which has been very suc-
cessful in practice (Maciejowski, 2002; Qin and Badg-
well, 2003; Tatjewski, 2007). It is mainly so because MPC
algorithms can take into account constraints imposed on
both process inputs (manipulated variables) and outputs
(controlled variables), which usually decide on quality,
economic efficiency and safety. Moreover, MPC tech-
niques are very efficient in multivariable process control;
they can be efficiently used for processes with problem-
atic dynamic properties, e.g., with significant time-delays
or the inverse response.

MPC techniques based on linear models that are easy
to obtain are frequently used in practice (Qin and Badg-
well, 2003). In many cases the obtained control accuracy
is sufficient, much better than that of the classical PID ap-
proach. Nevertheless, in the last two decades numerous
MPC algorithms based on nonlinear models have been
developed and have gained in popularity (Henson, 1998;
Morari and Lee, 1999; Qin and Badgwell, 2003; Tatjew-
ski, 2007). When applied to really nonlinear processes,
they significantly improve control accuracy in comparison
with MPC approaches which use linear models.

In MPC a dynamic model of the process is used to
predict its behaviour over some time horizon and to deter-
mine the optimal future control policy. Hence, the choice
of the model structure is extremely important. The main

measures of model utility are approximation accuracy,
suitability for control, ease of development and, in some
cases, physical interpretation (Pearson, 2003). Fundamen-
tal (first-principle) models (Luyben, 1990), although po-
tentially very precise, are usually not suitable for on-line
control. They are comprised of systems of nonlinear dif-
ferential and algebraic equations which have to be solved
on-line in MPC at each sampling instant. This is usu-
ally computationally demanding as fundamental models
can be very complex and may lead to numerical problems
(e.g., stiffness, ill-conditioning). Moreover, in many cases
the development of fundamental models is difficult.

Because neural network models (Haykin, 1999) are
universal approximators and have a relatively small num-
ber of parameters and a simple structure, they can be ef-
fectively used in MPC. Moreover, in such a case numer-
ical problems typical of MPC algorithms based on com-
prehensive fundamental models are not encountered be-
cause neural models directly describe input-output rela-
tions of process variables; complicated systems of differ-
ential and algebraic equations do not have to be solved
on-line in MPC. The literature concerned with MPC al-
gorithms based on neural models is rich—one can distin-
guish a few approaches:

(a) MPC in which the neural model is used directly,
without any simplifications: at each sampling instant
the control policy must by calculated by a nonlin-
ear optimisation routine, e.g., (Ławryńczuk, 2007;

{M.Lawrynczuk, P.Tatjewski}@ia.pw.edu.pl


8 M. Ławryńczuk and P. Tatjewski

da Cruz Meleiro et al., 2009; Nørgaard et al., 2000;
Tatjewski, 2007; Temeng et al., 1995).

(b) MPC in which the neural model is linearised on-line:
the control policy is calculated by a quadratic pro-
gramming routine, e.g., (El Ghoumari and Tantau,
2005; Ławryńczuk, 2007; Nørgaard et al., 2000; Tat-
jewski, 2007).

(c) Approximate neural MPC in which the neural net-
work replaces the whole control algorithm: the net-
work generates the control policy, e.g., (Åkesson and
Toivonen, 2006; Parisini et al., 1998).

(d) Adaptive neural MPC, e.g., (Alexandridis and
Sarimveis, 2005; Lu and Tsai, 2008).

(e) Stable neural MPC, e.g., (Parisini et al., 1998), and
robust neural MPC, e.g., (Peng et al., 2007).

MPC algorithms are very model-based; possible con-
trol performance is determined by the accuracy of predic-
tions calculated by a model. The model has to be able
to make good predictions of future behaviour of the pro-
cess over the whole prediction horizon. The role of the
model in MPC cannot be ignored during model structure
selection and identification. In practice, however, neural
models are usually trained non-recurrently using the rudi-
mentary backpropagation algorithm which yields one-step
ahead predictors. Intuitively, they are not suited to be used
recurrently in MPC for long range prediction since the
prediction error is propagated. This is particularly impor-
tant in the case of noise, model inaccuracies and underpa-
rameterisation, i.e., the order of the model used in MPC is
usually significantly lower than that of the real process, or
the proper model order is even unknown.

To solve the problem resulting from the inaccuracy
of one-step ahead predictors in nonlinear MPC, two gen-
eral approaches can be applied. First of all, specialised re-
current training algorithms for neural models can be used
(Narendra and Parthasarathy, 1990; Nørgaard et al., 2000;
Qin et al., 1992; Su and McAvoy, 1992), but they are sig-
nificantly more computationally demanding in compari-
son with one-step ahead predictor training, and the ob-
tained models may be sensitive to noise. An alternative is
to choose the model in such a way that its role in MPC
is not ignored. For example, a structured neural model
can be used for prediction in MPC (Ławryńczuk, 2009b).
In this approach the model is not used recurrently, and
the prediction error is not propagated. Yet another op-
tion is to use a multi-model (Greco et al., 1984; Liu
et al., 1999; Rossiter and Kouvaritakis, 2001). For each
sampling instant within the prediction horizon one in-
dependent submodel is used, and the prediction error is
not propagated. Conceptually, the idea is not new—the
multi-model is used in the MUSMAR algorithm (Greco
et al., 1984). In all cited publications linear multi-models

are discussed, although, as shown in (Rossiter and Kou-
varitakis, 2001), for some nonlinear processes they give
much better prediction accuracy in comparison with a sin-
gle linear model used recurrently.

The contribution of this paper is twofold. It details
Multi Layer Perceptron (MLP) neural multi-models and
a computationally efficient (suboptimal) MPC algorithm
based on such models. The multi-model consists of a
set of submodels trained easily as one-step ahead predic-
tors. The multi-model is not used recurrently in MPC,
and the prediction error is not propagated. To avoid non-
linear optimisation, in the discussed MPC algorithm the
neural multi-model is linearised on-line and, as a result,
the future control policy is calculated from an easily solv-
able quadratic programming problem. The article com-
pares long-range prediction accuracy of classical neural
models (trained non-recurrently or recurrently) and neural
multi-models.

2. MPC problem formulation

In MPC, at each consecutive sampling instant, k, a set of
future control increments is calculated:

Δu(k) = [Δu(k|k) . . . Δu(k + Nu − 1|k)]T . (1)

It is assumed that Δu(k + p|k) = 0 for p ≥ Nu, where
Nu is the control horizon. Usually, the objective of MPC
is to minimise differences between the reference trajectory
yref(k+p|k) and predicted values of the output ŷ(k+p|k)
over the prediction horizon N (i.e., for p = 1, . . . , N ) and
to penalise excessive control increments. The following
cost function is usually used:

J(k) =
N∑

p=1

μp(yref(k + p|k) − ŷ(k + p|k))2 (2)

+
Nu−1∑

p=0

λp(Δu(k + p|k))2,

where μp ≥ 0, λp > 0 are weighting factors. Typically,
Nu < N .

The future control increments (1) are determined
from the following optimisation problem:

min
Δu(k|k)...Δu(k+Nu−1|k)

{J(k)} ,

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

−Δumax ≤ Δu(k + p|k) ≤ Δumax,

p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N.
(3)

Only the first element of the determined sequence is actu-
ally applied to the process, i.e.,

u(k) = Δu(k|k) + u(k − 1). (4)



Nonlinear predictive control based on neural multi-models 9

At the next sampling instant, k+1, the prediction is shifted
one step forward and the whole procedure is repeated.

2.1. Prediction using classical NARX models. MPC
algorithms directly use an explicit dynamic model in order
to predict future behaviour of the process, i.e., to calculate
predicted values of the output variable, ŷ(k+p|k), over the
prediction horizon (p = 1, . . . , N ). That is why the role
of the model in MPC is crucial. The general prediction
equation is

ŷ(k + p|k) = y(k + p|k) + d(k), (5)

where the quantities y(k + p|k) are calculated from the
model of the process. The “DMC type” disturbance
model is used in which the unmeasured disturbance d(k)
is assumed to be constant over the prediction horizon
(Tatjewski, 2007). It is estimated from

d(k) = y(k) − y(k|k − 1), (6)

where y(k) is measured while y(k|k − 1) is calculated
from the model.

Let the Single-Input Single-Output (SISO) process
under consideration be described by the following non-
linear discrete-time Nonlinear Auto Regressive with eX-
ternal input (NARX) model:

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), (7)

y(k − 1), . . . , y(k − nA)),

where f : R
nA+nB−τ+1 −→ R is a nonlinear function re-

alised by the model, and the integers τ , nA, nB define the
order of the model, τ ≤ nB. Using the prediction equation
(5) and the model (7), output predictions over the predic-
tion horizon are calculated from

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, (8)

u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyp(p)

,

y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyp(p)

) + d(k).

The predictions ŷ(k + p|k) depend on Iuf(p) =
max(min(p−τ+1, Iu), 0) future values of the control sig-
nal (i.e., decision variables of the MPC algorithm), where
Iu = nB−τ +1, Iu−Iuf(p) denotes values of the control
signal applied to the plant at previous sampling instants,
Iyp(p) = min(p − 1, nA) stands for future output predic-
tions, and nA − Iyp(p) means plant output signal values
measured at previous sampling instants. For prediction in

MPC algorithms the NARX model has to be used recur-
rently, because predictions depend on those calculated for
previous sampling instants within the prediction horizon.

Two configurations of dynamic models can be used:
the one-step ahead prediction configuration (the series-
parallel model) and the simulation configuration (the par-
allel model) (Narendra and Parthasarathy, 1990). In the
first case the current value of the model output signal is
a function of past input and output values (i.e., real val-
ues measured at previous sampling instants). In the sec-
ond case current and future output values are calculated
recurrently, without using real output measurements. The
identification process for the series-parallel approach is re-
ferred to as an equation error method, whereas for the par-
allel approach it is referred to as an output error method.

During neural network training the following Sum of
Squared Errors (SSE) performance function is minimised:

SSE =
∑

k∈data set

(y(k|k − 1) − y(k))2, (9)

where y(k|k − 1) denotes the output of the model for the
sampling instant k calculated using signals up to the sam-
pling instant k − 1 as in (7), and y(k) is the real value
of the process output variable collected during the iden-
tification experiment. If neural models are trained non-
recurrently using the rudimentary backpropagation algo-
rithm, one-step ahead predictors are obtained. In such a
case the role of the model in MPC is ignored during train-
ing.

Intuitively, one-step ahead predictors are not suited
to be used recurrently in MPC for long-range prediction
(8) since the prediction error is propagated. This is partic-
ularly important in the case of noise, model inaccuracies
and underparameterisation. Very frequently, the order of
models used in MPC is significantly lower than that of real
processes. Recurrent neural network training (Nørgaard
et al., 2000; Qin et al., 1992; Su and McAvoy, 1992), al-
though possible and used in practice, is much more com-
putationally demanding. Moreover, the obtained models
may be sensitive to noise.

3. Neural multi-modelling

In the multi-model approach one independent neural
model is used for each sampling instant within the predic-
tion horizon. In general, for p = 1, . . . , N , all submodels
can be expressed in a compact form as

y(k + p) = fp(x(k + p|k)) (10)

= fp(u(k − τ + p), . . . , u(k − nB),
y(k), . . . , y(k − nA)).

The multi-model is comprised of N neural net-
works which calculate predictions for consecutive
sampling instants within the prediction horizon.



10 M. Ławryńczuk and P. Tatjewski

Consecutive networks realise nonlinear functions
fp : R

max(p−τ+1,0)−max(τ−p,1)+nA+nB+2 −→ R.
Neural multi-model training needs finding indepen-

dent N submodels. They are trained separately by means
of the standard backpropagation algorithm yielding one-
step ahead predictors. This is possible because for pre-
diction one independent neural submodel is used for each
sampling instant within the prediction horizon and predic-
tions do not depend on previous ones. During training the
following SSE performance function is minimised:

SSE =
∑

k∈data set

(fp(k + p|k) − y(k + p))2, (11)

for all submodels (p = 1, . . . , N ), fp(k + p|k) denotes
the output of the submodel for the sampling instant k + p
calculated using signals up to the sampling instant k, and
y(k + p) is the real value of the process output variable
collected during the identification experiment.

3.1. Prediction. In the multi-model approach indepen-
dent submodels are used for each sampling instant within
the prediction horizon. Hence, the classical prediction
equation (5) in which a single model and the “DMC type”
disturbance model are used cannot be applied. Predictions
calculated from the multi-model are

ŷ(k + p|k) = y(k + p|k) + d(k + p|k). (12)

Independent disturbance estimations are

d(k + p|k) = y(k) − fp(k|k − 1), (13)

where y(k) is measured while fp(k|k − 1) is calculated
from the multi-model used for the sampling instant k:

fp(k|k − 1) = fp(u(k − τ), . . . , u(k − nB − p), (14)

y(k − p), . . . , y(k − nA − p)).

Using (10) and (12), output predictions calculated
from the multi-model are

ŷ(k + p|k) =fp(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, (15)

u(k − max(τ − p, 1)), . . . , u(k − nB)︸ ︷︷ ︸
Iup(p)

,

y(k), . . . , y(k − nA)︸ ︷︷ ︸
nA+1

)

+ d(k + p|k),

where Iuf(p) = max(p − τ + 1, 0), Iup(p) = nB −
max(τ − p, 1) + 1. Analogously as in the case of pre-
dictions (8) calculated from the classical NARX model
(7), the predictions ŷ(k + p|k) calculated by means of
the multi-model (10) depend on Iuf(p) future values of

the control signal, Iup(p) values of the control signal ap-
plied to the plant at previous sampling instants and on
nA + 1 values of the plant output signal measured at pre-
vious sampling instants. Unlike classical NARX predic-
tions, they do not depend on predictions calculated for
previous sampling instants within the prediction horizon.
As a result, the multi-model is not used recurrently and
the prediction error is not propagated. Figure 1 depicts
the structure of the neural multi-model used for prediction
in MPC.

Arguments of the multi-model are chosen in such
a way that predictions are independent of previous ones.
The predictions ŷ(k+p|k) depend only on the future con-
trol policy and historical values of process variables. In
general, arguments of the multi-model can be selected in
a different way, e.g., as

y(k + p) = fp(u(k − τ + p), . . . , u(k − nB + 1), (16)

y(k), . . . , y(k − nA + 1)),

which is described in (Ławryńczuk, 2008). In comparison
with the multi-model (10), in the above formulation the
multi-model does not take into account the signals u(k −
nB) and y(k − nA). As a result, this multi-model turns
out to be less precise and needs more hidden nodes than
the one recommended in this paper.

3.2. Neural multi-model implementation. The multi-
model is comprised of N MLP feedforward neural net-
works with one hidden layer and a linear output (Haykin,
1999). They realise the functions fp, p = 1, . . . , N , in
(10).

Outputs of the neural multi-model for the sampling
instant k + p are

y(k + p|k) =fp(x(k + p|k)) (17)

=w2,p
0 +

Kp∑

i=1

w2,p
i ϕ(zp

i (k + p|k)),

where zp
i (k + p|k) are sums of inputs of the i-th hidden

node, ϕ : R −→ R is the nonlinear transfer function (e.g.,
hyperbolic tangent), Kp is the number of hidden nodes.
Recalling the prediction of the multi-model (15), one has

zp
i (k + p|k)

= w1,p
i,0

+
Iuf(p)∑

j=1

w1,p
i,j u(k − τ + 1 − j + p|k)

+
Iup(p)∑

j=1

w1,p
i,Iuf(p)+j

u(k − max(τ − p, 1) + 1 − j)

(18)



Nonlinear predictive control based on neural multi-models 11

Fig. 1. Structure of the neural multi-model used for prediction in MPC.

+
nA+1∑

j=1

w1,p
i,Iuf (p)+Iup(p)+j

y(k + 1 − j).

Weights of networks are denoted by w1,p
i,j , i = 1, . . . , Kp,

j = 0, . . . , max(p−τ+1, 0)−max(τ−p, 1)+nA+nB+2,
and w2,p

i , i = 0, . . . , Kp, for the first and the second layer,
respectively, and p indicates the submodel, p = 1, . . . , N .

4. MPC algorithm with nonlinear prediction
and linearisation based on neural multi-
models

If for prediction in MPC a nonlinear neural model is
used without any simplifications, at each sampling in-
stant the nonlinear optimisation problem (3) has to be
solved on-line (Ławryńczuk, 2007; Tatjewski, 2007).
The difficulty of the resulting optimisation problem is
twofold. First of all, it is nonlinear, computationally
demanding, and its computational burden is high. Sec-
ondly, it may be non-convex and even multi-modal.
Hence, a number of suboptimal MPC algorithms have
been developed in which the neural model is linearised
around the current operating point and the obtained
linear approximation is next used for the optimisation
of the future control policy (El Ghoumari and Tan-
tau, 2005; Ławryńczuk, 2007; 2008; 2009a; 2009b;
Nørgaard et al., 2000; Tatjewski, 2007; Tatjewski and
Ławryńczuk, 2006). Thanks to linearisation, the fu-
ture control policy is found by means of an easily solv-
able quadratic programming problem. In this paper the
MPC algorithm with Nonlinear Prediction and Linearisa-
tion (MPC-NPL) (Ławryńczuk, 2007; Tatjewski, 2007) is
adopted to use neural multi-models.

4.1. MPC-NPL optimisation problem. In the MPC-
NPL algorithm at each sampling instant k the neural
multi-model is used on-line twice: to find local linearisa-
tion and a nonlinear free trajectory. It is assumed that the
output prediction vector ŷ(k) can be expressed as the sum
of a forced trajectory, which depends only on the future
(on future control signals), and a free trajectory y0(k),

which depends only on the past:

ŷ(k) = B(k)uN(k) + y0(k). (19)

Vectors of length N are

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T , (20)

uN(k) = [u(k|k) . . . u(k + N − 1|k)]T , (21)

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
. (22)

The matrix B(k) is calculated on-line from local lineari-
sation of the neural multi-model:

B(k) =

⎡

⎢⎢⎢⎣

b1,0(k) b1,1(k) . . . b1,N−1(k)
b2,0(k) b2,1(k) . . . b2,N−1(k)

...
...

. . .
...

bN,0(k) bN,1(k) . . . bN,N−1(k)

⎤

⎥⎥⎥⎦ ,

(23)
where the coefficients

bp,l(k) =
∂fp(x̄(k + p|k))

∂u(k + l|k)
, (24)

are calculated analytically for all p = 1, . . . , N , l =
0, . . . , N − 1, bp,l(k) = 0 for all p − τ + 1 ≤ l. The
calculation of these quantities and of the nonlinear free
trajectory depends on the model structure and is detailed
in the following subsection.

In MPC, only Nu ≤ N future control moves Δu(k)
have to be found. Using the relation

uN(k) = JΔu(k) + uk−1
N (k), (25)

where J =
[

J1
J2

]
is an N × Nu matrix,

J1 =

⎡

⎢⎢⎢⎣

1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1

⎤

⎥⎥⎥⎦ (26)

is the all ones lower triangular Nu × Nu matrix, J2 is
the all ones (N − Nu) × Nu matrix, and uk−1

N (k) =



12 M. Ławryńczuk and P. Tatjewski

[u(k − 1) . . . u(k − 1)]T is an N -dimensional vector, and
the prediction equation (19) becomes

ŷ(k) = B(k)JΔu(k) + B(k)uk−1
N (k) + y0(k). (27)

Owing the superposition principle (27), in which it
is assumed that future output predictions are linear func-
tions of future input increments Δu(k), the general non-
linear MPC optimisation problem (3) becomes the follow-
ing quadratic programming task:

min
Δu(k)

{∥∥yref(k) − B(k)JΔu(k) − B(k)uk−1
N (k)

−y0(k)
∥∥2

M
+
∥∥Δu(k)

∥∥2

Λ

}
,

subject to

umin ≤ J1Δu(k) + uk−1(k) ≤ umax,

−Δumax ≤ Δu(k) ≤ Δumax,

ymin ≤ B(k)JΔu(k) + B(k)uk−1
N (k) + y0(k)

≤ ymax,
(28)

where

yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T
, (29)

ymin(k) =
[
ymin . . . ymin

]T
, (30)

ymax(k) = [ymax . . . ymax]T (31)

are N -dimensional vectors,

umin =
[
umin . . . umin

]T
, (32)

umax = [umax . . . umax]T , (33)

Δumax = [Δumax . . . Δumax]T , (34)

uk−1(k) = [u(k − 1) . . . u(k − 1)]T (35)

are vectors of length Nu, and M = diag(μ1, . . . , μN ),
Λ = diag(λ0, . . . , λNu−1).

For simplicity of presentation, hard output con-
straints are used in (28). In practice, however, they are
likely to lead to infeasibility problems. Hence, soft output
constraints are recommended (Maciejowski, 2002; Tat-
jewski, 2007).

All things considered, at each sampling instant k of
the MPC-NPL algorithm the following steps are repeated:

1. Linearisation of the neural multi-model: obtain the
matrix B(k).

2. Find the nonlinear free trajectory y0(k) using the
neural multi-model.

3. Solve the quadratic programming problem (28) to de-
termine future control increments Δu(k).

4. Apply to the process the first element of the calcu-
lated vector Δu(k), i.e., u(k) = Δu(k|k)+u(k−1).

5. Set k := k + 1, go to Step 1.

4.2. Algorithm implementation details. Linearisa-
tion points are vectors composed of past input and output
signal values corresponding to arguments of consecutive
submodels (10):

x̄(k + p|k) = [ ū(k − 1) . . . ū(k − 1)︸ ︷︷ ︸
Iuf (p)

(36)

ū(k − max(τ − p, 1)) . . . ū(k − nB)︸ ︷︷ ︸
Iup(p)

ȳ(k) . . . ȳ(k − nA)︸ ︷︷ ︸
nA+1

]T ,

for p = 1, . . . , N . The bar symbol over the process vari-
ables denotes values measured at previous sampling in-
stants. Because future control signals are not known in
advance, ū(k+p|k) = ū(k−1) for p ≥ 0. Using a Taylor
series expansion at the points x̄(k + p|k), linear approxi-
mations of submodels, obtained at the sampling instant k,
are

y(k + p|k)
= fp(x̄(k + p|k))

+
p−1∑

l=0

bp,l(x̄(k + p|k))(u(k + l) − ū(k − 1)).

(37)

For simplicity of presentation, bp,l(k) = bp,l(x̄(k +
p|k)). Taking into account the structure of the MLP neural
multi-model given by (17) and (18), the coefficients of the
linearised submodels are

bp,l(k) =
∂fp(x̄(k + p|k))

∂u(k − l)
(38)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if p − τ + 1 ≤ l,
Kp∑

i=1

w2,p
i

dϕ(zp
i (x̄(k + p|k)))

dzp
i (x̄(k + p|k))

·w1,p
i,p−τ+1−l

if p − τ + 1 > l.

(39)

If a hyperbolic tangent is used as the nonlinear transfer
function in the hidden layer of neural networks (i.e., ϕ =
tanh), one has

dϕ(zp
i (x̄(k + p|k)))

dzp
i (x̄(k + p|k))

= 1 − tanh2(zp
i (x̄p(k + p|k))).

(40)
The nonlinear free trajectory y0(k + p|k), p =

1, . . . , N , is calculated on-line recurrently from the gen-
eral prediction equation (12) using the neural multi-model
defined by (17) and (18) and assuming no changes in the
control signal from the sampling instant k onwards:

y0(k+p|k) = w2,p
0 +

Kp∑

i=1

w2,p
i ϕ(zp,0

i (k+p|k))+d(k+p|k).

(41)



Nonlinear predictive control based on neural multi-models 13

The quantities zp,0
i (k + p|k) are determined recurrently,

in an analogous way as in (18), but assuming that u(k +
p|k) = u(k − 1) for p ≥ 0:

zp,0
i (k + p|k)

= w1,p
i,0 +

Iuf (p)∑

j=1

w1,p
i,j u(k − 1)

+
Iup(p)∑

j=1

w1,p
i,Iuf (p)+ju(k − max(τ − p, 1) + 1 − j)

+
nA+1∑

j=1

w1,p
i,Iuf (p)+Iup(p)+jy(k + 1 − j).

(42)

From (13) and (17), estimates of unmeasured disturbances
are

d(k+p|k) = y(k)−
(

w2,p
0 +

Kp∑

i=1

w2,p
i ϕ(zp

i (k|k − 1))

)
,

(43)
where, from (14) and (18),

zp
i (k|k − 1)

= w1,p
i,0

+
Iuf (p)∑

j=1

w1,p
i,j u(k − τ + 1 − j|k)

+
Iup(p)∑

j=1

w1,p
i,Iuf (p)+ju(k − max(τ − p, 1) + 1 − j − p)

+
nA+1∑

j=1

w1,p
i,Iuf (p)+Iup(p)+jy(k + 1 − j − p).

(44)

5. Simulations

5.1. Polymerisation reactor control system. The pro-
cess under consideration is a polymerisation reaction tak-
ing place in a jacketed continuous stirred tank reactor
(Doyle et al., 1995) depicted in Fig. 2. The reaction is
free-radical polymerisation of methyl methacrylate with
azo-bis-isobutyronitrile as the initiator and toluene as the
solvent. The output NAMW (Number Average Molecu-
lar Weight) [kg kmol−1] is controlled by manipulating the
inlet initiator flow rate FI [m3 h−1]. The flow rate F [m3

h−1] of the monomer is a disturbance. Properties of the
polymerisation reactor are nonlinear; it is frequently used
as a benchmark for comparing nonlinear control strategies
(Doyle et al., 1995; Ławryńczuk, 2007; Tatjewski, 2007).
The steady-state characteristic of the process is highly
nonlinear, as shown in Fig. 3. As linear models cannot ap-
proximate the behaviour of the reactor, MPC algorithms

Fig. 2. Polymerisation reactor control system structure.

based on linear models are unable to control the process
when changes in the reference trajectory are big and fast.

Under some technological assumptions (Doyle et al.,
1995), the continuous-time fundamental model of the
polymerisation reactor is comprised of four nonlinear or-
dinary differential equations:

dCm(t)
dt

= −
[
ZP exp

(−EP

RT

)
(45)

+ Zfm exp
(−Efm

RT

)]
Cm(t)P0(t)

− F (t)Cm(t)
V

+
F (t)Cmin

V
,

dCI(t)
dt

= − ZI exp
(−EI

RT

)
CI(t) (46)

− F (t)CI(t)
V

+
FI(t)CIin

V
,

dD0(t)
dt

=
[
0.5ZTc exp

(−ETc

RT

)
(47)

+ ZTd exp
(−ETd

RT

)]
P 2

0 (t)

+ Zfm exp
(−Efm

RT

)
Cm(t)P0(t)

− F (t)D0(t)
V

,

dDI(t)
dt

=Mm

[
ZP exp

(−EP

RT

)
(48)

+ Zfm exp
(−Efm

RT

)]
Cm(t)P0(t)

− F (t)DI(t)
V

,

where

P0(t) =

√√√√√√√

2fC
I (t)ZI exp

(−EI

RT

)

ZTd exp
(−ETd

RT

)
+ ZTc exp

(−ETc

RT

) ,

(49)



14 M. Ławryńczuk and P. Tatjewski

0 0.01 0.02 0.03 0.04 0.05 0.06

1.5

2

2.5

3

3.5

4

4.5

x 10
4

F
I

N
A

M
W

Fig. 3. Steady-state characteristic of the reactor.

and the algebraic output equation is

NAMW (t) =
DI(t)
D0(t)

. (50)

The initial operating conditions are FI = 0.028328
m3 h−1, F = 1 m3 h−1, NAMW = 20000 kg kmol−1,
Cm = 5.3745 kmol m−3, CI = 2.2433 · 10−1 kmol m−3,
D0 = 3.1308 ·10−3 kmol m−3, DI = 6.2616 ·10−1 kmol
m−3. Parameters of the model are given in Table 1.

5.2. Neural modelling of the polymerisation reactor.
For the identification experiment the fundamental model
(45)–(50) is used as the real process; it is simulated open-
loop in order to obtain two sets of data, namely, training
and test data sets depicted in Fig. 4. Both sets contain
2000 samples, and the sampling time is 1.8 min. The out-
put signal contains small measurement noise. During cal-
culations the system of differential equations comprising
the fundamental model is solved using the Runge-Kutta
RK45 method.

In the following part of the article, three model
classes are compared:

(a) a high-order classical NARX neural model,

(b) a low order (underparameterised) classical NARX
neural model,

(c) a low-order (underparameterised) neural multi-
model.

Classical NARX models are trained non-recurrently
(as one-step ahead predictors) and recurrently (as
multiple-step ahead predictors), whereas the multi-model
is trained only non-recurrently (recurrent training is not
necessary). All neural models are trained using the BFGS
optimisation algorithm (Bazaraa et al., 1993). During

training the SSE performance index (9) is minimised in
the case of the NARX model, while the SSE performance
index (11) is minimised in the case of the multi-model.
For each model, configuration training is repeated 10
times (the multi-start approach to nonlinear optimisation),
and weights of neural networks are initialised randomly.
The results presented next are the best ones obtained.

Since input and output process variables have differ-
ent orders of magnitude, they are scaled as u = 100(FI −
FI0), y = 0.0001(NAMW − NAMW 0), where FI0 =
0.028328, NAMW 0 = 20000 correspond to the initial
operating point. In all model types the hyperbolic tangent
transfer function is used in hidden layers.

5.2.1. High-order classical NARX neural model. In
general, the accuracy of a model is determined by its or-
der of dynamics and its approximation ability. Hence, if
the order of dynamics is sufficiently high, the approxima-
tor is precise enough and the data set used for training is
large enough, one may expect that the prediction of the
classical NARX model is close to the actual response of
the process. The following NARX neural model of order
four (i.e., τ = 1, nA = nB = 4) is considered:

y(k) = f(u(k − 1), u(k − 2), u(k − 3), u(k − 4), (51)

y(k − 1), y(k − 2), y(k − 3), y(k − 4)).

In the hidden layer, K = 10 hidden nodes are used.
The number of training epochs is 200 (to avoid overfit-
ting). The average training time is approximately 35 s and
125 s for non-recurrent and recurrent training, respectively
(AMD Athlon 3.1 GHz).

Table 2 compares the accuracy of the classical high-
order NARX neural model trained non-recurrently and re-
currently for both training and test data sets. The model
is evaluated in two modes: non-recurrently and recur-
rently (values of performance indices SSEnon-recurrent

and SSErecurrent). Naturally, the smallest value of
SSErecurrent = 0.1636 (for the training data set) is ob-
tained when the model is trained recurrently. When
the model trained non-recurrently is used recurrently,
SSErecurrent increases to 0.2866.

In the light of the future application of the obtained
high-order models in MPC, it is interesting to compare
their long range prediction accuracy. Figure 5 shows
the step-response of the process and long-range predic-
tions. The prediction horizon N = 10 is used. Pre-
dictions are calculated recurrently by the classical high-
order NARX neural model trained non-recurrently. The
manipulated variable FI changes at the sampling instant
k = 0 from 0.028328 to 0.004602, which corresponds to
changing the operating point from NAMW = 20000 to
NAMW = 40000. The step change does not belong to
the training data set. Although the neural model is trained
non-recurrently, it has very good long-range prediction



Nonlinear predictive control based on neural multi-models 15

Table 1. Parameters of the fundamental model.

Parameter Value Parameter Value

CIin 8 kmol m−3 R 8.314 kJ kmol−1 K−1

Cmin 6 kmol/m−3 T 335 K
ETc 2.9442 · 103 kJ kmol−1 ZTc 3.8223 · 1010 m3 kmol−1 h−1

ETd 2.9442 · 103 kJ kmol−1 ZTd 3.1457 · 1011 m3 kmol−1 h−1

Efm 7.4478 · 104 kJ kmol−1 Zfm 1.0067 · 1015 m3 kmol−1 h−1

EI 1.2550 · 105 kJ kmol−1 ZI 3.7920 · 1018 h−1

EP 1.8283 · 104 kJ kmol−1 ZP 1.7700 · 109 m3 kmol−1 h−1

f∗ 0.58 V 0.1 m3

Mm 100.12 kg kmol−1

1 500 1000 1500 2000
0

0.02

0.04

0.06

k

F
I

Training data set

1 500 1000 1500 2000

2

3

4

x 10
4

k

N
A

M
W

1 500 1000 1500 2000
0

0.02

0.04

0.06

k

F
I

Test data set

1 500 1000 1500 2000

2

3

4

x 10
4

k

N
A

M
W

Fig. 4. Training and test data sets.

abilities. It correctly predicts the behaviour of the process
over the whole prediction horizon. Figure 5 does not show
predictions calculated recurrently by the model trained re-
currently because they are much closer to the response of
the process (in comparison with predictions calculated by
the model trained non-recurrently).

5.2.2. Low-order classical NARX neural model. Ir-
respective of the training mode, the high-order NARX
model has good long-range prediction abilities and can be
used in MPC. In practice, however, the true order of dy-
namics is usually not known. Because, in fact, the funda-
mental model (45)–(50) consists of four differential equa-
tions, in order to precisely capture the nature of the pro-
cess, the NARX model should have at least the second
order, i.e., nA = nB = τ = 2 (Ławryńczuk, 2007).

The following low-order NARX model is considered
(τ = nB = 2, nA = 1):

y(k) = f(u(k − 2), y(k − 1)). (52)

The model is intentionally underparameterised. One can
expect that the low-order classical one-step ahead model
(trained non-recurrently) has poor prediction abilities.

In the hidden layer, K = 6 hidden nodes are used.
The number of training epochs is 200. The average train-
ing time is approximately 13 s and 27 s for non-recurrent
and recurrent training, respectively.

Table 3 compares the accuracy of the classical low-
order NARX neural model trained non-recurrently and re-
currently for both training and test data sets. The model
is evaluated in two modes: non-recurrently and recur-
rently. It is worth noting that the low-order model has
poor long-range prediction abilities in comparison with
the high-order one (Table 2) (values of the performance
index SSErecurrent are significantly bigger). Although for
the low-order model recurrent training gives better long-
range accuracy than non-recurrent training, properties of
the obtained underparameterised model are rather poor
when compared with the high-order structure.

5.2.3. Low-order neural multi-model. In order to fi-
nally show advantages of the multi-model approach (and
disadvantages of the low-order classical NARX structure),
the following multi-model (10) for N = 10 is considered:



16 M. Ławryńczuk and P. Tatjewski

Table 2. Accuracy of the classical high-order NARX neural model trained non-recurrently and recurrently; the value of the SSE
performance index actually minimised during training is given in bold.

Training data set Test data set
Training mode SSEnon-recurrent SSErecurrent SSEnon-recurrent SSErecurrent

Non-recurrent 0.2148 0.2866 0.2412 0.6378
Recurrent 0.2523 0.1636 0.2574 0.2207

Table 3. Accuracy of the classical low-order (underparameterised) NARX neural model trained non-recurrently and recurrently, the
value of the SSE performance index actually minimised during training is given in bold.

Training data set Test data set
Training mode SSEnon-recurrent SSErecurrent SSEnon-recurrent SSErecurrent

Non-recurrent 0.3671 2.7605 0.5618 7.5103
Recurrent 0.4841 1.1189 0.7805 3.0351

1 2 3 4 5 6 7 8 9 10

2

2.2

2.4

2.6

2.8

3

3.2

x 10
4

p

N
A

M
W

Fig. 5. Step-response (long-range predictions) calculated by the
classical high-order NARX neural model trained non-
recurrently (dashed line with circles) vs. the real process
(solid line with points).

y(k + 1|k) =f1(u(k − 1), u(k − 2), (53)

y(k), y(k − 1)),
...

y(k + 10|k) =f10(u(k + 8|k), . . . , u(k|k), (54)

u(k − 1), u(k − 2),
y(k), y(k − 1)).

The multi-model is intentionally underparameterised
in the same way as the low-order NARX model (52), and
it has the same order of dynamics (τ = nB = 2, nA =
1). Submodels comprising the multi-model are trained as
one-step ahead predictors (non-recurrently).

The number of hidden nodes in submodels com-

prising the multi-model is adjusted in such a way that
when trained and tested as one-step ahead predictors they
give comparable values of the SSE performance index
as the classical low-order (underparameterised) NARX
model trained non-recurrently (Table 3). Naturally, for the
multi-model the SSE index is calculated non-recurrently.
Six submodels have Kp = 3 hidden nodes (for p =
1, 6, 7, 8, 9, 10), four submodels have Kp = 4 hidden
nodes (for p = 2, 3, 4, 5). The number of training epochs
is 200. The average training time varies from 7 s (sub-
model for p = 1) to 15.5 s (submodel for p = 10).

For each sampling instant within the prediction hori-
zon, one independent submodel is used. Therefore, the
multi-model is not used recurrently in MPC. On the other
hand, the total number of parameters (weights) of the rudi-
mentary multi-model is big. In order to reduce the model
complexity, the Optimal Brain Damage (OBD) pruning
algorithm is used (LeCun et al., 1990). The accuracy
of submodels (in terms of SSE) before and after pruning
is shown in Fig. 6. The accuracy of the low-order un-
derparameterised NARX model trained non-recurrently is
marked with dashed lines (for both data sets). Pruned neu-
ral networks have good generalisation abilities although in
the case of four submodels (p = 1, 3, 4, 6) the SSE perfor-
mance index is slightly increased for the validation data
set. For the training data set the accuracy of submodels is
worse when compared with unpruned ones, but the deteri-
oration is not significant. The complexity of submodels is
reduced in the best case by 34.15% (submodel for p = 5),
in the worst case by 17.65% (submodel for p = 6). An
average complexity reduction factor is 29.66%. Figure 7
depicts the number of weights for all submodels before
and after pruning.

As both model types (i.e., the low-order NARX
model and the multi-model) are trained as one-step ahead
predictors, for the training data set, the values of the SSE
index given in Fig. 6 refer to the one-step prediction error
which is actually minimised during training. Analogously,



Nonlinear predictive control based on neural multi-models 17

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

S
S

E

Training data set

Before pruning
After pruning

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

S
S

E

Test data set

Before pruning
After pruning

Fig. 6. Accuracy of submodels p = 1, . . . , 10 before and after pruning for training (left) and test (right) data sets. The accuracy of the
low-order underparameterised NARX model trained non-recurrently is denoted by dashed lines (for both data sets).

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

45

50

p

N
w

Fig. 7. Number of weights for submodels p = 1, . . . , 10 before
(solid line) and after pruning (dashed line).

for the test data set models are also evaluated as one-step
ahead predictors.

When trained and tested as one-step ahead predictors
both the low-order NARX model and the multi-model give
comparable values of the SSE. It is an interesting question
whether or not long-range prediction abilities of the multi-
model are better than those of the NARX model. Figure 8
shows step-responses of the process and predictions. The
manipulated variable FI changes at the sampling instant
k = 0 from 0.028328 to 0.004602, analogously as in the
experiment the result of which is shown in Fig. 5. The
low-order NARX neural model is used recurrently, and it
correctly calculates only the prediction for the first sam-
pling instant of the prediction horizon (i.e., for p = 1).
The model trained recurrently has better accuracy, but pre-

1 2 3 4 5 6 7 8 9 10

2

2.5

3

3.5
x 10

4

p

N
A

M
W  

Non−recurrent
training

Recurrent
training

Fig. 8. Step-responses (long-range predictions) calculated by
the classical low-order (underparameterised) NARX
neural model trained non-recurrently or recurrently
(solid lines) and by the low-order underparameterised
neural multi-model (dashed line with circles) vs. the real
process (solid line with points).

dictions are still erroneous. As a result of underparam-
eterisation, for next sampling instants the prediction er-
ror is propagated and consecutive predictions significantly
differ from the real process. The neural multi-model is
not used recurrently, and the prediction error is not prop-
agated. In consequence, it has the ability to correctly pre-
dict the behaviour of the process over the whole prediction
horizon. Differences between the process and predictions
calculated from the multi-model are very small.

In order to further compare long-range prediction
accuracy and show the potential of using neural multi-
models for long-range prediction in MPC, the following



18 M. Ławryńczuk and P. Tatjewski

ratio is considered:

RN =
1
N

N∑

p=1

∑
k∈data set

(y(k + p|k) − y(k + p))2

∑
k∈data set

(yNARX(k + p|k) − y(k + p))2
.

(55)
The coefficient RN compares average long-range predic-
tion accuracy of the multi-model (numerator) and of the
classical NARX model (denominator); both models are
underparameterised. For the sampling instant k + p the
output of the multi-model is denoted by y(k + p|k), the
output of the classical NARX model used recurrently for
long-range prediction is denoted by yNARX(k + p|k), and
y(k + p) is the real data sample used for model training
and testing.

If RN < 1, it is clear that there is a potential for us-
ing multi-models, rather than classical NARX models in a
recurrent way in MPC. The smaller the value of RN , the
worse long-range prediction abilities of classical NARX
models, and it is more appropriate to use multi-models
in MPC. Calculated values of the ratio RN are given in
Table 4. Two cases are considered: the NARX model is
trained non-recurrently or recurrently. Unfortunately, for
both training modes the model has poor accuracy in com-
parison with the multi-model. Although the multi-model
is developed for N = 10, when evaluated, two predic-
tion horizon cases are considered: N = 5 (for which R5

is calculated) and N = 10 (for which R10 is calculated).
Because the prediction error is propagated, the longer the
prediction horizon, the worse the prediction accuracy of
the NARX model.

5.3. MPC of the polymerisation reactor. The funda-
mental model (45)–(50) is used as the real process during
simulations of MPC algorithms. The model is solved us-
ing the Runge-Kutta RK45 method. The horizons of MPC
are N = 10, Nu = 3, the weighting coefficients μp = 1,
λp = 0.2. The following constraints are imposed on the
manipulated variable: Fmin

I = 0.003, Fmax
I = 0.06. The

sampling time of MPC is the same as the sampling time
of neural models discussed in the previous subsection (1.8
min.).

In MPC two underparameterised models are used,
i.e., the low-order NARX structure and the low-order
multi-model. They have the same order of dynamics
(τ = nB = 2, nA = 1). Three MPC algorithms are
compared:

(a) the MPC algorithm with on-line Nonlinear Optimi-
sation (MPC-NO) based on the low-order underpa-
rameterised NARX neural model,

(b) the MPC-NO algorithm based on the low-order un-
derparameterised neural multi-model,

(c) the suboptimal MPC-NPL algorithm based on the
same multi-model.

As the nonlinear optimisation routine in the MPC-NO
algorithm, Sequential Quadratic Programming (SQP)
(Bazaraa et al., 1993) is used on-line. The reference tra-
jectory is

NAMW ref(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

20000 if k < 3,
25000 if 3 ≤ k ≤ 19,
30000 if 20 ≤ k ≤ 39,
35000 if 40 ≤ k ≤ 59,
40000 if 60 ≤ k ≤ 80.

(56)

5.3.1. Control accuracy. Figure 9 depicts simulation
results. In the MPC-NO algorithm based on the the low-
order NARX neural model, the control policy is calculated
on-line by means of nonlinear optimisation. Hence, it
should be potentially very precise provided that the qual-
ity of the model used for prediction is high (and assuming
that the optimisation procedure finds the optimal solution
at each sampling instant). Unfortunately, long-range pre-
diction accuracy of the low-order NARX model is poor
in comparison with the multi-model (Fig. 8, Table 4). As
a result, the MPC-NO algorithm based on the underpa-
rameterised NARX model used recurrently exhibits strong
oscillatory behaviour. In contrast to that, both MPC-NO
and MPC-NPL algorithms based on the same underpa-
rameterised multi-model are stable. Moreover, closed-
loop performance obtained in the suboptimal MPC-NPL
algorithm with quadratic programming is very similar to
that obtained in the computationally demanding MPC-NO
approach, in which a nonlinear optimisation problem has
to be solved on-line at each sampling instant.

To make it possible to compare all three examined
algorithms, the sum of squared differences between the
reference trajectory and the actual value of the controlled
variable over the whole simulation horizon,

J =
k=80∑

k=1

(NAMW ref(k) − NAMW (k))2, (57)

is calculated after completing simulations. For the MPC-
NO algorithm based on the NARX model J = 5.3449 ·
108, for the MPC-NO algorithm based on the multi-model
J = 3.9157 · 108, and for the MPC-NPL algorithm based
on the multi-model J = 3.9231 · 108.

5.3.2. Computational complexity. Computational ef-
ficiency of the MPC-NPL algorithm is twofold. First
of all, since the algorithm solves a quadratic program-
ming problem, a unique global solution to the optimisa-
tion problem (28) is found at each sampling instant. More-
over, one may expect that the computational burden of
the MPC-NPL algorithm is moderate in comparison with
the MPC-NO approach. In order to verify this claim, the
computational cost (in terms of floating point operations,
MFLOPS) of both algorithms is calculated. They both



Nonlinear predictive control based on neural multi-models 19

Table 4. Average accuracy ratios RN : the multi-model in comparison with the classical low-order (underparameterised) NARX model
trained non-recurrently or recurrently and used recurrently.

Non-recurrent training Recurrent training
Data R5 R10 R5 R10

Training set 0.4792 0.3241 0.3653 0.2902
Test set 0.3581 0.2298 0.2911 0.2271

1 20 40 60 80

0.005

0.01

0.015

0.02

0.025

k

F
I

1 20 40 60 80
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x 10
4

k

N
A

M
W

NAMWref

Fig. 9. Simulation results: the MPC-NO algorithm based on the low-order underparameterised NARX neural model (dotted line), the
MPC-NO algorithm (solid line) and the MPC-NPL algorithm (dashed line) based on the same low-order underparameterised
multi-model.

use the same neural multi-model. Next, the computational
complexity reduction factor is calculated from

F =
computational cost of MPC-NO
computational cost of MPC-NPL

. (58)

The factor F shows how many times the MPC-NPL al-
gorithm is less computationally demanding in compari-
son with the MPC-NO scheme. Table 5 shows values
of the factor F for different combinations of horizons
(N = 5, 10, Nu = 1, 2, 3, 4, 5, 10). In general, the subop-
timal MPC-NPL algorithm is many times computationally
less demanding that the MPC-NO algorithm.

5.3.3. MPC based on parsimonious multi-models.
Since in the multi-model the actual number of neural net-
works is equal to the prediction horizon, the total number
of weights can be big. To reduce the number of param-
eters, the multi-model is pruned, which results in signif-
icant reduction of model complexity, as shown in Fig. 7.
One can further reduce the number of parameters by con-
sidering only selected submodels, which corresponds to
taking into account in the MPC cost function (2) only
some differences between the reference trajectory and pre-
dictions. Good results are obtained when only five sub-
models are used. Submodels for p = 2, 4, 6, 8, 10 are
used, and the weighting matrix in the MPC optimisation

task (28) is

M = diag(0, 1, 0, 1, 0, 1, 0, 1, 0, 1). (59)

Closed-loop performance of both algorithms is similar:
for the MPC-NPL algorithm J = 3.8936 · 108, for the
MPC-NO algorithm J = 3.8534 · 108 (since the obtained
simulation results are similar to those shown in Fig. 9, they
are not given). These values are very close to those ob-
tained when the multi-model comprised of ten submodels
is used.

6. Conclusions

Because MPC algorithms are very model-based, possible
control performance is determined by the accuracy of the
dynamic model. The role of the model in MPC cannot be
ignored during model structure selection and identifica-
tion. The model has to be able to make good predictions of
future behaviour of the process over the whole prediction
horizon. If neural models are trained non-recurrently us-
ing the rudimentary backpropagation algorithm, one-step
ahead predictors are obtained. They are not suited to be
used recurrently in MPC for long range prediction since
the prediction error is propagated. This is important in the
case of noise, model inaccuracies and underparameterisa-
tion. In particular, underparameterisation is potentially a



20 M. Ławryńczuk and P. Tatjewski

Table 5. Computational complexity reduction factor F (the MPC-NO algorithm vs. the MPC-NPL algorithm based on the same neural
multi-model).

N Nu = 1 Nu = 2 Nu = 3 Nu = 4 Nu = 5 Nu = 10

5 5.83 7.49 9.04 9.81 10.27 −
10 8.69 12.83 14.67 15.19 13.56 12.21

very frequent source of prediction inaccuracies, as demon-
strated in the paper. Usually, the order of models used in
MPC is significantly lower than that of the real process, or
the proper order is even unknown.

In order to solve the problem resulting from the in-
accuracy of one-step ahead predictors in MPC, the neural
multi-model approach described in this paper can be effi-
ciently used. The multi-model predicts future behaviour
of the process over the prediction horizon without using
previous predictions. It is demonstrated that low-order
(underparameterised) neural models have poor prediction
abilities, and recurrent training does not lead to any sig-
nificant improvement. Conversely, the low-order neural
multi-model (of the same order of dynamics) has good
long-range prediction accuracy.

The multi-model is trained easily using the classical
backpropagation algorithm—no recurrent training algo-
rithms are necessary. Intuitively, it is much easier to find
independent submodels for consecutive sampling instants
within the prediction horizon, rather than to train recur-
rently a single model of comparable long-range prediction
accuracy. Although this paper describes the multi-model
which is trained off-line and next used in the MPC-NPL
algorithm, easy training is an important advantage when
the multi-model is used in adaptive MPC (in which the
model is trained on-line).

An inherent feature of the multi-model is the fact that
is has more parameters than classical NARX models of
the same order of dynamics. Hence, it may be benefi-
cial to prune submodels or take into account only some
of them. Although MLP neural networks are used in this
study, different types of networks can be considered, e.g.,
Radial Basis Functions (RBFs) (Ławryńczuk, 2009a).

In comparison with the structured neural model
(Ławryńczuk, 2009b), which is also designed with MPC
in mind, the multi-model has an important advantage. The
prediction horizon is not a parameter of the model—it
only determines the number of submodels. Hence, chang-
ing the prediction horizon does not require retraining all
submodels trained so far. When the horizon is lengthened,
only lacking submodels must be trained. Conversely,
when the horizon is shortened, no new models are nec-
essary; some existing submodels are simply not used in
MPC. The structured model is not so flexible—the pre-
diction horizon is a parameter of the model and changing
the horizon entails training the model.

The presented suboptimal MPC-NPL algorithm cal-

culates on-line a linear approximation of the multi-model.
Consequently, the future control policy is calculated by
means of a numerically reliable quadratic programming
procedure; the necessity of repeating full nonlinear opti-
misation at each sampling instant is avoided. In practice,
the algorithm shows performance comparable to that ob-
tained in MPC with nonlinear optimisation.

Acknowledgment

The work presented in this paper was supported by the
Polish national budget funds for science for the years
2009–2011 in the framework of a research project.

References

Åkesson, B. M. and Toivonen, H. T. (2006). A neural net-
work model predictive controller, Journal of Process Con-
trol 16(3): 937–946.

Alexandridis, A. and Sarimveis, H. (2005). Nonlinear adaptive
model predictive control based on self-correcting neural
network models, AIChE Journal 51(9): 2495–2506.

Bazaraa, M. S., Sherali, J. and Shetty, K. (1993). Nonlinear Pro-
gramming: Theory and Algorithms, John Wiley & Sons,
New York, NY.

da Cruz Meleiro, L. A., José, F., Zuben, V. and Filho, R. M.
(2009). Constructive learning neural network applied to
identification and control of a fuel-ethanol fermentation
process, Engineering Applications of Artificial Intelligence
22(2): 201–215.

Doyle, F. J., Ogunnaike, B. A. and Pearson, R. K. (1995). Non-
linear model-based control using second-order Volterra
models, Automatica 31(5): 697–714.

El Ghoumari, M. Y. and Tantau, H. J. (2005). Non-linear con-
strained MPC: Real-time implementation of greenhouse air
temperature control, Computers and Electronics in Agri-
culture 49(3): 345–356.

Greco, C., Menga, G., Mosca, E. and Zappa, G. (1984).
Performance improvement of self tuning controllers by
multistep horizons: The MUSMAR approach, Automatica
20(5): 681–700.

Haykin, S. (1999). Neural Networks. A Comprehensive Founda-
tion, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.

Henson, M. A. (1998). Nonlinear model predictive control: Cur-
rent status and future directions, Computers and Chemical
Engineering 23(2): 187–202.



Nonlinear predictive control based on neural multi-models 21

Ławryńczuk, M. (2007). A family of model predictive control
algorithms with artificial neural networks, International
Journal of Applied Mathematics and Computer Science
17(2): 217–232, DOI: 10.2478/v10006-007-0020-5.

Ławryńczuk, M. (2008). Suboptimal nonlinear predictive
control with neural multi-models, in L. Rutkowski,
R. Tadeusiewicz, L. A. Zadeh and J. Zurada (Eds), The
9th International Conference on Artificial Intelligence and
Soft Computing, ICAISC 2008, Zakopane, Poland (Com-
putational Intelligence: Methods and Applications), Exit,
Warsaw, pp. 45–56.

Ławryńczuk, M. (2009a). Computationally efficient nonlinear
predictive control based on RBF neural multi-models, in
M. Kolehmainen, P. Toivanen and B. Beliczyński (Eds),
The Ninth International Conference on Adaptive and Nat-
ural Computing Algorithms, ICANNGA 2009, Kuopio, Fin-
land, Lecture Notes in Computer Science, Vol. 5495,
Springer, Heidelberg, pp. 89–98.

Ławryńczuk, M. (2009b). Efficient nonlinear predictive
control based on structured neural models, International
Journal of Applied Mathematics and Computer Science
19(2): 233–246, DOI: 10.2478/v10006-009-0019-1.

LeCun, Y., Denker, J. and Solla, S. (1990). Optimal brain dam-
age, in D. Touretzky (Ed.), Advances of NIPS2, Morgan
Kaufmann, San Mateo, CA, pp. 598–605.

Liu, D., Shah, S. L. and Fisher, D. G. (1999). Multiple prediction
models for long range predictive control, Proceedings of
the IFAC World Congress, Beijing, China, (on CD–ROM).

Lu, C. H. and Tsai, C. C. (2008). Adaptive predictive control
with recurrent neural network for industrial processes: An
application to temperature control of a variable-frequency
oil-cooling machine, IEEE Transactions on Industrial
Electronics 55(3): 1366–1375.

Luyben, W. L. (1990). Process Modelling, Simulation and Con-
trol for Chemical Engineers, McGraw Hill, New York, NY.

Maciejowski, J. M. (2002). Predictive Control with Constraints,
Prentice Hall, Harlow.

Morari, M. and Lee, J. (1999). Model predictive control: Past,
present and future, Computers and Chemical Engineering
23(4): 667–682.

Narendra, K. S. and Parthasarathy, K. (1990). Identification and
control of dynamical systems using neural networks, IEEE
Transactions on Neural Networks 1(1): 4–26.

Nørgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K.
(2000). Neural Networks for Modelling and Control of Dy-
namic Systems, Springer, London.

Parisini, T., Sanguineti, M. and Zoppoli, R. (1998). Nonlinear
stabilization by receding-horizon neural regulators, Inter-
national Journal of Control 70(3): 341–362.

Pearson, R. K. (2003). Selecting nonlinear model structures for
computer control, Journal of Process Control 13(1): 1–26.

Peng, H., Yang, Z. J., Gui, W., Wu, M., Shioya, H. and Nakano,
K. (2007). Nonlinear system modeling and robust predic-
tive control based on RBF-ARX model, Engineering Ap-
plications of Artificial Intelligence 20(1): 1–9.

Qin, S. J. and Badgwell, T. (2003). A survey of industrial model
predictive control technology, Control Engineering Prac-
tice 11(7): 733–764.

Qin, S. Z., Su, H. T. and McAvoy, T. J. (1992). Compari-
son of four neural net learning methods for dynamic sys-
tem identification, IEEE Transactions on Neural Networks
3(1): 122–130.

Rossiter, J. A. and Kouvaritakis, B. (2001). Modelling and im-
plicit modelling for predictive control, International Jour-
nal of Control 74(11): 1085–1095.

Su, H. T. and McAvoy, T. J. (1992). Long-term predictions of
chemical processes using recurrent neural networks: A par-
allel training approach, Industrial and Engineering Chem-
istry Research 31(5): 1338–1352.

Tatjewski, P. (2007). Advanced Control of Industrial Processes,
Structures and Algorithms, Springer, London.

Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing
in model-based predictive control, International Journal of
Applied Mathematics and Computer Science 16(1): 101–
120.

Temeng, K. O., Schnelle, P. D. and McAvoy, T. J. (1995). Model
predictive control of an industrial packed bed reactor using
neural networks, Journal of Process Control 5(1): 19–27.

Maciej Ławryńczuk was born in Warsaw,
Poland, in 1972. He obtained his M.Sc. and
Ph.D. degrees in automatic control from the
Warsaw University of Technology, Poland, in
1998 and 2003, respectively. Currently, he is
an assistant professor at the Institute of Con-
trol and Computation Engineering of the War-
saw University of Technology. His research
interests include the application of neural net-
works in process modelling, control (particu-

larly model predictive control) and set-point optimisation.

Piotr Tatjewski was born in Warsaw, Poland,
in 1949. He received his M.Sc. (in electronic
engineering), Ph.D. and D.Sc. degrees (in au-
tomatic control) from the Warsaw University of
Technology in 1972, 1976 and 1988, respec-
tively. Since 1972 he has been with the In-
stitute of Control and Computation Engineer-
ing of the Warsaw University of Technology
(1996–2008: the director of the Institute, 1993:
a professor, 2006: a full professor). He is the

author or a co-author of more than 30 journal papers, five books, in-
cluding the recent Advanced Control of Industrial Processes. Structures
and Algorithms (Springer, 2007) and Iterative Algorithms of Multilayer
Optimizing Control (Imperial College Press/World Scientific, 2005, co-
authored by M. A. Brdys). He is a member of the Committee on Au-
tomatic Control and Robotics of the Polish Academy of Sciences, and
the EUCA (European Union Control Association). His current interests
involve multilayer control, predictive control of linear and nonlinear pro-
cesses, set-point optimisation, decomposition techniques in optimisation
and control, and soft computing methods.

Received: 16 January 2009
Revised: 15 July 2009


	Introduction
	MPC problem formulation
	Prediction using classical NARX models

	Neural multi-modelling
	Prediction
	Neural multi-model implementation

	MPC algorithm with nonlinear prediction and linearisation based on neural multi-models
	MPC-NPL optimisation problem
	Algorithm implementation details

	Simulations
	Polymerisation reactor control system
	Neural modelling of the polymerisation reactor
	High-order classical NARX neural model
	Low-order classical NARX neural model
	Low-order neural multi-model

	MPC of the polymerisation reactor
	Control accuracy
	Computational complexity
	MPC based on parsimonious multi-models


	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




