
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 3, 617–628
DOI: 10.2478/v10006-012-0047-0

A NOVEL FUZZY C–REGRESSION MODEL ALGORITHM USING A NEW
ERROR MEASURE AND PARTICLE SWARM OPTIMIZATION

MOÊZ SOLTANI, ABDELKADER CHAARI, FAYÇAL BEN HMIDA

Research Unit on Control, Monitoring and Safety of Systems (C3S)
High School of Sciences and Engineering of Tunis (ESSTT), 5, av. Taha Hussein, BP 56-1008 Tunis, Tunisia

e-mail: soltani_c3s@yahoo.fr,{assil.chaari,faycal.benhmida}@esstt.rnu.tn

This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding
a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order
to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm,
replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters
of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local
linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the
proposed algorithm.
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1. Introduction

In the past few years, fuzzy modeling algorithms have
been widely used in many research areas because of
their excellent ability of describing nonlinear systems.
Fuzzy modeling is an effective tool for the approxi-
mation of uncertain systems on the basis of measured
data (Hellendoorn and Driankov, 1997). The Takagi–
Sugeno (T–S) model (Takagi and Sugeno, 1985) has been
widely applied in many fields, such as modeling (Boukhris
et al., 1999; Alci, 2008; Soltani et al., 2010a), con-
trol (Ying, 2000; Brdyś and Littler, 2002; Kościelny and
Syfert, 2006; Qi and Brdys, 2009; Kluska, 2009) and
fault tolerant control (Marx et al., 2007; Ichalal et al.,
2010). In many studies, T–S based approaches such as the
Gustafson–Kessel (GK) clustering algorithm (Gustafson
and Kessel, 1979), the Gath–Geva (GG) algorithm (Gath
and Geva, 1989), the fuzzy c-regression model cluster-
ing algorithm (Hathaway and Bezdek, 1993), enhanced
fuzzy system models (Celikyilmaz and Burhan Turksen,
2008), the new FCRM clustering algorithm (NFCRMA)
(Chaoshun et al., 2009; 2010) and the Fuzzy C-Means
(FCM) clustering algorithm (Bezdek, 1981) are often used
for the description of complex systems in a human intu-
itive way (especially the last one). A modified version
of FCM, called the fuzzy c-regression model clustering

algorithm, has been proposed by Hathaway and Bezdek
(1993).

The FCRM algorithm develops hyper-plane-shaped
clusters, while the FCM algorithm develops hyper-
spherical-shaped clusters. The FCRM algorithm suffers
from two major problems:

• It uses an alternating optimization technique, whose
iterative nature makes it sensitive to noise (Nasraoui
and Krishnapuram, 1996; Sumit and Dave, 1998;
Ichihashi and Honda, 2004; Leski, 2004). In addi-
tion, if the noisy data have significant high values,
they can severely affect the model parameter estima-
tion (Bezdek et al., 1999).

• Derived from Bezdek’s fuzzy c-means algorithm, it
is sensitive to initialization and may converge to a lo-
cal minimum of the objective function (Frigui and
Krishnapuram, 1999; Zhang et al., 2006; Xu and
Zhang, 2009; Ying et al., 2011). Hence, different ini-
tializations may lead, easily, to different results.

The algorithms reported by Kim et al. (1998),
Hathaway and Bezdek (1993), Chaoshun et al. (2009),
Chaoshun et al. (2010), Chen et al. (1998), Rezaee and
Zarandi (2010) as well as Andri and Ennu (2011) did not
treat the two points cited above. Consequently, in order
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to deal with these two points, firstly we design a new
objective function for a robust version of the FCRM al-
gorithm based on the Noise Clustering (NC) algorithm
(Dave, 1991). This latter has a robust capability against
noise and is quite successful in improving the robust-
ness of a variety of fuzzy clustering algorithms (Dave and
Krishnapuram, 1997; Tran and Wagner, 1999; Ichihashi
et al., 2005; Soltani et al., 2010b; Honda et al., 2010).
Moreover, a new error measure is introduced into the ob-
jective function to get a good result. Secondly, many stud-
ies have proposed the evolutionary computation technique
based on Particle Swarm Optimization (PSO). They have
been successfully applied to solve various optimization
problems (Zhang et al., 2006; 2011; Panchal et al., 2009;
Niknam and Amiri, 2010). Thus, we introduce PSO into
the FCRM clustering to achieve global optimization.

In this paper, new methods of the FCRM clustering
algorithm are proposed using a modified objective func-
tion, a new error measure, and parameter estimation based
particle swarm optimization. Based on these methods, we
develop a fuzzy modeling approach for unknown nonlin-
ear systems, in order to provide a good model approxima-
tion. The optimal consequent parameters of the local lin-
ear T–S model are estimated using the Orthogonal Least
Squares (OLS) method.

The rest of this paper is organized as follows. In Sec-
tion 2, a brief review of the FCRM clustering algorithm
formulation is given, and in Section 3 the PSO algorithm
is introduced. Three novel FCRM clustering algorithms
are detailed in Section 4 considering the noise of the data
set. Simulation results compared with other learning algo-
rithms are shown in Section 5, and Section 6 summarizes
the important features of our approach.

2. Fuzzy c-regression model clustering
algorithm

A Takagi–Sugeno model consists of a set of fuzzy rules,
each describing a local input–output relation as follows:

Ri : IF xk1 isAi1 and . . . and xkM is AiM ,

THEN yi = ai1xk1 + ai2xk2 + · · · + aiMxkM + bi0,

i = 1, . . . , c, (1)

where Ri denotes the i-th IF-THEN rule, Aij is the fuzzy
subset, and c is the number of rules.

The affine T–S fuzzy model based on the FCRM be-
longs to the range of clustering algorithms with a linear
prototype.

Let S = {(x1, y1), . . . , (xN , yN )} = {(xk, yk), k =
1, . . . , N} be a set of input–output sample data pairs. As-
sume that the data pairs in S are drawn from c different
fuzzy regression models. The hyper-plane of the i-th clus-

ter representative is expressed as follows:

yk = fi(xk, θi) + Eik(θi),
= ai1xk1 + ai2xk2 + · · · + aiMxkM

+ bi0 + Eik(θi),

= [xk 1]. θT
i + Eik(θi), i = 1, 2, . . . , c, (2)

where xk = [xk1, . . . , xkM ] ∈ R
M is the input vector,

yk ∈ R is the output and θi = [ai1, . . . , aiM , bi0] ∈
R

M+1 is the parameter vector of the corresponding local
linear model.

The distance (error measure) between the value pre-
dicted by the model fi(xk, θi) and the output yk is defined
by

Eik(θi) = |yk − [xk 1]. θT
i |. (3)

The distances (Eik(θi)) are weighted with the mem-
bership values μik in the objective function that is mini-
mized by the clustering algorithm and is given as

J(S; U, θ) =
N∑

k=1

c∑

i=1

(μm
ik)E2

ik(θi), (4)

where m is the weighting exponent and μik is the mem-
bership degree of xk to the i-th cluster. The membership
values μik have to satisfy the following conditions:

μik ∈ [0 1], i = 1, 2, . . . , c, k = 1, 2, . . . , N, (5)

0 <
N∑

k=1

μik < N, i = 1, 2, . . . , c, (6)

c∑

i=1

μik = 1, k = 1, 2, . . . , N. (7)

The identification procedure of the FCRM algorithm
is summarized as follows (Hathaway and Bezdek, 1993).
Given data S, set m > 1 and specify regression models
(Eqn. (2)), choose an error measure (Eqn. (3)). Select a
termination threshold ε > 0 and initialize U (0) (e.g., at
random).

Repeat for l = 1, 2, . . . .

Step 1. Calculate values for c model parameters θ
(l)
i in

Eqn. (2) that globally minimize the restricted func-
tion Eqn. (4).

Step 2. Update U (l) with Eik(θ(l)
i ), to satisfy

U
(l)
ik

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
c∑

j=1

(
Eik

Ejk

) 2
m−1

]−1

if Eik > 0 for 1 ≤ i ≤ c,

0 otherwise.
(8)

Until ||U (l) − U (l−1)|| ≤ ε, then stop. Otherwise, set
l = l + 1 and return to Step 1.
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3. New FCRM clustering algorithm

Several authors have shown that the clustering results can
be severely distorted when they are based on noisy data
(Ohashi, 1984; Chen and Wang, 1999; Kim et al., 2004;
Yang et al., 2005). To overcome this problem, many stud-
ies on the robust fuzzy modeling technique have been re-
ported, one of them being the NC algorithm. In this ap-
proach, noise is considered a separate class. It is repre-
sented by a fictitious prototype that has a constant distance
δ from all the data points. The membership μ∗k of point
xk in the noise cluster is given by

μ∗k = 1 −
c∑

i=1

μik. (9)

Thus, the membership constraint for the good clus-
ters is effectively relaxed to

c∑

i=1

μik < 1. (10)

Dave’s objective function is given by

JNC(U, V )

=
c∑

i=1

N∑

k=1

μm
ikD2

ik +
N∑

k=1

δ2(1 −
c∑

i=1

μik)m, (11)

for any input xk in subspace i denoted by center vi, Dik =
||xk − vi||.

The combination of the noise clustering algorithm
with the FCRM algorithm can lead to a new FCRM ob-
jective function as follows:

Jnew(S; U, θ)

=
N∑

k=1

c∑

i=1

μm
ikE2

ik(θi) +
N∑

k=1

δ2μm
∗k. (12)

In Eqn. (12), the first term on the left hand side is the
same as the original FCRM objective function, while the
second term is due to the noise clustering extension. Here
δ is a scale parameter and may be used based on the idea
presented by Dave (1991) as

δ2 = γ
1

cN

N∑

k=1

c∑

i=1

E2
ik(θi), (13)

where γ is a user-defined parameter depending on the ex-
ample type.

To solve the constrained problem Jnew with respect
to μik, we introduce N Lagrange multipliers λk, k =
1, . . . , N . The minimization of Jnew starts by forming the
Lagrangian

F = Jnew −
N∑

k=1

λk(
c∑

i=1

μik + μ∗k − 1). (14)

By differentiating the Lagrangian with respect to μik ,
μ∗k and λk and setting the derivatives to zero, we obtain

∂F

∂μik
= m μm−1

ik E2
ik − λk = 0, (15)

∂F

∂μ∗k
= m δ2 μm−1

∗k − λk = 0, (16)

∂F

∂λk
=

c∑

i=1

μik + μ∗k − 1 = 0. (17)

From Eqns. (15) and (16), we get

μik =

[
λk

m

] 1
m−1

[
1

E2
ik

] 1
m−1

, (18)

and

μ∗k =

[
λk

m

] 1
m−1

[
1
δ2

] 1
m−1

. (19)

Using Eqns. (17)–(19), we get

[
λk

m

] 1
m−1

=
1

c∑
j=1

( 1
Ejk

) 2
m−1

+
(1

δ

) 2
m−1

, (20)

and then, by substituting this into Eqn. (18), the following
equation can be obtained:

μik =
1

c∑
j=1

(
Eik

Ejk
)

2
m−1 + (

Eik

δ
)

2
m−1

. (21)

From Eqns. (2) and (12), the objective function of
the New FCRM (NFCRM) clustering algorithm is defined
as

Jnew(S; U, θ) =
N∑

k=1

c∑

i=1

μm
ik(yk − [xk 1] θT

i )2

+
N∑

k=1

δ2(1 −
c∑

i=1

μik)m,

=
N∑

k=1

c∑

i=1

μm
ik (yk −

M+1∑

j=1

θij x̂kj)2

+
N∑

k=1

δ2(1 −
c∑

i=1

μik)m, (22)

where x̂k = [xk 1] and x̂kj is j-th coordinate of the vector
[xk 1].

The partial derivative of the objective function in
Eqn. (22) is

∂Jnew

∂θij
= −2

N∑

k=1

μm
ik (yk −

M+1∑

t=1

θit x̂kt)x̂kj , (23)
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and then

θij =

N∑
k=1

μm
ik (yk − ∑

t�=j

θit x̂kt)x̂kj

N∑
k=1

μm
ik x̂2

kj

,

i = 1, 2, . . . , c, j = 1, 2, . . . , M + 1. (24)

Based on the optimization conditions (Eqns. (21) and
(24)), the identification algorithm for Type 1 NFCRM
(NFCRM1) via iterative optimization is given as follows
(Soltani et al., 2011).

Algorithm: NFCRM1

Given a data S, set m > 1 . Fix γ > 0 and the
parameter vectors θi at random. Pick a termination
threshold ε > 0 and an initial partition U (0).
Repeat for l = 1, 2, . . . .
Step 1. Compute error measure Eik(θi) via Eqn. (3).
Step 2. Calculate δ2 via Eqn. (13).
Step 3. Compute μ

(l)
ik and θ

(l)
ij via Eqns. (21) and

(24), respectively.
Step 4. Compute err = ||U (l) − U (l−1)||.
Until err ≤ ε, then stop. Otherwise, set l = l + 1
and return to Step 1.

As mentioned by Wu and Yang (2002), the non-
Euclidean distance is more robust than the Euclidean one.
Then we give an extension of the non-Euclidean distance
in the case of the NFCRM1 algorithm. By transforming
(Eqn. (3)), the new error measure of is defined as

Eik(θi) =
√

1 − exp(−ρ |yk − [xk 1] · θT
i |), (25)

where ρ is a positive constant. Then the NFCRM1 objec-
tive function (Eqn. (12)) is rewritten as follows:

Jnew(S; U, θ) =
N∑

k=1

c∑

i=1

μm
ikE2

ik(θi)

+
N∑

k=1

δ2(1 −
c∑

i=1

μik)m. (26)

Equations (21) and (13) can be respectively rewritten
as

μik =
1

c∑
j=1

(
Eik

Ejk

) 2
m−1

+
(

Eik

δ

) 2
m−1

(27)

and

δ2 = γ
1

cN

N∑

k=1

c∑

i=1

E2
ik(θi). (28)

Algorithm: NFCRM2

Fix ρ > 0, γ > 0 and choose parameter vector θi

at random. Set a termination threshold ε > 0 and an
initial partition U (0).
Repeat for l = 1, 2, . . . .
Step 1. Compute error measure Eik(θi) via
Eqn. (25).
Step 2. Calculate δ2 via Eqn. (28).
Step 3. Compute μ

(l)
ik and θ

(l)
ij via Eqn. (27) and

Weighted Recursive Least-Squares (WRLS), respec-
tively.
Step 4. Compute err = ||U (l) − U (l−1)||.
Until err ≤ ε, then stop. Otherwise set l = l + 1 and
return to Step 1.

The algorithm based new error measure is called
Type 2 NFCRM (NFCRM2).

Two NFCRM algorithms are presented and devel-
oped taking into account the noisy data. The random ini-
tialization leads to the convergence to a local minimum
of the objective function. To overcome this problem, we
introduce PSO into the NFCRM2 algorithm to achieve
global optimization.

4. NFCRM based on PSO (PSO-NFCRM)

4.1. PSO algorithm. Particle swarm optimization was
first introduced by Kennedy and Eberhat (1995). The PSO
algorithm has been successfully applied to solve various
optimization problems. Panchal et al. (2009) proposed
PSO based clustering algorithms for remote image clas-
sification. A Multi-swarm Cooperative PSO (MCPSO)
was used to adjust the parameters of the T–S fuzzy model
and for the control of nonlinear dynamical systems (Ben
et al., 2008). Qiang and Xinjian (2011) proposed a PSO-
based FCM clustering algorithm encoded by membership
in order to handle data sets with dimensions smaller than
the number of samples. Liang et al. (2009) used a PSO
algorithm to optimize the initial clustering centers of the
possibilistic c-means algorithm for image segmentation.

The PSO algorithm is initialized with a population of
random solutions, called particles, to find an optimization
result. Each particle has a position and a velocity, rep-
resenting a possible solution to the optimization problem
and a search direction in the search space. In each itera-
tive process, the particle adjusts the velocity and position
according to the best experience called the pbest, found
by itself, and gbest, found by all its neighbors (Liang
et al., 2009). For every generation, the velocity and po-
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sition can be updated by the following equations:

Vk+1
pd = ωVk

pd + c1r1(pbestk − Xk
pd) (29)

+ c2r2(gbestk − Xk
id),

Xk+1
pd = Xk

id + Vk+1
pd , (30)

where ω is the inertia weight, which often changes from
0.2 to 0.9; k is the iteration number; Vk

pd is the velocity in
the d-th dimension of the p-th particle; xk

id is the position
in the d-th dimension of the p-th particle; pbest and gbest
are the memory of the particle; c1 and c2 are the cognition
and the social factor, respectively; r1 and r2 are random
functions uniformly distributed in [0 1].

4.2. PSO-NFCRM algorithm. The PSO-NFCRM al-
gorithm combines the advantages of the new fuzzy c-
regression model clustering algorithm of Type 2 and the
PSO algorithm. To evaluate each particle, the fitness func-
tion is defined as follows:

Fitness =
G

Jnew(S; U, θ)
, (31)

where G is a user-defined parameter.
The PSO-NFCRM clustering algorithm is summa-

rized in 7 steps.

Algorithm: PSO-NFCRM

Fix ρ > 0, γ > 0 and choose parameter vectors θi

at random. Select a termination threshold ε > 0 and
an initial partition U (0). Choose the number of parti-
cles NP ; Initialize the position and velocity of each
particle, fix learning factors c1 and c2 and the inertia
weight ω.
Repeat for l = 1, 2, . . . .
Step 1. Compute error measure Eik(θi) via
Eqn. (25).
Step 2. Calculate δ2 via Eqn. (28).
Step 3. Compute μ

(l)
ik and θ

(l)
ij via Eqn. (27) and

WRLS, respectively.
Step 4. Calculate the fitness value of each particle
according to Eqn. (31).
Step 5. Find the individual best pbest for each parti-
cle and the global best gbest.
Step 6. Update the velocity and the position of each
particle using Eqns. (29) and (30), respectively.
Step 7. Compute err = ||V(l) − V(l−1)||.
Until err ≤ ε, then stop. Otherwise, set l = l+1 and
return to Step 1.

4.3. Estimation of antecedent and consequent param-
eters. We use the novel fuzzy c-regression models for

decomposition of the input-output space into multiple lin-
ear structures. Gaussian membership functions are usually
chosen to represent the fuzzy sets in the premise part of
each fuzzy rule. As mentioned by Hathaway and Bezdek
(1993) as well as Chaoshun et al. (2009), the antecedent
parameters can be easily obtained using μik. The fuzzy
sets centers νik and the standard deviations σik are calcu-
lated as follows:

νij =

N∑
k=1

μik xkj

N∑
k=1

μik

,

i = 1, 2, . . . , c, j = 1, 2, . . . , M, (32)

σij =

√√√√√√√√

2
N∑

k=1

μik (xkj − νij)2

N∑
k=1

μik

. (33)

Once the antecedent parameters have been fixed, the
OLS method (Chen et al., 1989; Wu et al., 2005) can be
applied to estimate the consequent parameters for each
rule. Using OLS, the consequent parameters are estimated
by transforming the model (1) into an equivalent auxiliary
one

Y = P Θ + e, (34)

where Y = [y1, . . . , yN ]T , P = [p1, . . . , pM ] with
pi = [pi (x1), . . . , pi (xN )], Θ = [Θ1, . . . , ΘM ]T and
e = [e1, . . . , eN ]T .

The OLS algorithm is described as follows (Wang
and Mendel, 1992):

Step 1. For 1 ≤ i ≤ M , compute

w(i)
1 = pi, g

(i)
1 =

(w(i)
1 )T Y

(w(i)
1 )T w(i)

1

, (35)

[err](i)1 =
(g(i)

1 )2 (w(i)
1 )T w(i)

1

YT Y
. (36)

Find

[err](i1)
1 = max([err](i)1 ), (37)

and select

w1 = w(i1)
1 = p(i1), g1 = g

(i1)
1 . (38)

Step 2. For 2 ≤ i ≤ M , for 1 ≤ k ≤ N , i �= i1, . . . , i �=
ik, compute
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α
(i)
jk =

wT
j pi

wT
j wj

, 1 ≤ j < i, (39)

w(i)
k =pi −

k−1∑

j=1

α
(i)
jk wj , (40)

g
(i)
k =

(w(i)
k )T Y

(w(i)
k )T w(i)

k

, (41)

[err](i)k =
(g(i)

k )2 (w(i)
k )T wi

k

YT Y
. (42)

Find

[err](ik)
k = max([err](i)k ), (43)

and select

wk = w(ik)
k , gk = g

(ik)
k . (44)

Step 3. Solve the triangular system A Θ = g, where

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αi2
12 αi3

13 · · · αiM

1M

0 1 αi2
23 · · · αiM

2M
...

. . .
. . . · · · ...

... · · · . . . 1 αiM

M−1,M

0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

g = [g1, · · · , gM ]T . (45)

5. Simulation results

In this section, we are going to examine the performance
of the proposed clustering algorithms developed above.

In this paper, the Mean Square Error (MSE) is used
as the Performance Index (PI), which is defined as

MSE =
1
N

N∑

k=1

(yk − ŷk)2. (46)

5.1. Benchmark problem. We consider the nonlinear
system given as (Bidyadhar and Debashisha, 2011)

yk =
yk−1 (yk−2 + 2) (yk−1 + 2.5)

8.5 + y2
k−1 + y2

k−2

+ uk + vk, (47)

which is used as a test for identification techniques intro-
duced in this paper, to demonstrate the effectiveness of the
proposed algorithms in a noisy environment. Here yk is
the output, uk is the input which is uniformly bounded in
the region [−1, 1] and vk is a white noise with zero mean

and variance σ2, which is added to the output system at
different SNR levels (SNR = 1, 5, 10, 15 and 20 dB).

We simulated two experimental cases: Case 1 and
Case 2. The training data set contains 500 input–output
pairs while for the testing 1000 data pairs are generated
by the following input signal:

uk =

⎧
⎨

⎩

sin(2 k π
250 ) if k <= 500,

0.8 sin(2 k π
250 ) + 0.2 sin(2 k π

25 ) otherwise.
(48)

Tables 1–6 compare our results with those obtained
with different algorithms such as Gustafson–Kessel (GK)
(Gustafson and Kessel, 1979), the New FCRM Algorithm
(NFCRMA) (Chaoshun et al., 2009), FCM (Hoppner
et al., 1999) and the Fuzzy Model Identification (FMI)
clustering algorithm (Chen et al., 1998). We choose
{y(k−1), y(k−2), u(k), u(k−1)} as input variables, and
the number of fuzzy rules is four. The parameter settings
are γ = 0.1 and {γ = 0.01, ρ = 0.1} for the NFCRM1
and NFCRM2 algorithms, respectively. In addition, the
PSO-NFCRM algorithm performs best under the follow-
ing settings: ω = 0.94, G = 1, c1 = c2= 2, NP = 50.
In Case 1, we compare our results with those cited above

Table 1. Comparison results (Case 1).

Algorithms MSETr MSETs

FCM 0.0090 0.2220
GK 0.0046 0.1347
FMI 0.0013 0.0181

NFCRMA 5.20e-4 0.0096
NFCRM1 4.76e-4 0.0052
NFCRM2 3.94e-4 0.0045

PSO-NFCRM 1.80e-4 0.0020

with regard to the noisy data. Table 1 shows the various
modeling performance results obtained by different algo-
rithms. MSETr and MSETs are the MSE for training and
testing data, respectively. The comparison results demon-
strate that the best MSE is obtained by the proposed meth-
ods. In the absence of noise, the positive scalar parameter
δ can be regarded as a regulatory factor to reduce the sen-
sitivity of the model to the identification data.

In Case 2, the noise influence is analyzed with dif-
ferent SNR levels (SNR= 1, 5, 10, 15 and 20 dB). The
parameter settings are: γ = 0.1 and {γ = 0.1, ρ = 1} for
the NFCRM1 and NFCRM2 algorithms, respectively. In
addition, the PSO-NFCRM algorithm performs best un-
der the following settings: ω = 0.9, G = 1, c1 = c2 = 2,
NP = 50. As shown in Tables 2–6 both algorithms
(FCRM1and FCRM2) present almost similar performance
for the lower level of noise regarding Figs. 2 and 3. How-
ever, only the PSO-FCRM algorithm retained good per-
formance with a higher level of noise. On the whole, we
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Table 2. Comparison results with SNR = 20 dB (Case 2).

Algorithms MSETr MSETs

FCM 0.0285 0.2417
GK 0.0258 0.1867
FMI 0.0134 0.0802

NFCRMA 0.0133 0.0621
NFCRM1 0.0126 0.0473
NFCRM2 0.0116 0.0442

PSO-NFCRM 0.0107 0.0321

Table 3. Comparison results with SNR = 15 dB (Case 2).

Algorithms MSETr MSETs

FCM 0.0533 0.3164
GK 0.0471 0.2212
FMI 0.0373 0.1110

NFCRMA 0.0363 0.0806
NFCRM1 0.0355 0.0786
NFCRM2 0.0342 0.0770

PSO-NFCRM 0.0322 0.0732

Table 4. Comparison results with SNR = 10 dB (Case 2).

Algorithms MSETr MSETs

FCM 0.1155 0.5505
GK 0.1100 0.3042
FMI 0.1068 0.2136

NFCRMA 0.1039 0.1926
NFCRM1 0.0963 0.1836
NFCRM2 0.0947 0.1762

PSO-NFCRM 0.0913 0.1683

note that, whatever the noise level is, our proposed algo-
rithms always keep the best performance (Figs. 2 and 3).
As shown in Fig. 1, our algorithms give the best accuracy
models compared with other existing algorithms in the lit-
erature. Thus, they are more robust to noise, especially
the PSO-NFCRM algorithm.

Figure 1(a) shows original and the identified data ob-
tained using FCM for the testing data set, and Fig. 1(b)
presents the respective errors. Figures 1(c) and (e) show
the original and the identified data obtained using the
NFCRMA and PSO-NCFRM algorithms for the testing
data set, and Figs. 1(d) and (f) present the respective er-
rors.

5.2. Box–Jenkins system. We consider the Box–
Jenkins gas furnace data set (Box and Jenkins, 1970),
which is used as a standard test for identification tech-
niques. The data set consists of 296 pairs of input–output
measurements. The input u is the gas flow rate into a fur-

Table 5. Comparison results with SNR = 5 dB (Case 2).

Algorithms MSETr MSETs

FCM 0.4577 0.8167
GK 0.3364 0.8094
FMI 0.3356 0.4859

NFCRMA 0.3309 0.4465
NFCRM1 0.3158 0.4276
NFCRM2 0.3094 0.4261

PSO-NFCRM 0.2794 0.4042

Table 6. Comparison results with SNR = 1 dB (Case 2).

Algorithms MSETr MSETs

FCM 2.1292 2.1640
GK 1.0079 1.3765
FMI 0.9171 1.1649

NFCRMA 0.9046 1.1395
NFCRM1 0.8505 0.9491
NFCRM2 0.8092 0.9194

PSO-NFCRM 0.7141 0.8914

nace; the output y is the CO2 concentration in the out-
let gases. In order to take all the above-mentioned issues
into account, we simulated two experimental cases: Case
1 and Case 2. In Case 1, all the 296 data pairs are used as
training data and {y(k − 1), u(k − 4)} are selected as in-
put variables to NFCRM1, NFCRM2 and PSO-NFCRM
algorithms. The parameter settings are γ = 0.01 and
{γ = 1, ρ = 1} for the NFCRM1 and NFCRM2 algo-
rithms, respectively. In addition, the PSO-NFCRM algo-
rithm performs best under the following settings: ω = 0.9,
G = 10, c1 = c2 = 2, NP = 50.

Figure 4 shows the modeling performance of the pro-
posed clustering algorithms. Table 7 compares the results
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Fig. 2. MSE training performance of GK, NFCRMA, FMI,
NFCRM1, NFCRM2 and PSO-NFCRM for different
cases of SNR.
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Fig. 1. FCM, NFCRMA and PSO-NFCRM performance for the testing data set with SNR = 1 dB.
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Fig. 3. MSE testing performance of GK, NFCRMA, FMI,
NFCRM1, NFCRM2 and PSO-NFCRM for different
cases of SNR.

of the proposed models with those of other models re-
ported by Zhang et al. (2006) as well as Andri and Ennu
(2011).
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Fig. 4. MSE performance analysis of NFCRM1, NFCRM2 and
PSO-NFCRM for different cases of SNR.

In Case 2, the first 148 input-output data were taken
as training data and the last 148 as test data. We choose
{y(k − 1), y(k − 2), y(k − 3), u(k), u(k − 1), u(k − 2)}
as the variables of the fuzzy model, while the number of
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Table 7. Comparison results for gas furnace process identifica-
tion (Case 1).

Algorithms No. of No. of MSE
inputs rules

Tong (1980) 2 19 0.469
Pedrycz (1984) 2 81 0.320

Xu (1987) 2 25 0.328
Sugeno and Tanaka (1991) 2 2 0.359

Yoshinari (1993) 2 6 0.299
Joo (1997) 2 6 0.166

Chen (1998) 2 3 0.2678
Delgado (1999) 2 2 0.396

Liu (2002) 2 2 0.1653
Zhang (2006) 2 2 0.1600

Glowaty (2008) 2 2 0.391
Andri (2011) 2 10 0.167

NFCRM1 2 2 0.1528
NFCRM1-SNR = 30 dB 2 2 0.1531
NFCRM1-SNR = 20 dB 2 2 0.1538
NFCRM1-SNR = 10 dB 2 2 0.1547
NFCRM1-SNR = 1 dB 2 2 0.1555

NFCRM2 2 2 0.1524
NFCRM2-SNR = 30 dB 2 2 0.1526
NFCRM2-SNR = 20 dB 2 2 0.1531
NFCRM2-SNR = 10 dB 2 2 0.1540
NFCRM2-SNR = 1 dB 2 2 0.1544

PSO-NFCRM 2 2 0.1509
PSO-NFCRM-SNR = 30 dB 2 2 0.1522
PSO-NFCRM-SNR = 20 dB 2 2 0.1525
PSO-NFCRM-SNR = 10 dB 2 2 0.1529
PSO-NFCRM-SNR = 1 dB 2 2 0.1532

rules in our model is two. The parameter settings are γ =
0.1 and {γ = 0.1, ρ = 1} for NFCRM1 and NFCRM2
algorithms, respectively. In addition, the PSO-NFCRM
algorithm performs best under the following settings: ω =
0.9, G = 10, c1 = c2 = 2, NP = 50. Table 8 provides the
performance of the proposed approaches compared with
that of other models in the same case. The hyper-planes
obtained by the PSO-NFCRM clustering algorithm are

yk = 0.8510yk−1 − 0.0202yk−2 − 0.1024yk−3

− 0.0398uk − 0.0072uk−1 − 0.8256uk−2

+ 14.4647,

yk = 1.2172yk−1 − 0.4905yk−2 + 0.0881yk−3

+ 0.3219uk − 0.7976uk−1 − 0.1038uk−2

+ 9.8267. (49)

Figure 5 shows a comparative MSE analysis for Case 2.
It can be clearly shown that the PSO-NFCRM algorithm
is more robust to noise than the NFCRM1 and NFCRM2
algorithms (Figs. 4 and 5). However, when the noise
variance increases, the PSO-NFCRM clustering satisfies

Table 8. Comparison results for gas furnace process identifica-
tion (Case 2).

Algorithms No. of MSETr MSETs

rules

Kim et al. (1998) 2 0.034 0.244
Tsekouras (2005) 2 0.0164 0.145

Rezaee et al. (2010) 2 0.0162 0.1318
NFCRM1 2 0.0153 0.1047

NFCRM1-SNR = 30 dB 2 0.0159 0.1218
NFCRM1-SNR = 20 dB 2 0.0171 0.2317
NFCRM1-SNR = 10 dB 2 0.0180 0.3816
NFCRM1-SNR = 1 dB 2 0.0193 0.4414

NFCRM2 2 0.0151 0.0955
NFCRM2-SNR = 30 dB 2 0.0153 0.0961
NFCRM2-SNR = 20 dB 2 0.0165 0.1639
NFCRM2-SNR = 10 dB 2 0.0172 0.2030
NFCRM2-SNR = 1 dB 2 0.0189 0.2208

PSO-NFCRM 2 0.0148 0.0937
PSO-NFCRM-SNR = 30 dB 2 0.0151 0.0952
PSO-NFCRM-SNR = 20 dB 2 0.0155 0.1546
PSO-NFCRM-SNR = 10 dB 2 0.0161 0.1887
PSO-NFCRM-SNR = 1 dB 2 0.0183 0.2084

the convergence conditions. Consequently, the PSO-
NFRCM algorithm becomes more robust to noise with
MSE = 0.0183. The other two algorithms, NFRCM1 and
NFCRM2, exhibit poor performance with the MSE equal
to 0.0193 and 0.0189, respectively. A similar analysis
can be seen also in Table 7. In the absence of noise, it
is clear that PSO-NFCRM performs better than the other
algorithms reported in the literature (Tables 7 and 8 ). A
good approximation accuracy of PSO-NFCRM is shown
in Fig. 5.

6. Conclusions

In this paper, a new fuzzy c-regression clustering algo-
rithm is proposed using a modified objective function, a
new error measure, and a parameter estimation based par-
ticle swarm optimization. The application of a modified
objective function improves the robustness of the FCRM
method, based on the noise clustering algorithm and the
new error measure. Yet, the PSO procedure allows achiev-
ing the global minimum of the new objective function.
The proposed modifications of the FCRM method pro-
vide better results of fuzzy modeling of unknown non-
linear systems. The robustness and the quality of these
modifications in the FCRM method are demonstrated by
simulation results of two benchmark problems. Thus, the
proposed methods show favorable results compared with
the techniques reported in the literature. Consequently,
they may be extended to identification of complex appli-
cations regarding various types of modeling problems in
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Fig. 5. MSE training and testing performance analysis of
NFCRM1, NFCRM2 and PSO-NFCRM for different
cases of SNR.

noisy environments.
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