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Two known approaches to complexity selection are taken under consideration: n-fold cross-validation and structural risk
minimization. Obviously, in either approach, a discrepancy between the indicated optimal complexity (indicated as the
minimum of a generalization error estimate or a bound) and the genuine minimum of unknown true risks is possible. In
the paper, this problem is posed in a novel quantitative way. We state and prove theorems demonstrating how one can
calculate pessimistic probabilities of discrepancy between these minima for given for given conditions of an experiment.
The probabilities are calculated in terms of all relevant constants: the sample size, the number of cross-validation folds, the
capacity of the set of approximating functions and bounds on this set. We report experiments carried out to validate the
results.
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arning theory, generalization bounds, structural risk minimization.

1. Introduction and notation

Practitioners typically apply an n-fold cross-validation
procedure to select the best complexity for a model, gi-
ven a data set of a certain size (Hjorth, 1994; Efron and
Tibshirani, 1993). Obviously, it is a time-consuming pro-
cedure. Sometimes, for sufficiently large problems, it may
take days of computations to accomplish the task.

On the other hand, there is the structural risk minimi-
zation approach proposed by Vapnik as a part of his stati-
stical learning theory (Vapnik 1995; 1998; 2006, Bousqu-
et et al., 2004). The approach is based on probabilistic bo-
unds on the generalization of learning machines. The key
mathematical tools applied to derive the bounds in the-
ir additive versions are Chernoff and Hoeffding inequali-
ties1 (Vapnik, 1998; Cherkassky and Mulier, 1998; Hel-
lman and Raviv, 1970; Schmidt et al., 1995). To select
the best complexity for a model, one iterates over suc-
cessive complexities and looks at the minimum point of
bounds on generalization errors, instead of looking at es-

1Chernoff inequality is P
(|νI − p| ≥ ε

) ≤ 2 exp(−2ε2I), Hoef-
fding inequality is P

(|XI −EX| ≥ ε
) ≤ 2 exp(−2ε2I/(B2 −A2)),

meaning respectively that observed frequencies on a sample of size I co-
nverge to their true probabilities as I grows large. Analogically, the mean
of a random variable (bounded by A and B) converges to its expected
value. It is in-probability-convergence and its rate is exponential.

timates of these errors via cross-validation. Since the bo-
und is calculated only once for a fixed complexity, the ap-
proach is O(n) times faster than cross-validation. Yet, if
the data set at our disposal is small2, the minimum po-
int indicated via SRM is usually underestimated, since a
summand in the bound related to model complexity—the
capacity of the set of functions—is strongly pessimistic
(Vapnik, 1998; Anthony and Shawe-Taylor, 1993; Krzy-
żak et al., 2000; Shawe-Taylor et al., 1996).

Although the name SRM tells it explicitly, clearly in
both approaches—cross-validation and SRM—one itera-
tes over the so-called structure, i.e., a sequence of nested
sets of approximating functions, which constitutes an in-
creasing complexity.

We remark that in both approaches the modeler is
uncertain whether the complexity he/she chose as the po-
int with the minimum generalization error estimate or bo-
und is truly the minimum point of unknown true risks and
therefore the genuine optimal complexity. An example of
such a possible discrepancy between these three minima
is shown in Fig. 1.

In the paper we state and prove theorems asserting
how one can calculate probabilities of discrepancy betwe-

2Vapnik proposes to call a sample small if the ratio of its size to the
Vapnik–Chervonenkis dimension is less than 20.
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Fig. 1. Example illustration of the discrepancy between the minima k∗ indicated by cross-validation, SRM (Vapnik bound) and true
risk. On the horizontal axis, indices of complexities are shown k ∈ {1, 2, . . . , 11} (and numbers of terms in functions corre-
sponding to them). On the vertical axis, the values of risks are shown: empirical risks Remp, true risks R, cross-validation result
C, Vapnik bounds V .

en minima of (a) cross-validation results, (b) Vapnik bo-
unds, (c) true risks. We remark that while the values of (a)
and (b) can be known (measured, calculated), the values
of (c) are in practice unknown. In this sense, probabilities
are interesting, because they assess discrepancy between
something known and something that cannot be known.

The probabilities are calculated in terms of all re-
levant constants, such as the sample size, the number of
cross-validation folds, the capacity of the set of approxi-
mating functions and bounds of this set.

According to the author’s knowledge, this paper po-
ses an original problem. Among works related to statisti-
cal learning and SRM we have not come across publi-
cations where the problem of calculating the probabili-
ties of discrepancy between the above-mentioned mini-
ma was posed or taken up quantitatively. Latest works
on the subject of generalization in machine learning fol-
low rather different research directions like ε-covering
numbers and fat-shattering dimension (Zhang, 2002; Bar-
tlett et al., 1997), regularization techniques (Hasterberg
et al., 2008; Ng, 2004), or sample complexity (Bartlett,
1998; Bartlett and Tewari, 2007).

In the paper we focus on the regression estimation
learning task, nevertheless the theorems and results can
be broadened without difficulty also onto classification
(pattern-recognition).

1.1. Notation related to statistical learning theory.
We use a notation similar to Vapnik’s. We denote the fi-

nite set of samples as
{
(x1, y1), (x2, y2), . . . , (xI , yI)

}
,

or, more briefly, by encapsulating pairs as

{z1, z2, . . . , zI},
where xi ∈ R

d are input points and yi ∈ R are output
values corresponding to them3.

We denote the set of approximating functions (mo-
dels) by

{f(x, ω)}ω∈Ω,

where Ω is the domain of parameters of this set of func-
tions, and a fixed ω can be regarded as an index of a spe-
cific function in the set.

The risk functional R : {f(x, ω)}ω∈Ω → R is defi-
ned as

R(ω) =
∫

x∈X

∫

y∈Y

L
(
f(x, ω), y

)
p(x, y)
︸ ︷︷ ︸

p(x)p(y|x)

dy dx,

(1)
where p(x) is a probability density of input x, p(y|x) is
a conditional density of system/phenomenon outputs y gi-
ven a fixed x. p(x, y) = p(x)p(y|x) is the joint density for
pairs (x, y). In practice, p(x, y) is unknown but fixed, and
hence we assume the pairs in the sample {z1, z2, . . . , zI}
to be i.i.d.4 (Bousquet et al., 2004; Cherkassky and Mu-
lier, 1998; Devroye et al., 1996; Vapnik, 1998).

3Regression estimation learning task.
4Independent, identically distributed.
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L is the so-called loss function which measures the
discrepancy between the output y and the model f . For
regression estimation, L is usually chosen as the distance
in L2 metric:

L
(
f(x, ω), y

)
=
(
f(x, ω) − y

)2
, (2)

and then the risk functional becomes5

R(ω) =
∫

x∈X

∫

y∈Y

(
f(x, ω) − y

)2
p(x, y) dy dx. (4)

By ω0 we denote the index of the best function
f(x, ω0) in the set, such that

R(ω0) = inf
ω∈Ω

R(ω). (5)

Since only a finite set of samples {z1, . . . , zI} is at
our disposal, we cannot count on actually finding the best
function f(x, ω0). In fact, we look for its estimate with
respect to the finite set of samples. We define the empirical
risk:

Remp(ω) =
1
I

I∑

i=1

L(yi, f(xi, ω)), (6)

and by ωI we denote the index of the function f(x, ωI)
such that

Remp(ωI) = inf
ω∈Ω

Remp(ω) (7)

(empirical risk minimization principle) (Vapnik and Che-
rvonenkis, 1968; Vapnik and Chervonenkis, 1989; Cher-
kassky and Mulier, 1998).

For notational simplicity and further discussion, we
introduce equivalent replacements:

(x, y) = z,

L
(
f(x, ω), y

)
= Q

(
z, ω).

In other words, instead of considering the set of appro-
ximating functions6 {f(x, ω)}ω∈Ω, we equivalently con-
sider the set of error functions {Q(z, ω)}ω∈Ω. It is a 1:1
correspondence7. Now, we write the true risk as

R(ω) =
∫

z∈X×Y

Q(z, ω) p(z)
︸︷︷︸
p(x,y)

dz

=
∫

Z

Q(z, ω) dF (z), (8)

5For the classification learning task, L is defined as an indicator func-
tion:

L
(
f(x, ω), y

)
=

{
0, for y = f(x, ω),

1, for y �= f(x, ω),
(3)

and then R(ω) =
∫
x∈X

∑
y∈Y L

(
f(x, ω), y

)
p(x)P (y|x) dx.

6 In the sense of all learning tasks.
7Q is identical with L in the sense of their values. They differ only

in the formal definition of their domains. L acts on f(x, ω) and y and
maps them to error values, whereas Q acts directly on z and ω and maps
them to error values.

and the empirical risk as

Remp(ω) =
1
I

I∑

i=1

Q(zi, ω)). (9)

1.2. Notation related to cross-validation. In the pa-
per, we consider the non-stratified variant of the n-fold
cross-validation procedure (Kohavi, 1995). In each sin-
gle fold (iteration), we split the data set into two disjoint
subsets—a training set and a testing set, but among folds
we do not care that training sets themselves are disjoint
pairwise. In other words, folds are independent. Such an
approach is somewhere in-between the classical n-fold
cross-validation and bootstrapping (Efron and Tibshira-
ni, 1993). In the classical cross-validation, all

(
n
2

)
pairs of

training sets are mutually disjoint (and so are testing sets),
whereas in bootstrapping, instead of repeatedly analyzing
subsets of data, one repeatedly analyzes data subsamples
(with replacement). For more information, see also the
works of Hjorth (1994), Weiss and Kulikowski (1991) and
Fu et al.(2005).

We introduce the following notation: I ′ and I ′′ stand
for the sizes of training and testing sets

I ′ =
n − 1

n
I,

I ′′ =
1
n

I,

respectively. Without loss of generality for further the-
orems and proofs, let I be divisible by n, so that I ′ and
I ′′ are integers.

In a single fold, let

{z′1, z′2, . . . , z′I′},
{z′′1 , z′′2 , . . . , z′′I′′}

represent respectively the training set and the testing
set, taken as a random split of the whole data set
{z1, z2, . . . , zI}. Similarly, empirical risks calculated as
follows:

R′
emp(ω) =

1
I ′

I′
∑

i=1

Q(z′i, ω), (10)

R′′
emp(ω) =

1
I ′′

I′′
∑

i=1

Q(z′′i , ω) (11)

represent respectively the training error and the testing er-
ror, calculated for some function ω. We shall also call the-
se errors empirical training and testing risks.

When the context of discussion is constrained to a
single fold, by ωI′ we define the function that minimizes
the empirical training risk:

R′
emp(ωI′) = inf

ω∈Ω
R′

emp(ω). (12)
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When we need to broaden the context onto all folds,
j = 1, 2, . . . , n, we shall write ωI′,j to denote the func-
tion that minimizes the empirical training risk in the j-th
fold. Therefore, the final cross-validation result—an esti-
mate of the generalization error—is the mean of empirical
testing risks R′′

emp using functions ωI′,j :

C =
1
n

n∑

j=1

R′′
emp(ωI′,j). (13)

1.3. Notation related to iterating over the structure.
By a structure, a sequence of nested subsets

S1 ⊂ S2 ⊂ · · · ⊂ SK

is meant, where for each position k ∈ {1, 2, . . . , K} we
have

Sk =
{
Q(z, ωk)

}
ωk∈Ωk

, 0 ≤ Q(z, ωk) ≤ Bk

(a set of real-valued bounded error functions).
When the context of discussion is constrained to a

single position k in the structure, we will stick to shorter
notation for particular notions/objects such as, e.g., ω, ωI ,
C, B, whereas when we need to broaden the context onto
all positions k ∈ {1, 2, . . . , K}, we shall write respective-
ly ωk, ωk,I , Ck, Bk to denote objects that come from the
k-th position.

When the context of discussion requires to take in-
to account both cross-validation and the position in the
structure, we will write in particular ωk,I′,j to denote the
function that comes from the set Sk, minimizes the empi-
rical risk on a training set of size I ′, and this happens in
the j-th fold of cross-validation.

1.4. Other notation details. In the paper we shall use
the ‘∼’ sign with two possible meanings: (1) to denote
the fact that a random variable has a certain probability
distribution, e.g., X ∼ N(μ, σ) should be read as “X is a
random variable drawn from the normal distribution with
mean μ and standard deviation σ”; (2) to indicate that a
random variable is similar to or asymptotic with another
random variable; in that case we shall skip parentheses
with mean and variance, writing solely, e.g., X ∼ Y .

In the paper we will use N(μ, σ) as a common no-
tation for a normal distribution, but in other contexts we
shall write N or Nk to represent the finite capacity of
a set of functions for the k-th position in a structure, so
a completely different notion. Recognizing the right me-
aning should be easy given the context and the presence
or lack of parentheses after N .

2. Bounds on generalization by Vapnik

We remind some of Vapnik’s results in brief.

2.1. Finite sets of functions. Let us start with the sim-
plest case of a finite set with N elements being real-valued
bounded functions. Vapnik (1995; 1998) shows that, with
probability at least 1− η, 0 < η < 1, the following bound
on the true risk is satisfied:

∫

Z

Q(z, ωI)dF (z)
︸ ︷︷ ︸

R(ωI )

≤ 1
I

I∑

i=1

Q(zi, ωI)

︸ ︷︷ ︸
Remp(ωI)

+B

√
ln N − ln η

2I
. (14)

The argument is the following:

P
(
sup
ω∈Ω

R(ω) − Remp(ω) ≥ ε
)

≤
∑

ω∈Ω

P
(
R(ω) − Remp(ω) ≥ ε

)

≤ N · exp
(
− 2ε2I

B2

)
. (15)

The last inequality is true, since for each term in the sum,
the Hoeffding inequality is satisfied. By substituting the
right-hand-side by a small probability η and solving for ε,
one obtains the bound

R(ω) − Remp(ω) ≤ B

√
ln N − ln η

2I
,

which holds true with probability at least 1 − η simulta-
neously for all functions in the set, since it holds for the
worst case. Hence, in particular, it holds true for the func-
tion ωI and one gets the bound (14).

For the theorems to follow, we will denote by V the
right-hand side in the Vapnik bound:

V = Remp(ωI) + B

√
ln N − ln η

2I
. (16)

We remark that, for regression estimation, the bound (14)
can be in practice tightened by using an estimate B̂ in pla-
ce of the most pessimistic B. B̂ can be found, e.g., by
performing just one fold of cross-validation, instead of n
folds, and bounding it by the mean error on the testing set
plus a square root implied by the Hoeffding inequality:

B̂ ≤ R′′
emp(ω

′
I) + B

√
− ln ηB

2I ′′
, (17)

where ηB is an imposed small probability that (17) is not
true. The reasoning behind this remark is that in practice
typical learning algorithms, in the process of ERM, rarely
produce functions f(x, ωI) having maximal possible er-
rors within the given set of functions. Therefore, we can
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insert the right-hand side of (17) into (14) in place of B
and tighten the bound. If this is done, however, the pro-
babilities for inequalities must be adjusted and become
1 − η − ηB , rather than 1 − η.8

2.2. Infinite sets of functions. The simplest case with
a finite number of functions in the set was generalized by
Vapnik (1995; 1998) onto infinite sets with a continuum of
elements by introducing several notions of capacity for the
set of functions: entropy, annealed entropy, growth func-
tion, Vapnik–Chervonenkis dimension.

Simply speaking, one should think what replacement
of ln N can be made in the bound when making extension
onto infinite sets. It is good to look at an infinite set of
functions as an equivalent to a certain finite set of func-
tions, in such a sense that from a continuum of functions
we pick only a finite number of functions which matter,
i.e., cause a relevant change in the risk.

First of all, it is convenient to start from the clas-
sification task and therefore sets of indicator error func-
tions Q(z, ω) ∈ {0, 1}. Vapnik defines NΩ(z1, . . . , zI)
as the number of all possible dichotomies9 that can be
achieved on a fixed sample {z1, . . . , zI} using functions
from {Q(z, ω)}ω∈Ω. Obviously, NΩ(z1, . . . , zI) ≤ 2I .
Then, if we relax (unfix) the sample but it remains of size
I and drawn from p(z), we can think, for example, of the
expected value of ln NΩ. Vapnik introduces the following
notions of capacity:

1. expected value of ln NΩ—Vapnik-Chervonenkis en-
tropy:

HΩ(I) =
∫

z1∈Z

· · ·
∫

zI∈Z

ln NΩ(z1, . . . , zI)

p(z1) · · · p(zI) dz1 · · · dzI ;

2. ln of expected value of NΩ—annealed entropy:

HΩ
ann(I) = ln

∫

z1∈Z

· · ·
∫

zI∈Z

NΩ(z1, . . . , zI)

p(z1) · · · p(zI) dz1 · · ·dzI ;

3. ln of supremum of NΩ—growth function:

GΩ(I) = ln sup
z1,...,zI

NΩ(z1, . . . , zI).

8When joining probabilistic inequalities holding true with 1−η each,
the minimum probability with which both hold true simultaneously must
be 1− 2η, rather than (1− η)2 (probabilistic independence case) due to
possible correlations between them. It can be also viewed as a consequ-
ence of Bernoulli’s inequality.

9For a fixed ω∗, the sequence
(
Q(z1, ω∗), . . . , Q(zI , ω∗)

)
is a bi-

nary sequence representing correct and incorrect classifications on the
given sample. With ω unfixed, i.e. going over all the possibilities from Ω,
we obtain different sequences

(
Q(z1, ω), Q(z2, ω), . . . , Q(zI , ω)

)
.

The number of distinct sequences of this type is NΩ(z1, . . . , zI ).

Vapnik (1998) proved that

GΩ(I) =

{
= ln 2I for I ≤ h,

≤ ln
∑h

k=0

(
I
k

)
for I > h,

(18)

where h is the Vapnik–Chervonenkis dimension.
The VC dimension as the notion of capacity is practi-

cally useful because it is distribution-free—it does not de-
pend on the unknown p(z). Furthermore, Vapnik (1998)
showed that

HΩ(I)
(Jensen)
≤ HΩ

ann(I) ≤ GΩ(I)

≤ ln
h∑

k=0

(
I

k

)
≤ ln

(eI

h

)h

= h(1 + ln
I

h
).

(19)

Hence the right-hand side of (19) can be suitably inserted
in the bounds to replace ln N .

We mention that the remaining part of generalization
from infinite sets of indicator functions (classification) on-
to infinite sets of real-valued functions (regression estima-
tion) can be found in the work of Vapnik (1998) and is ba-
sed on the notions of a minimal finite ε-net, a set of clas-
sifiers for a fixed real-valued f and a complete set of clas-
sifiers for Ω. Still, the notion of the Vapnik-Chervonenkis
dimension remains essentially the same.

It is also worth mentioning that the concept of the
minimal finite ε-net is equivalent to the concept of the
ε-covering number, which was studied by Bartlett et al.
(1997) and Zhang (2002).

3. Scenario I: Cross-validation and
true risks

In this section we consider the following scenario: We ite-
rate over the structure S1 ⊂ S2 ⊂ · · · ⊂ SK and for
each its subset Sk we perform n-fold non-stratified cross-
validation. We obtain a result Ck. We remind that Ck gi-
ves us an estimate of the mean of unknown true risks of
n functions chosen by ERM in particular folds, using in
each a training set of size n−1

n I:

Ck =
1
n

n∑

j=1

R(ωk,I′,j). (20)

All those n functions can be distinct, but sometimes they
can be repeated. This depends on whether we work re-
spectively with an infinite or a finite set of functions, and
also on the random split into training and testing subsets
(remember that the cross-validation is non-stratified10).

10If the data points are distinct, the probability that exactly the same
two training sets occur in two folds is 1/

( I
I′
)
. But after n folds, we can

expect the number of non-distinct pairs of training sets to be
(n
2

)
/
( I
I′
)
,

which can be a significant number.
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However, this should not depend on the algorithm of the
learning machine, since, to satisfy the definition of ERM,
the algorithm should always provide us with the best func-
tion which minimizes the empirical risk (error on the tra-
ining set).

When the procedure is finished for the whole struc-
ture, we have a sequence of results

C1, C2, . . . , CK ,

and an indication that the optimal complexity is at the po-
int k∗, such that

Ck∗ = min
k∈{1,...,K}

Ck. (21)

Now we can use the whole data set of size I , not just
n−1

n I as in folds, and finally once again apply the ERM
principle to choose the best function f(x, ωk∗,I) as our
final model.

We pose the following two important questions:

1. What is the probability that the point k∗, indicated
via cross-validation, is truly the minimum point of all
unknown true risks R(ωk,I)?

2. With what probability does the true minimum of all
unknown true risks R(ωk,I) fall into the neighbour-
hood of point k∗, indicated via cross-validation, with
a side Δ?

In other words, we want to know something about the cre-
dibility of our result k∗ as being supposedly the point of
optimal complexity, or at least we want to know how much
we could have missed about it.

We define the notion of neighbourhood for our pur-
poses.

Definition 1. The neighbourhood U of point k∗ with a
side Δ is

U(k∗, Δ) = {k : |k − k∗| ≤ Δ}. (22)

The complement of the neighbourhood is

Ū(k∗, Δ) = {k : |k − k∗| > Δ}. (23)

We now state two theorems which answer the posed
questions in such a way that they give minimal (pessimi-
stic) values of the probabilities wanted.

Theorem 1. Let S1 ⊂ S2 ⊂ · · · ⊂ SK be a structure of
nested sets of real-valued bounded functions:

Sk =
{
Q(z, ωk)

}
ωk∈Ωk

, 0 ≤ Q(z, ωk) ≤ Bk.

Let each element Sk of the structure have a finite capacity
Nk, i.e., a finite number of functions in the case of finite
sets in the structure or a finite Vapnik–Chervonenkis di-
mension in the case of infinite sets. Let C1, C2, . . . , CK be

a sequence of results from an n-fold non-stratified cross-
validation procedure performed for this structure. Suppo-
se the minimum of cross-validation result is reached at the
point k∗:

Ck∗ = min
k∈{1,...,K}

Ck.

Then the minimal probability that the point k∗, indi-
cated via cross-validation, is truly the minimum point of
unknown true risks R(ωk,I) and can be calculated as fol-
lows:

P
(
R(ωk∗,I) = min

k∈{1,...,K}
R(ωk,I)

)

=
∫ ∞

−∞

( ∏

k∈{1,...,K}
k �=k∗

∫ ∞

rk∗
pk(rk) drk

)
pk∗(rk∗) drk∗ ,

(24)

where pk are normal probability densities:

pk(r)

=
1

1√
n

√
σk1

2 + σk2
2
√

2π
exp

(

− (r − Ck)2
2
n (σk1

2 + σk2
2)

)

(25)

with the constants

σk1 =
Bk

√
n

a1− η
2

√
− ln η

2

2I
,

σk2 =
Bk

a1− η
2

(√
n

n − 1

√
− ln η

6

2I

+
(√ n

n − 1
+ 1
)√ ln Nk − ln η

6

2I

)
. (26)

a1− η
2

denotes a quantile of order 1 − η
2 from N(0, 1) for

any small η > 0. Normal distributions are approximations
of unknown true risks distributions with the uniform11 er-

ror of order O
((

1 + 1√
n−1

+
√

n
)

1√
I

)
.

In the next theorem we state only the thesis, as the
assumptions are the same as in Theorem 1.

Theorem 2. The minimal probability that the true mini-
mum of unknown true risks R(ωk,I) falls into the neigh-
bourhood U(k∗, Δ) of the point k∗, indicated via cross-
validation, can be calculated as follows:

P
(
arg min

k∈{1,...,K}
R(ωk,I) ∈ U(k∗, Δ)

)

=
∑

k∈U(k∗ ,Δ)

∫ ∞

−∞

( ∏

l∈{1,...,K}
l �=k

∫ ∞

rk

pl(rl) drl

)

· pk(rk) drk, (27)

11In the sense of the supremum of errors for the distribution cumula-
tive function taken over all r. Details are given in Appendix B.
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where pl, pk are normal probability densities de-
fined as in (25) with the uniform error of order

O
((

1 + 1√
n−1

+
√

n
)

1√
I

)
.

In theorems, the inner expression under the integral
of type

∫∞
rk

pl(rl) drl could also be written down, for
example, as P (rk < R(ωl,I)), denoting the probability
that the value of R(ωl,I) is greater than a treshold rk—the
outer integral variable.

The proof of Theorems 1 and 2 will be carried out
firstly by proving two lemmas which justify the form of
densities pk, and secondly by showing the right techni-
que to calculate the final probabilities on the basis of these
densities. These two parts will conclude the proof.

In the lemmas (and corollaries), we apply the cen-
tral limit theorem in several places and we approximate
a certain unknown distribution by a normal distribution.
With respect to the sample size I and the number of cross-
validation folds n, the order of the approximation uniform

error is O
((

1 + 1√
n−1

+
√

n
)

1√
I

)
. We give more deta-

ils about the accuracy of CLT normal approximations in
Appendix B on the basis of the Berry–Esséen theorem.

Additionally we shall say that the approximation is
pessimistic. First of all, this means that both distribu-
tions are close to each other in the sense of some me-
tric (i.e., their density functions and cumulative densities
are close), but more importantly this means that the ap-
proximating normal distribution is of greater uncertainty
than the approximated distribution. More formally, given
0 < η < 1 and two close distributions A∗, A with densi-
ties pA∗ , pA, we shall say that A∗ is pessimistically appro-
ximated by A if and only if for all quantiles a1− η0

2
where

η0 ≤ η, taken from A, the condition

∫ a1− η0
2

−a1− η0
2

pA∗(x) dx ≥
∫ a1− η0

2

−a1− η0
2

pA(x) dx (28)

is satisfied.
The notion ‘minimal probability’ used in both the-

orems is justified by Theorem 4, given in Appendix A,
where we prove that by tightening variances for any po-
sition in the structure the probabilities (24) and (27) can
only by improved, not worsened, which might not be in-
tuitively obvious.

Lemma 1. For any η > 0, arbitrarily small, the distri-
bution of R′′

emp(ωI′) in each single fold can be pessimi-
stically approximated by the normal distribution with the
following expected value and standard deviation:

R′′
emp(ωI′) ∼ N

(
R(ωI′),

B
√

n

a1− η
2

√
− ln η

2

2I

)
, (29)

where a1− η
2

is a quantile of order 1 − η
2 from N(0, 1).

Proof. For a fixed function f(x, ωI′) chosen in a single
fold via ERM, the error value Q(z, ωI′) for any testing
sample point z = (x, y), taken at random from the di-
stribution with the joint density p(z), has a certain pro-
bability distribution around the value of true risk R(ωI′)
(expected value) with a certain unknown variance σ. Since
R′′

emp(ωI′) arises as a mean, thus also a sum, of I ′′ inde-
pendent results, then by means of the central limit the-
orem we can approximate it by a normal distribution with
a standard deviation equal to

1
I ′′

√√
√√

I′′∑

i=1

σ2 =
σ√
I ′′

.

Hence
R′′

emp(ωI′) ∼ N
(
R(ωI′),

σ√
I ′′

)
. (30)

The pessimistic σ can be derived by using the Hoef-
fding inequality and joining it with an appropriate equality
implied by the normal distribution. We write respectively

P

(

|R(ωI′) − R′′
emp(ωI′)| ≤ B

√
− ln η

2

2I ′′

)

≥ 1 − η, (31)

P

(

|R(ωI′) − R′′
emp(ωI′)| ≤ a1−η

2

σ√
I ′′

)

= 1 − η. (32)

By comparison, we see that the condition for σ is

σ ≤ B

a1− η
2

√
− ln η

2

2
, (33)

so it is sufficient to pessimistically set up σ to the right-
hand-side of (33), in the sense that for this value the pro-
bability measure of the unknown distribution of R′′

emp(ωI′)
contained up to the given quantile is the same or greater
than the probability measure in the known normal distri-
bution.

Finally, by inserting I ′′ = 1
nI , we have that with pro-

bability at least 1 − η

R′′
emp(ωI′) ∼ N

(
R(ωI′),

B
√

n

a1− η
2

√
− ln η

2

2I

)
. (34)

�
Now we state a lemma which shows a probabilistic

relationship between true risks: R(ωI′) from any single
fold and R(ωI) (when using the whole data set).

Lemma 2. For any η > 0, arbitrarily small, with pro-
bability 1 − 6η or greater, the following two inequalities,
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bounding R(ωI′) for any fold, simultaneously hold true:

R(ωI) − B

√
ln N − ln η

2I

≤ R(ωI′)

≤ R(ωI) + B

√
n

n − 1

√
− ln η

2I

+ B
(√ n

n − 1
+ 1
)√ ln N − ln η

2I
,

(35)

where N stands for a suitable notion of capacity for the
given set of functions {Q(z, ω)}ω∈Ω.

Proof. The following four bounds are true with probabili-
ty at least 1 − η each:

R(ωI) ≤ Remp(ωI) + B

√
ln N − ln η

2I
, (36)

Remp(ωI) ≤ R(ωI) + B

√
lnN − ln η

2I
, (37)

R(ωI′) ≤ R′
emp(ωI′) + B

√
ln N − ln η

2I ′
, (38)

R′
emp(ωI′) ≤ R(ωI′) + B

√
ln N − ln η

2I ′
. (39)

The first two are one-side versions of the Vapnik bound on
true risk, see (14), when using the whole data set of size I ,
while the second two are analogical when using a smaller
training set of size I ′ = n−1

n I in a single fold.
We write the following sequence of inequalities:

R′
emp(ωI′) ≤ R′

emp(ωI) ≤ Remp(ωI)+B

√
− ln η

2I ′
. (40)

The first one is true with probability 1 by the definition
of ωI′ , the second one is a Hoeffding inequality, true with
probability at least 1 − η for the fixed function ωI .

By joining (38) and (40), we obtain with probability
at least 1 − 2η

R(ωI′) ≤ Remp(ωI) + B

√
− ln η

2I ′
+ B

√
ln N − ln η

2I ′
.

(41)
By joining this further with (37) and plugging I ′ = n−1

n I ,
we obtain with probability at least 1 − 3η

R(ωI′) ≤ R(ωI) + B

√
n

n − 1

√
− ln η

2I

+ B
(√ n

n − 1
+ 1
)√ ln N − ln η

2I
. (42)

This proves the right hand side bound in the lemma.

To prove the left-hand side, we write the following
sequence of inequalities:

R′
emp(ωI′) ≥ Remp(ωI′) + B

√
ln N − ln η

2I ′

≥ Remp(ωI) + B

√
ln N − ln η

2I ′
.

(43)

The first one is a bound similar to Vapnik’s12 and it is true
with probability at least 1 − η, while the second is true
with probability 1 from the definition of ωI .

By joining (36) and (43), we obtain with probability
at least 1 − 2η

R(ωI) ≤ R′
emp(ωI′) − B

√
ln N − ln η

2I ′

+ B

√
ln N − ln η

2I
. (44)

By joining this further with (39) and plugging I ′ = n−1
n I ,

we obtain with probability at least 1 − 3η

R(ωI) ≤ R(ωI′) + B

√
n

n − 1

√
lnN − ln η

2I

− B

√
n

n − 1

√
ln N − ln η

2I

+ B

√
ln N − ln η

2I
.

(45)

As we see the first two summands cancel out and this pro-
ves the left-hand side bound in the lemma. �

Owing to Lemma 2, we can pessimistically approxi-
mate the distribution of R(ωI′) by a normal distribution
with the expected value R(ωI), which is a constant, and
a standard deviation determined by the right-hand side of
the lemma, since it is broader than the left-hand side. We
remind the right-hand side is true with probability at least
1−3η, but for further deliberations we need to put the pro-
babilities (and quantiles) in agreement to the level 1 − η,
so we pay attention to doing so. Following the lemma, we
write the probabilistic inequality

P

(
|R(ωI′) − R(ωI)| ≤ B

√
n

n − 1

√
− ln η

6

2I

+ B
(√ n

n − 1
+ 1
)√ ln N − ln η

6

2I

)
≥ 1 − η, (46)

12 The measure Remp corresponds by analogy to the measure R in
the original Vapnik bound, and the measure R′

emp corresponds by ana-
logy to Remp therein. Obviously, R is defined on an infinite and conti-
nuous space Z = X × Y , whereas Remp is defined on a discrete and
finite sample {z1, z2, . . . , zI}, but still from the perspective of a single
cross-validation fold we may view Remp(ωI ) as the “target” minimal er-
ror expectation and R′

emp(ωI′ ) as the observed relative mean error—an
estimate of the expectation.
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and we compare it with a suitable equality implied by the
normal distribution

P

(
|R(ωI′) − R(ωI)| ≤ a1− η

2
σ2

)
= 1 − η. (47)

We name the standard deviation σ2 for a purpose. We see
that, pessimistically, σ2 must be at least

σ2 =
1

a1− η
2

(
B

√
n

n − 1

√
− ln η

6

2I

+ B
(√ n

n − 1
+ 1
)√ ln N − ln η

6

2I

)
. (48)

Corollary 1. For any η > 0, arbitrarily small, we can
pessimistically approximate R(ωI′) in each fold by the
following normal distribution:

R(ωI′) ∼ N

(
R(ωI), σ2

)
. (49)

Let us look back at the bottom line of Lemma 1. We
have that

R′′
emp(ωI′) ∼ N

(
R(ωI′),

B
√

n

a1− η
2

√
− ln η

2

2I
︸ ︷︷ ︸

σ1

)
, (50)

whereas from Corollary 1 we have that

R(ωI′) ∼ N
(
R(ωI), σ2

)
.

We see that R′′
emp(ωI′) ∼ R(ωI′) ∼ R(ωI), meaning that

in a single fold of cross-validation the empirical testing
risk calculated for a function ωI′ is similar to the unknown
true risk for this function, i.e., estimates it with a certain
deviation, and in turn this true risk is similar to the true
risk of ωI , i.e., the function that we would choose by ERM
if the whole data set was taken into account, not just the
training set of the fold. This can be regarded as the nesting
of random variables, and we can write

R′′
emp(ωI′) ∼ N

(
R(ωI),

√
σ1

2 + σ2
2

)
. (51)

The fact that variances should be summed up for ne-
sted random variables is demonstrated in Appendix C.
By taking the mean after n independent folds of cross-
validation, again by means of CLT, we write the final con-
sequence which gives us a distribution with a standard de-
viation smaller by factor 1/

√
n.

Corollary 2. For any η > 0, arbitrarily small, the final
result of cross-validation for the k-th position in the struc-
ture can be approximated by the normal distribution with
the following expected value and standard deviation:

Ck ∼ N

(
R(ωk,I),

1√
n

√
σk1

2 + σk2
2

)
, (52)

where values σk1, σk2 are defined for the k-th position in
the structure according to the formulas (50) and (48).

For a given experiment, we do know in fact the reali-
zations of each Ck, i.e., we know their exact values, since
we have them measured, whereas unknown are the true
risks R(ωk,I). Nevertheless, by symmetry we can proba-
bilistically assess the value of R(ωk,I) knowing a Ck, for
any desired probability 1 − α:

P

(
|Ck − R(ωk,I)| ≤ a1−α

2

1√
n

√
σk1

2 + σk2
2

)

≥ 1 − α.

(53)

Therefore, although each R(ωk,I) is in fact a con-
stant, we can regard it as a random variable with respect
to a Ck, i.e.,

Rk(ωI) ∼ N
(
Ck(ωI),

1√
n

√
σk1

2 + σk2
2
)
.

This fact, in conjunction with the technique to calculate
probabilities (by suitable integrals shown in the next sec-
tion), implies proving Theorems 1 and 2.

4. Calculation of probabilities

Let p(r1, r2, . . . , rK) be the K-dimensional density func-
tion. It represents the joint probability distribution of
the values of true risks R(ωk,I) for the whole structure,
i.e., taking into account all positions k ∈ {1, 2, . . . , K}.
Owing to independence, the joint density is the product of
one-dimensional densities:

p(r1, r2, . . . , rK) = p1(r1)p2(r2) · · · pK(rK), (54)

which are normal densities with expectations and standard
deviations defined by Theorems 1, 2, see the exemple in
Fig. 2. To calculate the probabilities wanted, we need to
suitably integrate the joint density p(r1, r2, . . . , rK). It is
convenient to demonstrate the right technique using a co-
nvention called the Iverson notation (Knuth, 1997; Gra-
ham et al., 2002):

[s] =

{
1 when s is true,

0 when s is false,

where s is an arbitrary statement. In other words, we shall
integrate p(r1, r2, . . . , rK) over the space of values of all
true risks and we shall selectively turn on and off suitable
subsets of this space with {0, 1} statements.

The following formula answers the first question that
we posed in the former section, namely

1. What is the probability that the point k∗, indicated
via cross-validation, is truly the minimum point of all
unknown true risks R(ωk,I)?
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Fig. 2. Example result of complexity selection procedure via
cross-validation. Optimal complexity suggested at point
k∗ = 5. Probability distribution densities of R(ωk,I)
drawn symbolically along vertical axes.

P
(
R(ωk∗,I) = min

k∈{1,...,K}
R(ωk,I)

)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
[rk∗ < r1] · · · [rk∗ < rk∗−1]

× [rk∗ < rk∗+1] · · · [rk∗ < rK ]
× p(r1, . . . , rK) dr1 · · · drK

=
∫ ∞

−∞

(∫ ∞

−∞
[rk∗ < r1]p1(r1) dr1 · · ·

×
∫ ∞

−∞
[rk∗ < rK ]pK(rK)drK

)
pk∗(rk∗ ) drk∗

=
∫ ∞

−∞

(∫ ∞

rk∗
p1(r1) dr1 · · ·

×
∫ ∞

rk∗
pK(rK) drK

)
pk∗(rk∗) drk∗

=
∫ ∞

−∞

( ∏

k∈{1,...,K}
k �=k∗

P
(
rk∗ < R(ωk,I)

))
pk∗(rk∗) drk∗ .

(55)

It is worth stating that, obviously, the values of true
risk cannot be negative, so it seems wrong to take inte-
grals from −∞. However, since we agreed to approxima-
te the joint distribution by a normal, we have to follow it
formally and integrate from −∞, so that the probabilities
can sum up to 1 (if calculated for all positions possible to
be k∗).

Now, we want to answer the second important qu-
estion posed in the former section, namely,

2. With what probability does the true minimum of all
unknown true risks R(ωk,I) fall into the neighbour-
hood of point k∗, indicated via cross-validation, with
a side Δ?

To answer it, let us begin with a small case example.
Imagine that in the process of cross-validation with k ∈
{1, . . . , 7} we obtained

C1 > C2 > C3 > C4 < C5 < C6 < C7,

and hence k∗ = 4. Say, we impose the neighbourhood
with Δ = 1, hence U(k∗, Δ) = {3, 4, 5}, Ū(k∗, Δ) =
{1, 2, 6, 7}. To calculate the desired probability, we need
to use the Bayesian total probability formula, with three
conditional events, disjoint pair-wise, accounting for ca-
ses where each R(ωk,I) in the U(k∗, Δ) is the smal-
lest, i.e., R(ω3,I) < R(ω4,I), R(ω5,I) or R(ω4,I) <
R(ω3,I), R(ω5,I) or R(ω5,I) < R(ω3,I), R(ω4,I). Again,
we write a suitable integral of the joint probability density
with Iverson zero/one statements:

P
(
arg min

k∈{1,...,7}
R(ωk,I) ∈ U(k∗ = 4, Δ = 1)

)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞

(
[r3 < r4, r5][r3 < r1, r2, r6, r7]

+ [r4 < r3, r5][r4 < r1, r2, r6, r7]

+ [r5 < r3, r4][r5 < r1, r2, r6, r7]
)

× p(r1, . . . , rK) dr1 · · · drK

=
∫ ∞

−∞

( ∞∫∫

r3

p(r4, r5) dr4 dr5

×
∞∫∫∫∫

r3

p(r1, r2, r6, r7) dr1 dr2 dr6 dr7

)
p(r3) dr3

+
∫ ∞

−∞

( ∞∫∫

r4

p(r3, r5) dr3 dr5

×
∞∫∫∫∫

r4

p(r1, r2, r6, r7) dr1 dr2 dr6 dr7

)
p(r4) dr4

+
∫ ∞

−∞

( ∞∫∫

r5

p(r3, r4) dr3 dr4

×
∞∫∫∫∫

r5

p(r1, r2, r6, r7) dr1 dr2 dr6 dr7

)
p(r5) dr5.

(56)

From the small case example, we see that, given a
neighbourhood U(k∗, Δ) and its complement Ū(k∗, Δ),
the general formula is

P
(
arg min

k∈{1,...,K}
R(ωk,I) ∈ U(k∗, Δ)

)

=
∑

k∈U(k∗,Δ)

∫ ∞

−∞

( ∏

j∈U(k∗ ,Δ)
j �=k

P
(
rk < R(ωj,I)

)
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×
∏

j∈Ū(k∗,Δ)

P
(
rk < R(ωj,I)

))

× pk(rk) drk. (57)

Since (U(k∗, Δ) \ {k})∪ Ū(k∗, Δ) = {1, . . . , K} \ {k},
we join products under the integral and rewrite the formu-
la as

P
(
arg min

k∈{1,...,K}
Rk(ωI) ∈ U(k∗, Δ)

)

=
∑

k∈U(k∗,Δ)

∫ ∞

−∞

( ∏

j∈{1,...,K}
j �=k

P
(
rk < R(ωj,I)

))

× pk(rk) drk. (58)

For a moment we come back to the formula (55). It
takes into account all positions k in the structure as “com-
petitors” of k∗ to be minimum. One could be interested
in calculating an additional probability but for a narrower
domain—only a certain neighbourhood of point k∗, say
with a side Δ. In other words, one could ask: What is the
probability that the unknown true risk at point k∗ is the
smallest within its neighbourhood U(k∗, Δ)? The resul-
ting formula differs from (55) only in the set of indices
for which the product is calculated:

P
(
R(ωk∗,I) = min

k∈U(k∗ ,Δ)
R(ωk,I)

)

=
∫ ∞

−∞

( ∏

k∈U(k∗ ,Δ)
k �=k∗

P
(
rk∗ < R(ωk,I)

))
pk∗(rk∗) drk∗ .

(59)

Since the set of indices for the product is narrower, the
probability (59) is greater than (55).

5. Experiments for Scenario I: Minima of
cross-validation and true risks

5.1. Set of functions. The form of f functions,
f : [0, 1]2 → [−1, 1], was Gaussian-like:

f(x,

ω
︷ ︸︸ ︷
w0, w1, . . . , wM )

= max

{

− 1, min
{
1, w0

+
M∑

m=1

wm exp
(
−‖x− μm‖2

2σm
2

)}
}

, (60)

where centers μm and widths σm were generated at ran-
dom13 and remained fixed. Therefore we have a set of

13Random intervals: μm ∈ [0, 1]2, σm ∈ [0.05, 0.5]/ln(m + 1).
The basis narrows down with m.

functions linear in parameters (w0, w1, . . . , wM ). As one
can see, values of f were purposely constrained by ±1.
Examples of functions from this set are shown in Fig. 3.

5.2. System and data sets. As a system y(x) we pic-
ked at random a function from a class similar to (60) but
broader, in the sense that the number M was greater and
the range of randomness on σm was larger. Data sets for
experiments were taken by sampling the system according
to the joint probability density p(x, y) = p(x)p(y|x) whe-
re we imposed p(x) = 1, i.e., a uniform distribution on the
domain [0, 1]2, and

p(y|x) =
1√

2πσε

exp

(

− (y − y(x))2

2σε
2

)

,

normal noise with a standard deviation σε = 0.1, see
Fig. 4.

5.3. Algorithm of the learning machine. The lear-
ning machine was trained by using least-squares crite-
rion. We remark that, obviously, other learning appro-
aches can be used here, e.g., the maximum likelihood cri-
terion, the SVM regression criterion (Vapnik, 1998; Ko-
rzeń and Klęsk, 2008). Let us denote by gk(x) the basis
exp
(−‖x− μm‖2/(2σm

2)
)
. If we calculate the matrix of

basis values at data points

G =

⎛

⎜⎜
⎜
⎝

1 g1(x1) g2(x1) · · · gM (x1)
1 g1(x2) g2(x2) · · · gM (x2)
...

...
...

. . .
...

1 g1(xI) g2(xI) · · · gM (xI)

⎞

⎟⎟
⎟
⎠

, (61)

then we can find the optimal vector of w coefficients as
follows:

(w0, w1, . . . , wM )T = (GT G)−1GT Y, (62)

where Y = (y1, y2, . . . , yI)T is the vector of training tar-
get values.

5.4. Results of experiments. In Table 1 we show re-
sults of experiments. For each experiment, 100 repetitions
were carried out14. For each repetition a data set of gi-
ven size I was drawn from the fixed distribution with p(z)
density, see Fig. 4. When an experiment was completed,
we looked at minimal probabilities calculated according
to Theorems 1 and 2 of three events:

1. Is true minimum at point k∗?

14Experiments were performed on a computer with: 2 GHz processor,
1 GB of RAM, using Mathematica 6.0. Depending on the complexity of
experiment: the structure, the size of the sample, the number of cross-
validation folds—100 of repetitions were taken from about 3 h to about
12 h of duration.
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{
0.0

0.5

1.0
0.0

0.5

1.0

�1.0

�0.5

0.0

0.5

1.0

,
0.0

0.5

1.0
0.0

0.5

1.0

�1.0

�0.5

0.0

0.5

1.0

,
0.0

0.5

1.0
0.0

0.5

1.0

�1.0

�0.5

0.0

0.5

1.0

, · · · ,
0.0

0.5

1.0
0.0

0.5

1.0

�1.0

�0.5

0.0

0.5

1.0 }

Fig. 3. Illustration of the set of approximating functions used in experiments for regression estimation.
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Fig. 4. System (regression function) and its data points.

2. Is true minimum in U(k∗, 1)?

3. Is true minimum in U(k∗, 2)?

and for comparison we looked at the obtained frequencies
ν of these events observed in the 100 repetitions. Obvio-
usly, we can have frequencies of true risks only because
it is a controlled experiment and we explicitly imposed
p(z), and that is why we can calculate true risks. We re-
mind again that in practice p(z) is unknown and therefore
true risks are also unknown. From that point of view the
ability to calculate probabilities stating things about true
risks without knowing p(z) is interesting.

As regards the order in which experiments are shown
in the table, firstly, we change the number of cross-
validation folds, secondly, we change the structure from
less to more dense, and thirdly, we increase the sizes of
data sets. We remark that the calculated probabilities co-
uld differ among repetitions due to slightly different data
sets (noise density p(y|x)), different random splits into
training and testing sets (per fold) and thus different Ck

values obtained, whereas the observed frequency is just
one number—a constant. Because of this fact in the table
we show the means of calculated minimal probabilities
over all repetitions. In Fig. 5 we show single examples
of SRM plots corresponding to experiments in the table,
whereas in Fig. 6 we show example models obtained for
different positions in the structure.

Here are some comments on experimental results for
this scenario:

1. Calculated minimal probabilities were fairly close
to observed frequencies and frequencies surpassed
them—empirical confirmation of the theorems.

2. Results for sparser structures obtained greater me-
asures of probability and frequency than for denser
structures when looking at a fixed Δ—it is an intuiti-
ve result. One can indicate optimal complexity more
confidently in a sparser structure.

3. Apart from one exception, 20-fold cross-validation
led to higher estimates of minimal probabilities than
10-fold cross-validation, but as regards observed fre-
quencies such a property does not seem to be true.

6. Scenario II: Vapnik bounds and cross-
validation

In this section we consider the following scenario: We ite-
rate over the structure S1 ⊂ S2 ⊂ · · · ⊂ SK and for
each its subset Sk we do not perform cross-validation, we
calculate only Vapnik’s bound on true risk:

R(ωk,I)
︷ ︸︸ ︷∫

Z

Q(z, ωk,I)dF (z) ≤

Remp(ωk,I)
︷ ︸︸ ︷
1
I

I∑

i=1

Q(zi, ωk,I)

+ Bk

√
ln Nk − ln η

2I
, (63)

which holds true with probability at least 1 − η. We shall
denote by Vk the right-hand side of the bound.

When the procedure is finished for the whole struc-
ture, we have a sequence of results

V1, V2, . . . , VK ,

and an indication that the optimal complexity is at the po-
int k∗, such that

Vk∗ = min
k∈{1,...,K}

Vk. (64)

Therefore, as our final model we choose the function
f(x, ωk∗,I) for which the guaranteed true risk according
to (63) is minimal.

Since we do not perform n-fold cross-validation, this
scenario is O(n) times faster than Scenario I but less ac-
curate. Therefore, we pose the following questions:
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Table 1. Results of experiments for Scenario I. In each row there are shown the data set size, the number of cross-validation folds, the
structure, the calculated minimal probabilities and observed frequencies of the events considered. For all results η = 0.05,
ηB = 0.25.

no. I n

number
of terms M

(successive points
in the structure)

Is true
minimum

at point k∗?
min. P

Is true
minimum

at point k∗?
observed ν

Is true
minimum

in U(k∗, 1)?
min. P

Is true
minimum

in U(k∗, 1)?
observed ν

Is true
minimum

in U(k∗, 2)?
min. P

Is true
minimum

in U(k∗, 2)?
observed ν

1 2 3 4 5 6 7 8 9 10

1 250 10 {10, 40, . . . , 250} 0.286 0.34 0.645 0.83 0.877 0.96
2 250 20 {10, 40, . . . , 250} 0.326 0.45 0.681 0.87 0.885 0.98
3 250 10 {10, 30, . . . , 250} 0.232 0.26 0.487 0.54 0.683 0.90
4 250 20 {10, 30, . . . , 250} 0.245 0.24 0.520 0.68 0.722 0.88
5 500 10 {10, 50, . . . , 330} 0.264 0.48 0.621 0.84 0.765 1.0
6 500 20 {10, 50, . . . , 330} 0.287 0.54 0.616 0.89 0.864 1.0
7 500 10 {10, 40, . . . , 310} 0.232 0.29 0.516 0.75 0.710 0.95
8 500 20 {10, 40, . . . , 310} 0.246 0.31 0.540 0.76 0.742 0.91
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Fig. 5. Single examples of SRM procedures obtained in experiments for Scenario I. For each point k of the structure we present
empirical risk Remp(ωk,I), cross-validation result Ck and true risk R(ωk,I) calculated by an appropriate integral.

1. What is the probability that the minimum point k∗,
indicated via SRM, would agree with the minimum
point indicated via cross-validation, if such a cross-
validation was performed?

2. With what probability would the minimum point of
unknown cross-validation results Ck fall into the ne-
ighbourhood of the minimum point k∗ with a side Δ,
indicated via SRM, if such cross-validation was per-
formed?

In other words, we save time by not performing cross-

validation, i.e., we get V1, V2, . . . , VK results O(n) times
faster, but we want to know to what extent our results are
compliant with unknown results of cross-validation, if it
was performed.

6.1. Distribution of cross-validation results. For the
purpose of this scenario it would be useful to derive a di-
stribution of type Ck ∼ N(Vk, σ) with a sufficiently tight
σ. We state here the following theorem without a proof15.

15In parallel with this publication a paper by Klęsk, in which this the-
orem is proved, undergoes a reviewing process in another journal.
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Fig. 6. Example models for regression estimation using a data set of size I = 250: M2 = 30 → R(ω2,I) = 0.144 (too simplistic),
M5 = 130 → R(ω5,I) = 0.058 (duly complex—the best generalization), M8 = 230 → R(ω8,I) = 0.257 (too complex).
Examples taken from the experiment no. 3.

Theorem 3. For any η > 0, arbitrarily small, there is a
small number

α(η, n) = η −
n∑

j=1

(
n

j

)
(−1)j(2η)j (65)

and the number

ε(η, I, Nk, n)

= Bk

(

2
√

n

n − 1
+ 1

)√
ln Nk − ln η

2I

+ Bk

(√
n +

√
n

n − 1

)√− ln η

2I
,

(66)

such that

P

(

|Vk − Ck| ≤ ε(η, I, Nk, n)

)

≥ 1 − α(η, n). (67)

This theorem is useful, since we can compare its thesis
with a suitable equality for normal distribution imposed
on Ck (by means of the CLT):

P

(

|Vk − Ck| ≤ ε(η, I, Nk, n)

)

≥ 1 − α(η, n),

P

(

|Vk − Ck| ≤ a
1−α(η,n)

2
σ

)

= 1 − α(η, n).

We see that we can pessimistically approximate each Ck

as follows:

Ck ∼ N

(
Vk,

ε(η, I, Nk, n)
a
1−α(η,n)

2

)
. (68)

6.2. Results of experiments. We impose analogical
experimental conditions as in experiments for Scenario I:

data sets, the set of approximating functions, the algorithm
of the learning machine, etc. Results are shown in Table 2
and example illustrations are shown in Fig. 7.

Here are some comments on experimental results for
this scenario:

1. The observed frequencies of the “agreement” betwe-
en the minima of Vapnik bounds and cross-validation
results are fairly high but generally smaller than
for Scenario I, in which the agreement of cross-
validation and true risks minima was compared.

2. If a practitioner were satisfied with the observed
agreement frequency of about 75% ÷ 90% for a ma-
ximal discrepancy of Δ = 2, he/she could save time
by not performing n-fold cross-validation, just SRM,
and obtain the model O(n) times faster. Obviously,
this comment is imprecise and valid only for expe-
riments with similar conditions: the density of the
structure, the proportion of the data set size to the
capacity of the set of approximating functions.

3. Minimal probabilities estimated on the basis of the
distribution (68) are much smaller than frequencies,
which means that the distribution (68) is not suffi-
ciently tight and, unfortunately, of little practical use-
fulness for accurate calculations.

4. Contrary to Scenario I, the 20-fold cross-validation
made the calculated probabilities smaller than 10-
fold cross-validation, which agrees with standard de-
viations in (68) and the influence of n therein.

7. Scenario III: Vapnik bounds and
true risks

In this section we consider the SRM scenario again but
we do not compare the obtained minimum to unknown
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Table 2. Results of experiments for Scenario II. In each row there are shown the data set size, the structure, the calculated minimal
probabilities and observed frequencies of the events considered. For all results η = 0.05, ηB = 0.25.

no. I n

number
of terms M

(successive points
in the structure)

Is unknown
cross-validation

minimum
at point k∗?

min. P

Is unknown
cross-validation

minimum
at point k∗?
observed ν

Is unknown
cross-validation

minimum
in U(k∗, 1)?

min. P

Is unknown
cross-validation

minimum
in U(k∗, 1)?

observed ν

Is unknown
cross-validation

minimum
in U(k∗, 2)?

min. P

Is unknown
cross-validation

minimum
in U(k∗, 2)?

observed ν
1 2 3 4 5 6 7 8 9 10

1 250 10 {10, 40, . . . , 250} 0.102 0.26 0.313 0.77 0.497 0.90
2 250 20 {10, 40, . . . , 250} 0.110 0.24 0.272 0.61 0.448 0.82
3 250 10 {10, 30, . . . , 250} 0.078 0.22 0.218 0.74 0.329 0.89
4 250 20 {10, 30, . . . , 250} 0.060 0.18 0.190 0.59 0.301 0.79
5 500 10 {10, 50, . . . , 330} 0.101 0.25 0.307 0.71 0.430 0.84
6 500 20 {10, 50, . . . , 330} 0.105 0.22 0.268 0.55 0.468 0.75
7 500 10 {10, 40, . . . , 310} 0.092 0.23 0.261 0.62 0.422 0.79
8 500 20 {10, 40, . . . , 310} 0.089 0.19 0.247 0.45 0.426 0.75
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Fig. 7. Single examples of SRM procedures obtained in experiments for Scenario II. For each point k of the structure we give: empirical
risk Remp(ωk,I), cross-validation result Ck, Vapnik bound Vk and true risk R(ωk,I) calculated by an appropriate integral.

cross-validation results. We would like to compare it to
the unknown minimum of true risks.

We iterate over the structure S1 ⊂ S2 ⊂ · · · ⊂ SK

and for each its subset Sk we do not perform cross-
validation. We calculate only Vapnik’s bound to true risk:

R(ωk,I )
︷ ︸︸ ︷∫

Z

Q(z, ωk,I)dF (z) ≤

Remp(ωk,I)
︷ ︸︸ ︷
1
I

I∑

i=1

Q(zi, ωk,I)

+ Bk

√
lnNk − ln η

2I
, (69)

which holds true with probability at least 1 − η. We shall
denote by Vk the right-hand side of the bound.

When the procedure is finished for the whole struc-
ture, we have a sequence of results

V1, V2, . . . , VK ,

and an indication that the optimal complexity is at a point
k∗, such that

Vk∗ = min
k∈{1,...,K}

Vk. (70)

Therefore, as our final model we choose the function
f(x, ωk∗,I) for which the guaranteed true risk according
to (69) is minimal.

We pose the following two questions, similarly as we
did for the scenario with cross-validation:

1. What is the probability that the point k∗, indicated
via SRM, is truly the minimum point of all unknown
true risks R(ωk,I)?

2. With what probability does the true minimum of all
unknown true risks R(ωk,I) fall into the neighbour-
hood of point k∗, indicated via SRM, with a side Δ?

These questions are important, since answering them wo-
uld tell us how reliable the result of complexity selection
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indicated via SRM is for given conditions of the experi-
ment.

In Scenario I, for a fixed position in the structure, we
managed to derive the relationship like

R(ωI) ∼ N

(
C,

1√
n

√
σ1

2 + σ2
2

)
,

to a large extent due to having at disposal empirical te-
sting risks calculated as means in cross-validation folds,
which in consequence led to normality by means of the
CLT. In the current scenario the situation is more compli-
cated. We would also like to find a relationship of type
R(ωI) ∼ N(a, b), or actually with any distribution not
necessarily normal, where a and b would be expressed in
terms of relevant constants. But this time the only quan-
tity we can rest on is Remp(ωI)—the empirical risk cal-
culated for the whole data set. We know that this quantity
is in a sense biased and it does not tell us anything abo-
ut the generalization error because the function f(ωI) is
chosen to minimize the error for the training set. In other
words, we know that for a fixed data set of size I the value
of Remp(ωI) gets smaller and smaller converging to zero
with an increasing capacity of the set of functions.

Therefore, to derive some distribution density func-
tion, one could do the following:

• explicitly assume normality but with an increasing
standard deviation along k,

• apply the generalization bound (69),

• put quantiles in agreement.

The density obtained by such an approach does not se-
em, however, credible nor useful to the author, mainly due
to the biased Remp(ωI) and unjustified normality assump-
tion. Therefore, we do not present any results for this sce-
nario. We have to content ourselves with the generaliza-
tion bound (63), which does not give a density, just a pes-
simistic quantile.

8. Summary

The complexity selection for the regression estimation le-
arning task was taken under consideration, with the ap-
plication of two known procedures: cross-validation and
SRM. In both cases one encounters the problem of possi-
ble discrepancy between the minimum indicated empiri-
cally via a given procedure and the genuine minimum of
true risks, which in practice is unknown. In the paper we
pose this problem in a novel quantitative form, namely, as
the problem of calculating probabilities of the occurrence
of the discrepancy for given conditions of experiment. The
solution to this problem can provide additional knowledge
about an experiment and its uncertainty.

Three scenarios were discussed: (I) a comparison of
the minimum indicated via cross-validation with the ge-
nuine minimum of true risks, (II) a comparison of the mi-
nimum indicated via Vapnik’s bounds with an unknown
minimum of cross-validation, (III) a comparison of the
minimum indicated via Vapnik’s bounds with the genuine
minimum of true risks.

A greater focus was put on Scenario I, for which we
stated and proved theorems enabling to calculate pessimi-
stic probabilities of events:

• where no discrepancy between minima occurs,

• where a discrepancy with a certain deviation Δ does
occur.

Main theorems (1) and (2) were stated in terms of all
relevant constants: the sample size, the number of cross-
validation folds, the capacity of the set of approximating
functions, bounds on this set.

For given conditions of the structure, the most in-
fluential elements on the obtained output probabilities
(24), (27), (59) are the capacity of the set of approxima-
ting functions, the sample size and the number of cross-
validation folds. Looking at the densities (25) we deri-
ved, it can be seen that with respect to the sample si-
ze I the variance is scaled by factor 1/

√
I , which is an

intuitive probabilistic result, whereas with respect to the
number of folds n the variance is scaled by an effective
factor 1 + 1/

√
n − 1 +

√
n. In particular, leave-one-out

cross-validation strongly increases the variance. Clearly,
to obtain high output probabilities (confirming the indica-
ted point of the structure as the true minimum) one needs
to provide a suitable combination of I and n which suf-
ficiently tighten the variance. Apart from affecting output
probabilities, these two factors also similarly affect the ac-
curacy of normal approximations (CLT), which we show
in Appendix B.

Empirical tests carried out for this scenario (Sec-
tion 5) confirmed the results.

For Scenario II we stated a theorem (without proof)
dedicated to the same purposes. However, we did not ob-
tain satisfactory results in experiments (Section 6.2) due
to an insufficiently tight standard deviation in the distribu-
tion Ck ∼ (Vk, σ), and pessimistic probabilities were not
high enough. Still, we could draw some conclusions from
the frequencies observed in experiments.

Looking generally at main theorems, two separate
parts can be seen:

1. the approximation of probability densities which de-
scribe distributions of unknown true risks or cross-
validation results (depending on the scenario),

2. the technique to calculate wanted probabilities by su-
itable integrals, using densities derived in the first
part.
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The second part alone—the calculation of probabilities—
can be regarded as a solution to a more elementary pro-
blem not connected to machine learning itself, namely, the
problem of finding the optimum of a probabilistic func-
tion16 defined on a finite discrete set.
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Appendix A

Justification of minimal probabilities in main
theorems

The following theorem has significant meaning for the
main Theorems (1 and 2) presented in the paper. It ju-
stifies the notion ‘minimal probability’ we used in tho-
se theorems—demonstrates that when improving (tighte-
ning) variances for any position in the structure the proba-
bility of interest also improves, which might not be intu-
itively obvious.

Theorem 4. Let X1 and X2 be two independent normally
distributed random variables with means μ1 < μ2 and
variances σ1 and σ2, respectively. The probability that
X1 < X2 can be calculated as

P (X1 < X2)

=
∫ ∞

−∞

∫ ∞

−∞
[x1 < x2]p1(x1)p2(x2) dx1 dx2

=
∫ ∞

−∞

(∫ ∞

x1

p2(x2) dx2

)
p1(x1) dx1 (71)

or

P (X1 < X2) =
∫ ∞

−∞

(∫ x2

−∞
p1(x1) dx1

)
p2(x2) dx2,

(72)
where p1, p2 denote normal density functions for X1 and
X2, respectively. Suppose now that we are able to tighten
either variance, i.e., to introduce 0 < σ′

1 ≤ σ1 and 0 <
σ′

2 ≤ σ2, and thus create new random variables: X ′
1 ∼

N(μ1, σ
′
1), X ′

2 ∼ N(μ2, σ
′
2) but with original means.

Then, for any choice of σ′
1, σ′

2, the probability
P (X ′

1 < X ′
2) is not worse than P (X1 < X2):

∀0<σ′
1≤σ1

0<σ′
2≤σ2

P (X ′
1 < X ′

2) ≥ P (X1 < X2). (73)

Proof. First, we analyze the case when σ′
1 = σ1 is fi-

xed whereas σ′
2 is relaxed and can be freely tightened:

0 < σ′
2 ≤ σ2. Consider the function

δ(x1) =
∫ ∞

x1

p′2(x2) dx2 −
∫ ∞

x1

p2(x2) dx2. (74)

We shall call it the transfer function, since for given x1 it
represents the amount of the probability measure transfe-
red from the interval (−∞, x1) into the interval [x1,∞)
in the inner integral of (71) when the switch from p2 to p′2
is made. One can observe that δ(x1) > 0 for −∞ < x1 <
μ2 (since the left tail excluded from the integration is he-
avier for p2 than for p′2), in the middle δ(μ2) = 1

2− 1
2 = 0,

and finally δ(x1) < 0 for μ2 < x1 < ∞. Moreover, δ(x1)
first increases until it reaches a point corresponding to the
first intersection of p2 and p′2, next it decreases until it re-
aches the second intersection point, and then it increases
again asymptotically to 0, see Fig. 8.

x1

x2

p2

p′2

δ(x1)

μ2

μ2

Fig. 8. Illustration of the transfer function δ.

We remark that when δ > 0, it potentially favors the
increase of the probability P (X ′

1 < X ′
2) with respect to

P (X1 < X2), since realizations of X ′
2 > x1 are then mo-

re likely than originally due to the transfer of the probabi-
lity measure. On the other hand, when δ < 0, it potentially
favors a decrease in the probability P (X ′

1 < X ′
2) with re-

spect to P (X1 < X2), since realizations of X ′
2 > x1 are

then less probable than originally due to transfer of the
probability measure. We need to check which situation of
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the two is more frequent.

P (X ′
1 < X ′

2) − P (X1 < X2)

=
∫ ∞

−∞

(∫ ∞

x1

p′2(x2) dx2

)
p1(x1) dx1

−
∫ ∞

−∞

(∫ ∞

x1

p2(x2) dx2

)
p1(x1) dx1

=
∫ ∞

−∞

(∫ ∞

x1

(
p′2(x2) − p2(x2)

)
dx2

︸ ︷︷ ︸
δ(x1)

)
p1(x1) dx1

=
∫ μ2

−∞
δ(x1)︸ ︷︷ ︸
≥0

p1(x1) dx1 +
∫ ∞

μ2

δ(x1)︸ ︷︷ ︸
≤0

p1(x1) dx1 > 0.

(75)

The last inequality is true since μ2 > μ1 and therefore the
first integral is heavier (i.e., it contains more probability
measure of X1) than the second:

∫ μ2

−∞
|δ(x1)|p(x1) dx1 >

∫ ∞

μ2

|δ(x1)|p(x1) dx1

while we keep in mind that δ is symmetric with respect to
the point μ2.

The analysis for the second case when σ′
2 = σ2 is

fixed whereas σ′
1 can be freely tightened is analogical. It

is sufficient to change the order of integration, i.e., to use
the formula (72) instead of (71) and to redefine δ as

δ(x2) =
∫ x2

−∞
p′1(x1) dx1 −

∫ x2

−∞
p1(x1) dx1.

Having proved both cases: (a) tightening σ1 (with
σ2 fixed) does not worsen the target probability, (b) ti-
ghtening σ2 (with σ1 fixed) does not worsen the tar-
get probability, implies that for any sequence of actions
which tighten first σ1 then σ2 or vice-versa the tar-
get probability does not worsen. Hence, for any σ′

1, σ′
2,

P (X ′
1 < X ′

2) ≥ P (X1 < X2) holds true. �
In Theorems 1 and 2 we approximated cross-

validation results Ck along the structure by normal distri-
butions (CLT) and assumed the pessimistic variances for
them. This fact is expressed in (33), (48) and (51). Now,
owing to Theorem 4, it is guaranteed that by improving
(tightening) variances for any position in the structure we
also improve the minimal probabilities (24), (27) asserted
in the main theorems, we certainly do not worsen them.

Appendix B

Accuracy of normal approximations

For informative purposes we give several remarks on the
accuracy of our normal approximations on the basis of the
Berry–Esséen theorem (Berry, 1941; Essèen, 1942;1956)

Suppose that a sequence of cumulative distribution
functions Fi converges, as i → ∞, to some target F . This
is a weak convergence statement and it says nothing about
the accuracy of the approximation for a particular finite
value of i. We need to have an idea of the committed error,
i.e., |Fi(x)−F (x)| (DasGupta, 2008). Owing to CLT, for
a sequence of i.i.d. random variables X1, X2, . . . , XI , it
is known that

XI − E(XI)√
Var(XI)

−→
I→∞Z ∼ N(0, 1). (76)

Different results giving a bound on the approximation er-
ror for finite I typically make assumptions about moments
of Xi (DasGupta, 2008). A classical result of this kind is
the following theorem.

Theorem 5. (Berry–Esséen) Let X1, . . . , XI be i.i.d. with
E(Xi) = μ, Var(Xi) = σ2, and β3 = E(|Xi−μ|3) < ∞.
Then there exists a universal constant C, not depending on
I or the distribution of the Xi, such that

sup
x

∣
∣
∣
∣∣
P

(√
I(X − μ)

σ
≤ x

)

− Φ(x)

∣
∣
∣
∣∣
≤ Cβ3

σ3
√

I
, (77)

where Φ(x) is the cumulative distribution function for
N(0, 1).

The universal constant C has been refined historical-
ly from C = 0.7975 by van Beek (1972) to C = 0.7056
by Shevtsova (2007).

As one can see in the theorem, the uniform error de-
creases with 1/

√
I asymptotically to 0. Looking back clo-

sely at Theorems 1 and 2 and the formulas (25), (26) pre-
sented in this paper, we see that the actual number of ran-
dom variables we sum up is implied both by the sample
size I and the number of cross-validation folds n. It can
be noted that the effective number of summands (repeti-
tions) is

I
(
1 + 1√

n−1
+
√

n
)2 ,

and this is the number that should be inserted into the es-
timate from the Berry–Esséen theorem rather than 1/

√
I

alone. Therefore, the uniform error between cumulative
distribution functions for unknown true risks and their
normal approximations that we propose is at most

Cβ3

σ3

(
1 +

1√
n − 1

+
√

n

)
1√
I
, (78)

where σ and β3 denote respectively the standard devia-
tion and the third moment of the unknown distribution we
approximate.

It can be checked that the influence of the sample
size I on the error is naturally favorable, i.e., the error
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decreases with the square root of the sample size, where-
as the influence of the number of cross-validation folds n
is unfavorable. One can realize it by looking at the most
extreme case of leave-one-out cross-validation which cor-
responds to n = I . Then, the variance of testing errors
per fold, which depends on 1/

√
I/n, is the largest. We

illustrate the influences of I and n on the error in Fig. 9.
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I n

(
1 + 1√

n−1
+

√
n
)

1√
I

for n = 3

(
1 + 1√

n−1
+

√
n
)

1√
I

for I = 104

Fig. 9. Illustration of the influence of the sample size I and the
number of cross-validation folds on the error of normal
approximation.

Interestingly, it can be checked that there is a mini-
mum point of error with respect to the number of cross-
validation folds at

n∗ = 1 +
1
3

(
27
2

− 3
√

69
2

)1/3

+

(
1
2 (9 +

√
69)
)1/3

32/3

≈ 2.33

if n is treated as a continuous variable.
In general, unfortunately nothing reasonable can be

said about σ, β3 (and their ratio) for unknown distribu-
tions we approximate. Their values depend in a peculiar
way on two factors: (1) the joint probability density p(z)
representing the specific learning problem and (2) pro-
perties of the learning machine (how it selects the out-
put function and what the properties of that function li-
ke smoothness, boundedness, etc. are). In a very particu-
lar case, if approximated unknown distributions were in
fact normal distributions, then it could be checked that
limσ→∞ β3/σ3 = 2

√
2/π ≈ 1.596. It would give us an

approximate idea about the value of ratio Cβ3/σ ≈ 1.126,
using the value for C = 0.7056 by Shevtsova (2007). But
this assumption clearly does not have to be true in the ge-
neral case.

Skipping unknown constants, we state in the the-
orems the order of the uniform error, with respect to I
and n alone, to be

O

((
1 +

1√
n − 1

+
√

n

)
1√
I

)
, (79)

If we want to make this order less than a certain small ε,
then we need to provide for the experiment a sample of

size

I >
1
ε2

(
1 +

1√
n − 1

+
√

n

)2

,

given a fixed n. For example, for ε = 0.01 and n = 3, a
sample of size I ≈ 1.2 · 105 is required, for ε = 0.05,
n = 3, it is sufficient to have I ≈ 4.8 · 103. In the expe-
riments shown in Section 5 we set up even more rela-
xed conditions due to computational costs17: I = 500,
n = 10, and, as Table 1 shows, the results are still satis-
factory.

Appendix C

Expected square deviation for a nested random
variable

Lemma 3. Let X1 be a random variable with the expec-
ted value EX1 and the variance σX1

2. Assume that for
each realization x1 of X1 there is another (nested) ran-
dom variable X2|x1 with the following expectation and
variance:

∀x1 E(X2|x1) = x1,

D(X2
2|x1) = σX2

2 = const. .

Then the expected square deviation of X2 from EX1 is
σX1

2 + σX2
2.

Proof.
∫ ∞

−∞

( ∫ ∞

−∞
(x2 − EX1)2pX2|x1(x2) dx2

)
pX1(x1) dx1

=
∫ ∞

−∞

( ∫ ∞

−∞
(x2 − x1 + x1 − EX1)2

× pX2|x1(x2) dx2

)
pX1(x1) dx1

=
∫ ∞

−∞

(∫ ∞

−∞
(x2 − x1)2pX2|x1(x2) dx2

+ 2(x1 − EX1)
∫ ∞

−∞
(x2 − x1)pX2|x1(x2) dx20

︸ ︷︷ ︸

+ (x1 − EX1)2
∫ ∞

−∞
pX2|x1(x2) dx2

)

× pX1(x1) dx1

=
∫ ∞

−∞

(
σX2

2 + (x1 − EX1)2
)
pX1(x1) dx1

= σX2
2 + σX1

2.

�
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17Each experiment was carried out with 100 repetitions.
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