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Meta-learning is becoming more and more important in current and future research concentrated around broadly defined
data mining or computational intelligence. It can solve problems that cannot be solved by any single, specialized algorithm.
The overall characteristic of each meta-learning algorithm mainly depends on two elements: the learning machine space
and the supervisory procedure. The former restricts the space of all possible learning machines to a subspace to be browsed
by a meta-learning algorithm. The latter determines the order of selected learning machines with a module responsible for
machine complexity evaluation, organizes tests and performs analysis of results. In this article we present a framework for
meta-learning search that can be seen as a method of sophisticated description and evaluation of functional search spaces
of learning machine configurations used in meta-learning. Machine spaces will be defined by specially defined graphs
where vertices are specialized machine configuration generators. By using such graphs the learning machine space may be
modeled in a much more flexible way, depending on the characteristics of the problem considered and a priori knowledge.
The presented method of search space description is used together with an advanced algorithm which orders test tasks
according to their complexities.

Keywords: meta-learning, data mining, learning machines, complexity of learning, complexity of learning machines,
computational intelligence.

1. Introduction

A major challenge to be faced by computational intel-
ligence clearly regards the nontriviality of model selec-
tion (Guyon, 2003; 2006; Guyon et al., 2006; Jankowski
and Grąbczewski, 2007). An optimal model usually re-
sults from advanced search among learning machines us-
ing a number of learning strategies. However, for some
dataset benchmarks, e.g., for some of UCI ML Reposi-
tory benchmarks, simple and accurate (enough) models of
a relatively simple structure are known. The conclusion is
that before looking for a close-to-optimal model, it is not
known how simple the best model will be and how much
time will be enough to complete the search process with a
satisfactory solution.

One of the approaches to meta-learning develops
methods of decision committee construction and vari-
ous stacking strategies, also performing nontrivial anal-
ysis of member models to draw committee conclu-
sions (Chan and Stolfo, 1996; Prodromidis and Chan,
2000; Todorovski and Dzeroski, 2003; Duch and Itert,
2003; Jankowski and Grąbczewski, 2005; Troć and Un-
old, 2010). Another group of meta-learning enterprises

(Pfahringer et al., 2000; Brazdil et al., 2003; Bensusan
et al., 2000; Peng et al., 2002) is based on data character-
ization techniques (characteristics of data like the number
of features/vectors/classes, feature variances, information
measures on features, also from decision trees, etc.) or
on landmarking (machines are ranked on the basis of sim-
ple machine performances before starting the more power
consuming ones) and try to learn the relation between such
data descriptions and the accuracy of different learning
methods. Duch and Grudziński (1999) present optimiza-
tion of several addition line metrics or feature selections
around the k-Nearest Neighbors (kNN) method. In gating
neural networks (Kadlec and Gabrys, 2008), the authors
use neural networks to predict the performance of pro-
posed local experts (machines preceded by transforma-
tions) and decide about the final decision (the best com-
bination learned by regression) of the whole system.

Another application of meta-learning to optimization
problems, by building relations between elements which
characterize the problem and algorithm performance, can
be found in the work of Smith-Miles (2008). Kordík and
Černý (2011) combine meta-learning with evolutionary
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programming. In another approach (Czarnowski and Ję-
drzejowicz, 2011), the authors present the usage of a team
of agents, which executes several optimization processes
by tabu search or simulated annealing. An interesting
cooperation based on experience from learning of classi-
fiers in fuzzy-logic approaches can be found in the works
of Scherer (2011; 2010), Korytkowski et al. (2011) and
Łęski (2003). For some other approaches, see the books
by Brazdil et al. (2009) and Jankowski et al. (2011).

Although the projects are really interesting, they still
suffer from many limitations and may be extended in a
number of ways, especially in composition of the learning
machine space which is proposed in this paper.

A learning problem can be defined as P = 〈D,M〉,
where D ⊆ D is a learning dataset and M is a model
space. Then, learning is a function A(L) of a learning
machine L:

A(L) : KL ×D → M, (1)

where KL represents the space of configuration parame-
ters of a given learning machine L, D defines the space
of data streams (typically, a single data table, sometimes
composed of several independent data inputs), which pro-
vide the learning material, and M defines the space of
goal models. This means that the model is defined as a
result of the learning of a given learning machine. Models
play different roles (assumed by L), like that of classi-
fier, feature selector, feature extractor, approximator, pro-
totype selector, etc. From a general point of view M, is
not limited to any particular kind of algorithms (simple
or complex, neural networks or statistical, supervised or
unsupervised, etc.).

The Meta-Learning Algorithm (MLA) is also a learn-
ing algorithm of a machine, although the goal of meta-
learning is to find the best way of learning under given
conditions. The presented framework for meta-learning
search was realized as modules in the Intemi data mining
system (Grąbczewski and Jankowski, 2011) (it would be
difficult to build it as an element of the Weka (Witten and
Frank, 2005), mostly because of the complex approxima-
tion framework). Intemi is realized in C#/.Net.

Section 2 describes (in general) the idea of our meta-
learning machine. Section 3 presents the main topic of this
article which is a functional evolving space of a learning
machines used by meta-learning as the decomposition of
the learning problem. It is done via special graphs, called
generator flows. Then, Section 4 briefly presents the way
of computing the complexity of learning machines which
is used to order test tasks in the meta-learning search loop.
Interesting examples of using the described meta-learning
are presented in Section 5.

2. Meta-learning algorithm

Equation (1) specifies the processes of (learning) ma-
chines. In the case of meta-learning, the learning phase

learns how to learn, to learn as well as possible.
A perfect learning machine should discover not the

origin-target, but the most probable target. In other words,
the goal of generalization is not to predict an unpredictable
model. This means that, contrary to the no-free-lunch the-
orem for non-artificial problems, we may hope that gener-
alization for a given problem P is possible and our meta-
learning may find interesting solutions (such that maxi-
mize the defined goal for a given problem P).

However, finding an optimal model for a given data
mining problem P is almost always NP-hard1. Because
of that, meta-learning algorithms should focus on finding
approximations to the optimal solution.

This is why our general goal of meta-learning is to
maximize the probability of finding possibly the best so-
lution within a search space for a given problem P in a
minimal time.

As a consequence of such a definition of the goal, the
construction of meta-learning algorithm should carefully

• produce test-tasks for selected learning machines,

• advise the order of testing the tasks during the
progress of the search, and

• build meta-knowledge based on the experience
gained from passed tests.

Decomposition of the learning problem. In real life
problems, sensible solutions m ∈ M are usually com-
plex. Previous meta-learning approaches (mentioned in
Introduction) tried to find a final model via selection of
one of a number of simple machines or of complex ma-
chines but of a fixed structure. This significantly reduces
the space of models which could be found as solutions.

Another goal proposed here is based on decomposi-
tion of the learning problem P = 〈D,M〉 into subprob-
lems:

P = [P1, . . . ,Pn], (2)

where Pi = 〈Di,Mi〉. In this way, the vector of solu-
tions to the problems Pi constitutes a model for the main
problem P :

m = [m1, . . . , mn], (3)

and the model space becomes

M = M1 × · · · ×Mn. (4)

The solution constructed by decomposition is often
much easier to find because of reduction of the main task
to a series of simpler tasks: model mi solving the sub-
problem Pi is a result of the learning process

A(Li) : KLi ×Di → Mi, i = 1, . . . , n, (5)

1Finding an optimal model does not mean a single learning machine
but choosing an optimal model from among all possible ones. For exam-
ple, the complexity of choosing an optimal subset of features is O(2n)
(n is the number of features).
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where

Di =
∏

k∈Ki

Mk, (6)

and Ki ⊆ {0, 1, . . . , i−1}, M0 = D. This means that the
learning machine Li may take advantage of some of the
models m1, . . . , mi−1 learned by preceding subprocesses
and of the original dataset D ∈ D of the main problem P .

Thus, the main learning process L is decomposed to
the vector

[L1, . . . ,Ln]. (7)

Each Li may have a particular configuration. Such de-
composition is often very natural: standardization or fea-
ture selection naturally precedes classification, a number
of classifiers precede the committee module, etc.

It is important to see that the decomposition is not
a split into preprocessing and final (proper) learning. In-
deed, we should not talk about preprocessing but about
the necessity of data transformation (as an integral part
of a complex machine) because not all machines need the
same transformation. For example, a classifier commit-
tee may contain two classifiers which can learn on con-
tinuous data only and on discretized data only. This ex-
ample clearly shows that there is no single and common
preprocessing. Also characteristics of different learning
machines differ when used with some filtering transfor-
mations, and again such transformations cannot be always
shared via many machines in a given decomposition.

Now, the role of meta-learning can be seen as search-
ing for possibly the best decomposition in an automated
way. In our work, this has been done by generator flows
used to provide machine configurations. Of course, it may
happen that the best decomposition found consists of a
single machine, as it is good enough. However, even such
a solution must be found and validated. The claim must
follow a thorough analysis of many machines of different
kinds and structures.

To make meta-learning as universal as possible, the
items listed below should be included in the configuration
of a meta-learning algorithm.

• Functional search space definition. A fundamental as-
pect of every meta-learning is determination of the search
space of learning machines and the corresponding final
configurations of learning machines which will be consid-
ered by meta-learning. In the algorithm presented here,
the initial state of the generator flow is this configuration
element. Much more details are presented below and in
Section 3.

• Definition of the goal of meta-learning. Formulation
and formalization of the problem P is another obligatory
element to be defined. Definition of the goal has crucial
influence on what meta-learning finds. Within our algo-
rithm, the goal is defined by two items:
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Data Classifier
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Data
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Fig. 1. Template of the test task scenario: to define the goal of
learning for a classification problem, a CV test can be
defined by a repeater machine with a CV distributor and
a test scheme composed of the classifier template and the
classifier test module.

– template of test scenario: it defines the test procedure
in which a given candidate machine will be embed-
ded, learned and verified. See an example in Fig. 1
devoted to classification problems tested by cross-
validation. The expectation of this step is to obtain
(a series of) test results which are further analyzed to
estimate the candidate’s eligibility.

– quality estimation measure: it is a formal query in
a special language that is executed to collect results
from selected machines (within the test scenario) and
transform the collected series of results into a final
quantity measuring quality of the machine embedded
within the test task.

• Stop condition. “When to stop?” needs an answer.
We always have some time limits or expect an appropriate
level of quality of the goal machine.

• Other elements. In the case of advanced algorithms,
some other items may also be included in the configu-
ration. This increases the generality and flexibility of
the meta-learning algorithm. An example may be meta-
knowledge of different kinds that may improve the search
process.

The heart of our meta-learning algorithm is depicted
in Fig. 2. The initialization step is a link between a given
configuration of meta-learning responsible for preparing
initial states of several structures like the generator flow
or machine ranking. The meta-learning algorithm, after
some initialization, starts the main loop, where up to the
given stop condition new test tasks are prepared and ana-
lyzed to conclude from their gains.

In each loop repetition, first the algorithm defines
and starts a number of test tasks for constructed config-
urations of learning machines. In the next step (wait for
any task) the MLA waits until any test task is finished, so
that the main loop may be continued. A test task may fin-
ish in a natural way (at the assumed end of the task) or due
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Fig. 2. General meta-learning algorithm.

to some exception (different types of errors or broken by
meta-learning because of an exceeded time limit). After
a task is finished, its results are analyzed and evaluated.
In this step some results may be accumulated (for exam-
ple, saving information about the best machines) and new
knowledge items created (e.g., about cooperation between
different machines). Such knowledge may have crucial
influence on further parts of meta-learning (tasks formu-
lation and the control of the search through the space of
learning machines). When the stop condition is satisfied,
the MLA returns the final result: the configuration of the
best learning machine or, in a more general way, a ranking
of learning machines (ordered according to obtained test
results).

Starting test tasks. Candidate machine configurations
are constructed by a graph of machine generators called
the generator flow. In general, the goal of the generator
flow is to provide machine configurations on its output
which will be considered potential solutions for a given
problem P represented by given data D. Generator flows
should provide a variety of machine configurations of a
given type. Such machines may be of a simple or a com-
plex structure and may strongly differ in complexity.

Next, each machine configuration formulated by the
generator flow is nested in the test task template defined
for a given problem P (for a description of templates, see
Section 3.2 or Fig. 1). It is made by a test task genera-
tor (see Fig. 3, double solid lines denote the test task ex-
change paths, double dotted lines mean that one module
informs another about something, dashed lines mean that
one module uses another one). Test task generator uses the
test task template, which is a part of the configuration of
meta-learning and defines the goal of meta-learning. Each
machine configuration is nested in a single test task con-
figuration.

Test task configurations produced by a test task gen-

Test task
Heap

Complexity
Approximator

Test task
Generator

Quarantine Attractiveness
Module

Generators
Flow

Meta-learning
Search Loop

Fig. 3. Relations between modules of meta-learning algorithms.

erator are sent directly to the test task heap. In the test
task heap, tasks are continuously ordered by approximated
complexity of machines. The complexity is defined in a
way designed for computational intelligence tasks. Ex-
cept the time and space, its definition may be influenced
by the meta-learning process as it will be seen further on.
Also Section 4 presents some information about the ap-
proximation of machine complexity. Thanks to ordering
by complexity, simpler machines are favored and tested
before more complex ones.

This feature is crucial because, otherwise, meta-
learning would be vulnerable to losing much time with-
out guaranteeing that a given machine process will end.
It would be natural if we assumed that each machine
configuration provided by the generator flow was equally
promising. In the cases when our a priori knowledge is
deeper, it may be transformed in a formal way as a special
correction of complexity (see comments on the attractive-
ness of the machine in Section 2 and a complexity defini-
tion in Section 4). If the conditions to start a task (line 3 of
the code) are satisfied, then a pair of the machine config-
uration mc and its corresponding complexity description
cmplx is extracted from test task heap (see line 5).

According to the order decided within the heap, the
procedure startTasksIfPossible, sketched below, starts the
simplest machines first and then more and more complex
ones by extracting subsequent test tasks from the heap.

1 procedure startTasksIfPossible;
2 while (¬ testTaskHeap.Empty() ∧
3 ¬ mlTaskSpooler.Full()) {
4 <mc, cmplx>
5 = test task heap.ExtractMinimum();
6 timeLimit = τ · cmplx.time / cmplx.q
7 mlTaskSpooler.Add(mc,
8 limiter(timeLimit), priority−−);
9 }

10 end

Tasks are taken from test task heap, so when it is
empty, no task can be started, but still some tasks may al-
ready be running. Additionally, the task-spooler of meta-
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learning must not be full if we want to start a new task.
Since we use only an approximation of machine

complexity, the meta-learning algorithm must be ready
for cases when this approximation is not accurate or even
the test task is not going to finish (according to the halt-
ing problem or problems with the convergence of learn-
ing). To circumvent the halting problem and the problem
of (the possibility of) inaccurate approximation, each test
task has its own time limit for running. After the assigned
time limit, the task is aborted. In line 6 of the code, the
time limit is set up according to predicted time consump-
tion (cmplx.time) of the test task and the current reliability
of the machine (cmplx.q and Eqn. (9)). The initial value of
the reliability is the same (equal to 1) for all the machines,
and when a test task uses more time than the assigned time
limit the reliability is decreased (it can be seen in the code
and its discussion presented below). Here τ is a constant
(in our experiments equal to 2) to protect against too early
test task breaking.

Analysis of finished tasks. After starting an appropriate
number of tasks, the MLA is waiting for a task to finish.
A task may finish normally (including termination by an
exception) or be halted by a time-limiter (because of ex-
ceeding the time limit).

11 procedure analyzeFinishedTasks;
12 foreach (t in mlTaskSpooler.finishedTasks) {
13 mc = t.configuration;
14 if (t.status = finished_normally) {
15 qt = computeQualityTest(t,
16 queryDefinition);
17 machinesRanking.Add(qt, mc);
18 machineGeneratorsFlow.Analyze(t, qt,
19 machinesRanking);
20 } else { // task broken by limiter
21 mc.cmplx.q = mc.cmplx.q / 4;
22 testTaskHeap.Quarantine(mc);
23 }
24 mlTaskSpooler.RemoveTask(t);
25 }
26 end

The procedure runs in a loop to serve all the finished
tasks as soon as possible (also those finished while serv-
ing other tasks). When the task is finished normally, the
quality test (which is a part of the meta-learning config-
uration) is computed based on the test task results (see
line 16) extracted from the project with the query defined
by queryDefinition. As a result, a quantity qt is obtained.
The machine information is added to the machines rank-
ing (machinesRank) as a pair of the quality test qt and the
machine configuration mc.

Next, the generator flow is called (line 19) to analyze
the new results (it can be seen in Fig. 3, too). The flow
passes the call to each internal generator to let the whole
hierarchy analyze the results. Influenced machine gener-
ators inside the generator flow may provide new machine

configurations or at least change meta-knowledge.
When a task is halted by a time-limiter, it is moved

to the quarantine for a period not counted in time directly
but determined by the complexities (see again Fig. 3). In-
stead of constructing a separate structure responsible for
the functionality of a quarantine, the quarantine is realized
by two naturally cooperating elements: the test task heap
and the reliability term of the complexity formula (see
Eqn. (9)). First, the reliability of the test task (its qual-
ity of complexity approximation) is corrected (see code
line 21), and after that the test task is resent to the test task
heap as to the quarantine (line 22). This means that such
a task will be started again if the meta-learning algorithm
starts running tasks of such (corrected) complexity.

3. Functional form of the MLA search space

In the simplest way, the machine space browsed by meta-
learning may be restricted to a set of machine configu-
rations. So far, meta-learning projects have concentrated
on selection of algorithms from a fixed set of parameters
of known learning machines. The most important limi-
tation of such approaches is that their MLAs cannot au-
tonomously find appropriate data transformations before
application of final decision machines, which is almost al-
ways necessary in real applications.

An interesting solution to overcome these limitations
is decomposition of the learning problem (Eqn.( 2)) as
presented at the beginning of Section 2. In general, such
decomposition is NP-hard and cannot be solved in a sim-
ple way. Additionally, it cannot be solved in a direct an-
alytical way. But this does not mean that we cannot do
much more than the previous meta-learning projects.

Finding attractive decompositions can be done quite
naturally when using knowledge about the usefulness of
particular computational intelligence algorithms in differ-
ent contexts. This helps in construction of reasonable
classifiers, approximators, combined with data transfor-
mations, etc. and augmented by complexity control may
constitute very powerful meta-search algorithms. Based
on meta-knowledge and attainable prior information about
the problem, it is possible to construct functional form of
the search space for meta-learning algorithm. We define
such search spaces in the form of a graph designed to pro-
vide a series of learning machine configurations for build-
ing test tasks for further browsing by the main part of the
meta-learning algorithm presented in the previous section.

The graph is composed of Machine Configuration
Generators (MCGs) as nodes. The main goal of each
MCG is also to provide machine configurations through
its output. But each MCG is free to do it in its own way—
there are MCGs of different types and new ones may be
developed and extend the system at any time. MCGs may
obtain on their inputs (input edges) a series of machine
configurations from other MCGs. The graph (called the
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Simplest generators flow

output

Classifiers set
generator

Fig. 4. Example of the simplest generator flow.

generator flow) is directed and acyclic2. Each MCG may
use (different) meta-knowledge, and reveal different be-
havior, which in particular may even change in time (dur-
ing the MLA run). By adding generators (with proper
connections where adequate) we unfold the meta-learning
space in proper directions and can control the unfolding
actively during the meta-learning process.

The decomposition is performed by the graph in a
natural way by means of connections between its nodes.
This will be seen soon in examples. Connections facilitate
the exchange of machine configurations between nodes,
which can be appropriately combined within the nodes.
With such a concept, simple and complex machine con-
figurations can be built easily with or without deep knowl-
edge about particular MCGs.

Some of the outputs of generators in the graph can
be bound to the output of the generator flow—the actual
provider of configurations to meta-learning. In the run
time of the meta-learning algorithm, the configurations re-
turned by the generator flow are nested in the test task and
transported to the machine heap before the MLA starts
tests of selected (by ordering) configurations.

The simplest possible generator flow is presented in
Fig. 4. It contains a single MCG with no inputs. The
output of the flow is exactly that of the only MCG (it is
realized by the connection between the MCG output and
the flow output).

The streams of configurations provided by genera-
tors may be classified as fixed or non-fixed. Fixed means
that the generator depends only on its inputs and config-
uration (each generator may have a configuration, simi-
larly to learning machines). This means no influence of
the process of the MLA on the output of the (fixed) MCG.
Non-fixed generator outputs depend also on the learning
progress (see the advanced generators below).

When a machine configuration is provided by a gen-
erator, information about the origin of the configuration
and some comments about it are attached to the ma-
chine configuration. This is important for further meta-
reasoning. It may be useful to know how the configura-
tion was created—the production line can be restored and
analyzed to gather more meta-knowledge.

The only assumption about generators behavior is
that they provide finite series of configurations. As can

2Cycles would result in an infinite number of configurations provided
by the graph.

be seen in line 19 of the code in Section 2, the generator
flow receives information about the progress in the meta-
search process. Such information is propagated to each of
the MCG. This means that each MCG has access to the
current state of the MLA and their further behavior may
depend on that process. More and more sophisticated ma-
chine generators can optimize time of searching for the
most attractive solutions. Below, we describe examples of
machine configuration generators and examples of gener-
ator flows.

3.1. Set-based generators. The simplest but very use-
ful type of machine generator is aimed at providing just an
arbitrary sequence of chosen machine configurations (thus
the name set-based generator). Usually, it is convenient
to have a few set-based generators in a single generator
flow, each devoted to machines of different functionality,
for example,

– set-based generator of simple classifiers,

– set-based generator of classifiers,

– set-based generator of approximators,

– set-based generator of feature ranking,

– set-based generator of decision trees,

– set-based generator of prototype selectors,

– set-based generator of committees,

– set-based generator of base data transformers,

– set-based generator of data filters (outlayers, redun-
dant attributes, etc.).

An example of a generator flow with a set-based gen-
erator providing classifier machine configurations is pre-
sented in Fig. 4.

Sometimes it is even more attractive to disjoin some
groups of methods because of their specific needs. For ex-
ample, when different machines expect data with different
types of features, they may be grouped according to their
preferences. For example, in the case of feature ranking
methods, we may need the following three generators:

– set-based generator of feature ranking (for dis-
cretized/symbolic data),

– set-based generator of feature ranking (for continu-
ous data),

– set-based generator of feature ranking (for any data).

Thanks to the split, it is easy to precede the groups of
methods by appropriate data transformation—an example
is provided in Fig. 9. Some other examples of using set-
based generators will also be shown below.
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Fig. 5. Transform and classify machine configuration tem-
plate: placeholder for the transformer and the fixed clas-
sifier (kNN) (left), two placeholders—one for the trans-
former and one for the classifier (right).

3.2. Template-based generators. Template-based
generators are used to provide complex configurations
based on machine configuration templates and machine
configurations generators providing items to replace tem-
plate placeholders. A machine configuration with an
empty placeholder (or placeholders) as a child machine
configuration is called a machine template (or, more pre-
cisely, a machine configuration template). Each place-
holder in a given template can be filled with a machine
configuration or with a hierarchy (DAG graph) of ma-
chines configurations. For example, if a meta-learner is to
search for combinations of different data transformers and
the kNN as a classifier, it can easily do it with a template-
based generator. The combinations may be defined by a
machine template with a placeholder for the data trans-
former and a fixed kNN classifier. Such a template-based
generator may be connected to a set-based generator pro-
viding data transformations. As a result, the template-
based generator will provide a sequence of complex con-
figurations resulting from replacing the placeholder with
subsequent data transformation configurations. Please
note that, in the example, the machine template is to play
the role of a classifier. Because of that, we can use the
Transform and classify (TnC) machine template shown
in Fig. 5 on the left. The TnC machine learning process
starts with learning data transformation and then runs the
classifier.

The generator’s template may contain more than one
placeholder. In such a case the generator needs more than
one input. The number of inputs must be equal to that of
placeholders. The role of a placeholder is always defined
by its inputs and outputs declarations. Thus, it may be a
classifier, approximator, data transformer, ranking, com-
mittee, etc. Of course, the placeholder may be filled with
a complex machine configuration as well as a simple one.

Replacing the kNN from the previous example by a
classifier placeholder (cf. Fig. 5, right), we obtain a tem-
plate that may be used to configure a generator with two

Simple generators flow

output

Classifiers set
generator

Transformers set
generator

Transform and classify
machine generator

Fig. 6. Simple generator flow.

inputs: one designated for a stream of transformers, and
the other one for a stream of classifiers.

In general, the template-based generator is defined
by

– a template with one or more placeholders,

– a series of paths to placeholders, and

– the operation mode.

The order within the series of paths to placeholders
defines the order of inputs of the generator. The main goal
of a template-based generator can be seen as production
of series of machine configurations by filling the template
with appropriate machine configurations from inputs ac-
cording to the series of the path. Similarly, the role of
each machine configuration produced by this generator is
always the same as the role of template.

The template-based generator can operate in one of
two modes: one-to-one or all-to-all. In the case of the
example considered above, the ‘one-to-one’ ‘mode makes
the template-based generator obtain’ one transformer and
one classifier from appropriate streams and put them into
the two placeholders to provide a result configuration. The
generator repeats this process as long as both streams are
not empty. In the ‘all-to-all’ mode the template-based
generator combines each transformer from the stream
of transformers with each classifier from the classifiers
stream to produce result configurations. Naturally, the
mode affects the operation of multi-input generators only.

Figure 6 presents the discussed example of using
two set-based generators and one template-based gener-
ator. The set-based generators provide transformers and
classifiers (respectively) to the two inputs of the template-
based generator, which puts the configurations coming to
its inputs to the template providing fully specified config-
urations. Different mixtures of transformations and classi-
fiers are provided on the output, depending on the mode of
the generator: one-to-one or all-to-all. Please note that the
generator flow’s output obtains configuration from both
the set-based classifiers generator and the template-based
generator, so it will provide both the classifiers taken di-
rectly from the declared set and the classifiers preceded by
the declared transformers.
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Fig. 7. Template of the meta parameter search machine with a
classifier placeholder and a classifier in the role of the
parameter search machine.

Another interesting example of a template-based
generator is using a template of the Meta-Parameter
Search (MPS) machine configuration. The MPS ma-
chine can optimize any elements of machine configura-
tion3. The search and optimization strategies are realized
as separate modules which carry appropriate functional-
ity. Because of that, search strategies are ready to pro-
vide optimization of any kind of elements (of configura-
tions). Even abstract (amorphic) structures can be opti-
mized. Such structures may be completely unknown for
MPS, but a given search strategy knows what to do with
objects of a given structure. The template containing a
test scheme with a placeholder for a classifier is very use-
ful here (see Fig. 7). Note that the placeholder of that
template plays the role of the classifier, and finally the
MPS machine will also play that role. Configuring the
MPS machine to use the auto-scenario option makes the
meta-learner receive configurations of MPS to realize the
auto-scenario4 for a given classifier. This means that such
a generator will provide configurations for selected classi-
fiers to auto-optimize their parameters.

A more complex generator flow using template-
based generator with the MPS machine is presented in
Fig. 8. This generator flow contains three set-based gen-
erators, which provide transformers, rankings and classi-
fiers configurations to other (template-based) generators.
Please note that the classifier generator sends its output
configurations directly to the generator flow output and
additionally to three template-based generators: two com-
bining transformations with classifiers and an MPS gen-
erator. This means that each classifier configuration will
be sent to the meta-learning heap and additionally to other

3It is possible to optimize several parameters during optimization,
sequentially or in parallel, depending on the search strategy used.

4Auto-scenario is realized thanks to the ontology of optimization pro-
cedures for each machine.

Generators flow

flow output

Transformers
generator

Rankings
generator

Classifiers
generator

Feature selection
of rankings
generator

Transform and classify
generator II

Transform and classify
generator

MPS/FS of
Transform and classify
generator

MPS for classifiers
generator

Fig. 8. Example of a generator flow.

generators to be nested in other configurations (generated
by the Transform and classify and MPS generators).

The two Transform and classify generators com-
bine different transformations with the classifiers obtained
from Classifiers generator. The configurations of trans-
formation machines are received by proper inputs. It is
easy to see that the first Transform and classify gen-
erator uses the transformations output by Transformers
generator while the second one receives configurations
from another template-based generator and generates fea-
ture selection configurations with the use of different rank-
ing algorithms received through the output-input connec-
tion with Rankings generator. The combinations gen-
erated by the two Transform and classify generators are
also sent to the output of the generator flow.

Additionally, Transform and classify generator II
sends its output configurations to MPS/FS of Transform
and classify generator. This generator produces MPS
configurations, where the number of features is optimized
for configurations produced by Transform and classify
generator II. The output of the MPS generator is passed
to the output of the generator flow, too.

In such a scheme, a variety of configurations is ob-
tained in a simple way. The control of template-based
generators is exactly convergent with the needs of meta-
search processes.

There are no a priori limits on the number of genera-
tors and connections used in generator flows. Each gener-
ator flow may use any number of generators of any kind.
As discussed above, it is often fruitful to separate groups
of classifiers (data transformations, etc.) into independent
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Rankings
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Classifiers
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of rankings
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Transform and classify
generator

MPS/FS of
Transform and classify
generator

Fig. 9. Part of the generator flow with two separate ranking gen-
erators to reflect different roles and different application
contexts.

set-based generators to reflect different application con-
texts of the machines. Such a case can be seen in Fig. 9,
where, for more flexibility, feature ranking methods are
separated into those operating on discrete features (to be
preceded by a discretization transformation, e.g., informa-
tion theory based rankings) and others, which may be used
without discretization. The generator of ranking machines
which need discretized data sends its configurations to an-
other generator which nests configurations ranking in a
template, where the ranking machine is preceded by a dis-
cretization transformer. The feature selection generator
has two inputs and all algorithms finish within better data
propagation scenarios, as natural as it is.

The generator flow may be easily extended by adding
proper template-based generators. One useful extension
creates machine configurations exploiting instance selec-
tion. The instance selection algorithms (Jankowski and
Grochowski, 2005; 2004) are used for several reasons:
to filter out noise instances, to shrink the dataset or to
find prototype instances (as a prototype-based explana-
tion of the problem considered). The most typical way
of using instance selection algorithms is to combine them
with classifiers like kNN or RBF. To do it with a machine
generator we just need a proper template as presented in
Fig. 10. The template contains two placeholders: one for
an instance selection algorithm and the other for a classi-
fier. The generator based on this template needs two in-
puts: one with configurations of instance selection algo-
rithms and the other with classifiers. The required gener-
ators and their bindings are presented in Fig. 10 (bottom).
The IS classifiers generator provides combinations of
instance selection methods with classifiers. Note that the
combinations are so simple because of using appropriately

IS-Classifier template

Data Classifier

Classifiers

Data Classifier

Instance selection

Data Data

Part of generators flow with in-
stance selection

flow output

Instance selectors
generator

Classifiers (kN-
N/RBF)
generator

IS classifiers
generator

Fig. 10. Part of the generator flow providing combinations of
instance selection methods with classifiers trained on
selected data instances.

composed templates in machine generators. Besides the
definition of the template, it is sufficient to provide proper
connections between generators reflecting the roles played
by particular machine components.

Committees can be composed using template-based
generators in a similar way. In this case we use another
flexible feature of generators input–output connections:
the possibility of propagation of not only series of ma-
chine configurations but also series of sequences of ma-
chine configurations. Let us consider committee templates
as in Fig. 11. The top one has a placeholder for a sequence
of classifiers (not a single classifier). The bottom one has
an additional placeholder for a committee decision mod-
ule, so that committees can be composed of different se-
quences of classifiers and different decision modules (vot-
ing, weighting, etc.). It can be incorporated into a genera-
tor flow as in Fig. 12.

3.3. Advanced generators. The advantage of ad-
vanced generators over the generators mentioned above is
that they can make use of additional meta-knowledge and
can observe the progress of meta-learning to actively pro-
vide configurations and exhibit their own strategy. Meta-
knowledge, including experts’ knowledge, may be embed-
ded in a generator for more intelligent filling of placehold-
ers in the case of template-based generators. For example,
generators may “know” that a given classifier needs only
continuous or discrete features.

Advanced generators are informed each time a test
task is finished and analyzed. The generators may access



656 N. Jankowski

Committee template

Data Classifier

Classifiers

Data Classifier

Committee

Classifier Classifier

Weighting module

Classifier Classifier

Committee template

Data Classifier

Classifiers

Data Classifier

Committee

Classifier Classifier

Fig. 11. Templates of committees.
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Fig. 12. Part of the generator flow devoted to construction of
committees.

Part of generators flow with intelligent committee generator

flow output

Committee modules
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Fig. 13. Part of the generator flow with an intelligent committee
generator.

the results computed within the test task and the current
machine configuration ranking (compare code line 19 in
Section 2). The strategy enables providing machine con-
figurations derived from observations of the meta-search
progress. Advanced generators can learn from meta-
knowledge, half-independently of the heart of the meta-
learning algorithm, and build their own specialized meta-
knowledge. It is very important because the heart of the
meta-learning algorithm cannot (and should not) be re-
sponsible for specific aspects of different kinds of ma-
chines or other sort of local knowledge. This feature is
very welcome because, as everybody believes, there is no
one universal knowledge that could advise all known (and
even not known) learning algorithms. Generator modules
should be independent of the main part of the algorithm
and should cooperate with the MLA and other generators.
On the other hand, the MLA should not be responsible for
all aspects of each learning machine; meta-learning can-
not be “aware” even about all types of learning machines.

Another worthwhile example of an advanced gener-
ator is the intelligent committee generator presented in
Fig. 13. It continuously observes the progress of meta-
learning, especially changes in the ranking of machines.
On the basis of this information, it builds new configu-
rations of (promising) committees. New committees are
built only under restricted conditions—when we expect it
is rational to do it. Shortly, it is based on the progress in
ranking and on the diversity of committee members which
are selected from among models of known quality and re-
sults that can be compared with the McNemmar test. It is
really simple to realize it in our Intemi data mining system
(Grąbczewski and Jankowski, 2011). Additionally, even
if several committee decision modules are tested, the real
time of computations does not grow with the factor of the
number of modules because our system uses a specialized
machine cache so that committee members are computed
once and never recomputed—they are reused when appro-
priate.

Simple meta-knowledge about the influence of data
transformation methods on further learning may be the
foundation of another advanced generator: the filter gen-
erator. It may provide filter transformations depending
on not so complex analysis of the dataset representing the
problem. For example, in the cases of very large data
(huge number of instances or features) or too large for
a particular machine (quite complex classifier or feature
selector), the generator can provide methods to select in-
stances or features depending on the characteristic of the
data. In a similar way, some other dataset transformation
may be output by the filter provider, for example, pruning
non-informative features, redundant features, outliers, etc.
The advantage of such solution lies in the fact that filtering
methods are not provided obligatorily but optionally after
shallow or deeper analysis.

Such a generator brilliantly fits the idea of complex-
ity based control of tasks order in the heart of the meta-
learning algorithm. For example, in the above-mentioned
case of too huge data, the filter generator provides a ma-
chine for reduction of data complexity, which, used prior
other machines may yield significant reduction of the
complexity of the whole complex configuration. This way,
the task of too huge computational time requirements is
reduced to a computable task, while the solution may still
be attractive from the point of view of the original prob-
lem.

Summing the main features of the generator flow:

• The generator flow is a direct acyclic graph which
may be composed of many machine generators. Each
generator has zero or more inputs which are used to
receive machine configurations from other genera-
tors.

• The generator flow should reflect the functional do-
main of a given problem. In other words, the search
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space should be as adequate for a given problem as
possible. This may be done in a very natural way by
composing the relation between adequately chosen
machine generators and their connections.

• The generator flow is informed by the MLA about the
progress in meta-learning. This information is propa-
gated to each generator and can be used to control the
operation of the generator. The results of performed
tests are valuable meta-knowledge that can be col-
lected, analyzed and used to construct a new machine
configuration and then passed to the machine heap
for testing. In consequence, the product of the gen-
erator flow depends not only on its configuration but
also on the progress of meta-learning.

• The generator graph may also be changed (nodes and
their connection, which in configuration are initial-
ized) during meta-learning.

• The meta-learning algorithm may be continuously
extended by a new version of more and more sophis-
ticated machine generators. This is, currently, our
main goal.

It is important to see that each type of modules (gen-
erators) has its own strategy and can be used as an el-
ement of an arbitrarily huge generator flow. The graph
defines the space of meta-learning search. Intelligent be-
havior of machine configuration generators within a mod-
ular generator flow facilitates creation of more and more
intelligent learning algorithms. The meta-learning algo-
rithm depicted in Fig. 2 may get more and more advanced
by extending its generator flow with more and more ad-
vanced generators. In consequence, the algorithm will
gather more meta-knowledge and exhibit more general ar-
tificial intelligence contrary to many known algorithms of
AI or CI.

4. Machine complexity evaluation

A detailed description of computation complexity is be-
yond the scope of this paper. We mostly focus on search
space modeling and its relations with other parts of a large
meta-learning environment. Only the most important as-
pects of complexity control are provided below.

To obtain the right order of learning machines within
the search queue, a complexity measure should be used.
We use the following definition of complexity:

ca(p) = lp + tp/ log tp. (8)

Naturally, we use an approximation of the complex-
ity of a machine, because the actual complexity is not
known before the real test task is finished. Because of
this approximation and because of the halting problem

(we never know whether a given test task ends), an ad-
ditional penalty term is introduced to the above definition:

cb(p) = [lp + tp/ log tp]/q(p), (9)

where q(p) is a function term responsible for reflecting an
estimate of reliability of p. At the beginning, the MLAs
use q(p) = 1 (generally q(p) ≤ 1) in the estimation, but in
the case when the estimated time (as a part of the complex-
ity) is not enough to finish the program p (a given test task
in this case), the program p is aborted and the reliability
is decreased. The aborted test task is moved to a quaran-
tine according to the new value of complexity reflecting
the change of the reliability term (cf. comments in Sec-
tion 2). This mechanism prevents the running of test tasks
for an unpredictably long time or even an infinite time.
Otherwise the MLA would be very brittle and susceptible
to running tasks consuming unlimited CPU resources.

The test task heap uses the complexity of the ma-
chine of a given configuration as the priority key. It is not
accidental that the machine configuration which comes to
the test task heap is the configuration of the whole ma-
chine test (where the proposed machine configuration is
nested). This complexity really well reflects the complete
behavior of the machine: a part of the complexity formula
reflects the complexity of the learning of a given machine
and the rest reflects the complexity of computing the test
(for example, a classification or an approximation test).

Because complexity depends on the configuration
and inputs, the complexity computation must reflect the
information from the configuration and inputs. The re-
cursive nature of the configuration, together with input–
output connections, may compose quite a complex infor-
mation flow. Sometimes, the inputs of submachines be-
come known just before they are started, i.e., after the
learning of other machines is finished (machines that pro-
vide necessary outputs). This is one of the most important
reasons why determination of complexity, contrary to ac-
tual learning processes, must be based on meta-inputs, not
on exact inputs (which remain unknown).

To facilitate recurrent determination of complexity,
the functions which compute complexity must also pro-
vide meta-outputs, because such meta-outputs will play a
crucial role in computation of complexities of machines
which read the outputs through their inputs.

In conclusion, a function computing the complexity
for machine L is a transformation in the form

DL : KL ×M+ → R
2 ×M+, (10)

where the domain is composed by the configurations
space KL and the space of meta-inputs M+, and the re-
sults are time complexity, memory complexity and appro-
priate meta-outputs. Please refer to the definition of learn-
ing (Eqn. (1)), because computation of complexity is a
derivative of the behavior of the machine learning process.
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To enable such a high level of generality, the concept
of meta-evaluators has been introduced. The general goal
of a meta-evaluator is

• to evaluate and exhibit appropriate aspects of
complexity representation based on some meta-
descriptions like meta-inputs or configuration5;

• to exhibit a functional description of complexity as-
pects (comments) useful for further reuse by other
meta evaluators6.

To enable complexity computation, every learning
machine gets its own meta evaluator.

Evaluators are almost always constructed with the
help of a series of approximators. The number of ap-
proximators per evaluator depends on the number of func-
tionalities which has to be provided by a given evaluator.
Typically, each machine evaluator has approximators for
learning time and space consumption approximation and
others depend on the type of evaluator.

Construction of learnable evaluators. We have de-
fined a common framework for building approximators
for evaluators to simplify the process of complexity ap-
proximation. The framework is defined in a very general
way and enables building evaluators using dedicated ap-
proximators for different aspects of complexity like learn-
ing time, the size of the model, classification time, trans-
formation time, etc.

The complexity control of task starting in meta-
learning does not require very accurate information about
tasks complexities. It is enough to know whether a task
needs a few times more time or memory than another
task.

Figure 14 presents the general idea of creating ap-
proximators for an evaluator. To collect learning data,
proper information is extracted form observations of “ma-
chine behavior”. To do this, an “environment” for ma-
chine monitoring must be defined. The environment con-
figuration is sequentially adjusted, and an appropriate test
scheme is created and observed (compare the data collec-
tion loop in the figure). Observations bring the subsequent
instances (vectors) of the training data (corresponding to
the current state of the environment and expected approxi-
mation values). Changes of the environment facilitate ob-
serving the machine in different circumstances and gather-
ing diverse data describing machine behavior in different
contexts.

The environment changes are determined by ini-
tial representation of the environment (the input variable
startEnv) and a specialized scenario (cf. Section 3.2),

5In the case of a machine, to exhibit the complexity of time and mem-
ory.

6In the case of a machine, the meta-outputs are exhibited to provide
the complexity information source for their inputs readers.
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Fig. 14. Process of building approximators for a single evalua-
tor.

which defines how to modify the environment to get a se-
quence of machine observation configurations, i.e., con-
figurations of the machine being examined nested in a
more complex machine structure. The generated ma-
chine observation configurations should be as realistic as
possible—the information flow similar to expected appli-
cations of the machine allows us to better approximate the
desired complexity functions. For each observation con-
figuration ‘oc’, machines are created and run according to
‘oc’, and when the whole project is ready, proper learning
data items are collected.

When the data collection loop fails to generate new
machine observation configurations, the data collection
stage is finished. Next, each approximator can be trained
from the collected data. After that, the evaluator may use
the approximators for complexity prediction. Note that
the learning processes of evaluators are conducted with-
out any advice from the user.When the process of build-
ing approximators for a given evaluator is finished, the
evaluator is deposited in a repository of evaluators. Then,
meta-learning can use the evaluator to approximate quan-
tities concerning complexity of corresponding learning
machines.

5. Examples of application

In this section we show how the generator flows defined
in Section 3 expand the search space for the meta-learning
algorithm. Note that the goal here is not to present how
optimal accuracies can be achieved, but how generator
flows unfold the search space.
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Machine configuration notation. To present complex
machine configurations in a compact way, special nota-
tion is introduced that allows sketching complex configu-
rations of machines inline as a single term. The notation
does not present the input–output interconnections, so it
does not allow reconstructing the full scenario in detail
but shows a simplified machine structure by presenting a
single configuration via its hierarchy.

With square brackets we denote the submachine re-
lation. A machine name standing before the brackets is
the name of the parent machine, and the machines in the
brackets are the submachines. When more than one name
is embraced with the brackets (comma-separated names),
the machines are placed within a scheme machine. Paren-
theses embrace significant parts of machine configura-
tions. For example, the following text:

[[[RankingCC], FeatureSelection],
[kNN (Euclidean)], TransformAndClassify]

denotes a complex machine, where a feature selection sub-
machine (FeatureSelection) selects features from the top
of a correlation coefficient based ranking (RankingCC),
and next, the dataset composed of the feature selection is
an input for a kNN with an Euclidean metric—the combi-
nation of feature selection and the kNN classifier is con-
trolled by a TransformAndClassify machine. Similar nota-
tion,

[[[RankingCC], FeatureSelection],
[LVQ, kNN (Euclidean)], TransformAndClassify],

means nearly the same as the previous example, except
the fact that between the feature selection machine and
the kNN is placed an LVQ machine as the instance
selection machine.

The following notation represents an MPS
(ParamSearch) machine which optimizes parameters
of a kNN machine:

ParamSearch [kNN (Euclidean)].

In the case of

ParamSearch [LVQ, kNN (Euclidean)],

both LVQ and kNN parameters are optimized by the
ParamSearch machine. In a machine denoted as

ParamSearch [[[RankingCC], FeatureSelection],
kNN (Euclidean)],

only the number of chosen features is optimized because
this configuration is provided by MPS/FS of Trans-
form and classify generator (see Fig. 15), where the
ParamSearch configuration is set up to optimize only the
parameters of the feature selection machine. Of course,
it is possible to optimize all the parameters of all subma-
chines, but this is not the goal of the example and, more-
over, the optimization of too many parameters may be-
come too complex for the assumed time limit.

5.1. Meta-learning configuration. The most impor-
tant elements of our meta-learning algorithm configura-
tion are the meta-learning test template, the query test, the
stop criterion and the generator flow.

Meta-learning test template. The test template must be
adequate to the goal of learning. Since the chosen bench-
marks are classification problems, we may use cross-
validation as the strategy for estimation of classifiers capa-
bilities. The repeater machine may be used as the test con-
figuration with the distributor set up to the CV-distributor
and the inner test scheme containing a placeholder for the
classifier and a classification test machine configuration,
which will test each classifier machine and provide results
for further analysis.

Such a repeater machine configuration template is
presented in Fig. 1. When used as the MLA test tem-
plate, it will be repeatedly converted to different feasible
configurations by replacing the classifier placeholder in-
side the template with classifier configurations generated
by the generator flow.

Query test. The second part which defines the goal of
the problem is the query test used to calculate the quality
of tested configurations based on results obtained from a
series of test templates. To test classifier quality, the accu-
racies calculated by the classification test machines may
be averaged and the mean value may be used as the qual-
ity measure.

Stop criterion. The stop criterion was defined to be-
come true when all the configurations provided by the
generator flow are tested.

5.2. Configuration of the generator flow and its con-
sequences for the search space of the MLA. The gen-
erator flow used for this analysis of meta-learning is rather
simple, to give the opportunity to observe the behavior of
the algorithm. It is not the best choice for solving classifi-
cation problems, in general, but lets us better see the very
interesting details of its cooperation with the complexity
control mechanism. To find more sophisticated configura-
tion machines, a more complex generator graph should be
used. Anyway, it will be seen that using even such a basic
generator flow, the results ranked high by the MLA can be
very good. The generator flow used in our experiments is
presented in Fig. 15. A very similar generator flow was
explained in detail in Section 3.

To know what exactly will be generated by this gen-
erator flow, the configurations (the sets) of Classifiers
generator and Rankings generator must be specified.
Here, we use the following:

Classifier set:

– kNN (Euclidean): k-nearest neighbors with the Eu-
clidean metric,



660 N. Jankowski

Generators flow

output

Rankings
generator

Feature selection
of rankings
generator

Classifiers
generator

MPS for classifiers
generator

Transform and classify
generator

MPS/FS of
Transform and classify
generator

Fig. 15. Generator flow used in tests.

– kNN [MetricMachine (EuclideanOUO)]: kNN with
the Euclidean metric for ordered features and the
Hamming metric for unordered ones,

– kNN [MetricMachine (Mahalanobis)]: kNN with the
Mahalanobis metric,

– NBC: naive Bayes classifier,

– SVMClassifier: support vector machine with a Gaus-
sian kernel,

– LinearSVMClassifier: SVM with linear kernel,

– [ExpectedClass, kNN [MetricMachine (Eu-
clideanOUO)]]: first, the – ExpectedClass7 machine
transforms the original dataset, then the transformed
data become the learning data for kNN,

– [LVQ, kNN (Euclidean)]: first, the learning vector
quantization algorithm (Kohonen, 1986) is used to
select prototypes, then kNN uses them as its training
data (neighbor candidates),

– Boosting (10x) [NBC]: boosting algorithm with 10
NBCs.

Ranking set:

– RankingCC: correlation coefficient based feature
ranking,

– RankingFScore: Fisher-score based feature ranking.

7ExpectedClass is a transformation machine which outputs a dataset
consisting of one “super-prototype” per class. The super-prototype for
each class is calculated as a vector of the means (for ordered features) or
expected values (for unordered features) for a given class. Followed by
a kNN machine, it composes a very simple classifier, even more “naive”
than the naive Bayes classifier, though sometimes quite successful.

The base classifiers and ranking algorithms, together
with the generator flow presented in Fig. 15, produce 54
configurations that are nested (one by one) within the
meta-learning test-scheme and sent to the meta-learning
heap for a complexity controlled run. All the configura-
tions provided by the generator flow are presented in Ta-
ble 1.

Depending on the changes in the generator flow, the
sequence of machine configurations may change signifi-
cantly. Assume that the generator flow is defined by the
graph presented in Fig. 16. Please note that the difference
between this graph and the one in Fig. 15 is two additional
generators: IT based ranking generator and Discretize
and rank generator. Additionally, assume that the IT
based ranking generator is based on the set of two con-
figurations of machines for ranking features on the basis of
information theory measures (see the work of Duch et al.
(2004) for details about the algorithms):

• entropy based ranking,

• Mantaras distance based ranking.

The sequence of machine configurations output by such
generator flow is the one presented in Table 1, extended by
2·2·9 = 36 items including rankings based on information
theory. The additional rows can be easily determined by
converting all the items of the form

[ * RankingCC * ]

into the corresponding items of the form

[ * [EntropyRank], DiscretizeAndRank * ]

and

[ * [MantarasRank], DiscretizeAndRank * ] .

For example, in analogy to

[[[RankingCC], FeatureSelection], [NBC],
TransformAndClassify],

we get two additional feature selections for NBC:

[[[EntropyRank], DiscretizeAndRank],
FeatureSelection], [NBC], TransformAndClassify]

and
[[[MantarasRank], DiscretizeAndRank],

FeatureSelection], [NBC], TransformAndClassify].

The full collection of 90 configurations will be analyzed
by the MLA: the tests will be ordered by approximated
complexity and run in appropriate order.

5.3. Benchmark results analysis. Because complex-
ity analysis is not the main thread of this article, we have
presented examples on two datasets, “vowel” and “im-
age”, selected from the UCI machine learning reposi-
tory (Frank and Asuncion, 2010).

The results obtained for the benchmarks are pre-
sented in the form of diagrams. The diagrams are very
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1 kNN (Euclidean)
2 kNN [MetricMachine (EuclideanOUO)]
3 kNN [MetricMachine (Mahalanobis)]
4 NBC
5 SVMClassifier [KernelProvider]
6 LinearSVMClassifier [LinearKernelProvider]
7 [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
8 [LVQ, kNN (Euclidean)]
9 Boosting (10x) [NBC]
10 [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
11 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
12 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAndClassify]
13 [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]
14 [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
15 [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], TransformAndClassify]
16 [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
17 [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
18 [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]
19 [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
20 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
21 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAndClassify]
22 [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
23 [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
24 [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], TransformAndClassify]
25 [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
26 [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
27 [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]
28 ParamSearch [kNN (Euclidean)]
29 ParamSearch [kNN [MetricMachine (EuclideanOUO)]]
30 ParamSearch [kNN [MetricMachine (Mahalanobis)]]
31 ParamSearch [NBC]
32 ParamSearch [SVMClassifier [KernelProvider]]
33 ParamSearch [LinearSVMClassifier [LinearKernelProvider]]
34 ParamSearch [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
35 ParamSearch [LVQ, kNN (Euclidean)]
36 ParamSearch [Boosting (10x) [NBC]]
37 ParamSearch [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
38 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
39 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAndClassify]
40 ParamSearch [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]
41 ParamSearch [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
42 ParamSearch [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], TransformAndClassify]
43 ParamSearch [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]], TransformAnd-

Classify]
44 ParamSearch [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
45 ParamSearch [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]
46 ParamSearch [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
47 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAndClassify]
48 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAndClassify]
49 ParamSearch [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
50 ParamSearch [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
51 ParamSearch [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], TransformAndClassify]
52 ParamSearch [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]], Transfor-

mAndClassify]
53 ParamSearch [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
54 ParamSearch [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]

Table 1. Machine configurations produced by the generator flow of Fig. 15 and the enumerated sets of classifiers and rankings.
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Fig. 16. Extended generator flow.

specific and present many properties of the meta-learning
algorithm. They show information about the times of
starting, stopping and breaking of each task, the complex-
ities (global, time and memory) of each test task, the order
of the test tasks (according to their complexities, cf. Ta-
ble 1) and the accuracy of each tested machine.

In the middle of the diagram—see the first diagram
in Fig. 17—there is a column with task IDs (the same IDs
as in Table 1). But the order of rows in the diagram re-
flects the complexities of test tasks. This means that the
most complex tasks are placed at the top and the task of
the smallest complexities is visualized at the bottom. Ma-
chine complexity is approximated in the context of partic-
ular input data, so the order of the same set of machine
configurations may be quite different in different appli-
cations. For example, in Fig. 17, at the bottom, we can
see the task IDs 4 and 31, which correspond to the naive
Bayes classifier and the ParamSearch [NBC] classifier. At
the top, We can see the task IDs 54 and 45 as the most
complex ParamSearch test tasks of this benchmark. The
task order in the second example (Fig. 18) is completely
different.

On the right-hand side of the Task id column, there
is a plot presenting the starting, stopping and breaking
times of each test task. As was presented in Section 2, the
tasks are started according to the approximation of their
complexities, and when a given task does not reach the
time limit (which corresponds to the time complexity—
see Section 4), it finishes normally, otherwise, the task
gets broken and restarted according to the modified com-
plexity (see Section 4). For an example of a restarted
task, please see Fig. 17, the topmost task ID 54—there
are two horizontal bars corresponding to the two peri-
ods of the task run. The break means that the task was
started, broken because of exceeded allocated time and

restarted when the tasks of larger complexities got their
turn. The breaks occur for the tasks for which the com-
plexity prediction was too optimistic. Two different dia-
grams (in Figs. 17 and 18) easily bring the conclusion that
the amount of inaccurately predicted time complexity is
quite small (there are very few broken bars). Note that,
when a task is broken, its subtasks that have already been
computed are not recalculated during the test task restart
(due to the machine unification mechanism and machine
cache). At the bottom, the Time line axis can be seen.
The scope of the time is a [0, 1] interval to show the times
relative to the start and the end of the whole MLA compu-
tations. To make the diagrams clearer, the tests were per-
formed on a single CPU, so only one task was running at a
time and we cannot see any two bars overlapping in time.
If we ran the projects on more than one CPU, a number
of bars would be “active” almost each time, which would
make reading the plots more difficult.

The simplest tasks are started first. They can be seen
at the bottom of the plot. Their bars are very short because
they required relatively short time to be calculated. The
higher in the diagram (i.e., the greater predicted complex-
ity), the longer bars can be seen. This confirms the ad-
equacy of the complexity estimation framework because
the relations between the predictions correspond very well
to the relations between real time consumed by the tasks.
When browsing other diagrams, similar behavior can be
observed—the simple tasks are started at the beginning
and then, the more and more complex ones are run.

On the left-hand side of the Task id column, the ac-
curacies of classification test tasks and their approximated
complexities are presented. At the bottom, there is the
Accuracy axis with an interval from 0 (on the right) to 1
(on the left). Each test task has its own gray bar start-
ing at 0 and finished exactly at the point corresponding
to the accuracy. However, remember that the experiments
were not tuned to obtain the best accuracies possible, but
to illustrate the behavior of the generator flows and the
complexity controlled meta-learning.

The leftmost column of the diagram presents ranks
of the test tasks (the ranking of the accuracies). In the
case of vowel data, the machine of the best performance
is the kNN machine with default parameters (the task
ID is 1 and the accuracy rank is 1, too) ex equo with
kNN [MetricMachine (EuclideanOUO)] (task ID 2). The
second rank was achieved by kNN with the Mahalanobis
metric, which is a more complex task.

Between the columns with task IDs and the accuracy-
ranks, on top of the gray bars corresponding to the accu-
racies some thin solid lines can be seen. The lines start on
the right-hand side (just like the accuracy bars) and go to
the right according to proper magnitudes. For each task,
the three lines correspond to total complexity (the upper
line), memory complexity (the middle line) and time com-
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plexity (the lower line)8. All three complexities are ap-
proximated complexities (see Eqn. (9)). Approximated
complexities presented on the left-hand side of the dia-
gram can be easily compared visually to the time-schedule
obtained in real time on the right-hand side of the diagram.
Longer lines mean higher complexities. It can be seen that
sometimes the time complexity of a task is smaller while
the total complexity is greater and vice versa. For exam-
ple, see tasks 42 and 48 again in Fig. 17.

The meta-learning illustration diagrams clearly show
that the behavior of different machines changes between
benchmarks. Even the standard deviation of accuracies
is highly diverse. Simple solutions are started before the
complex ones, to support finding simple and accurate so-
lutions as soon as possible. For the presented benchmark
vowel, very simple and accurate models were found quite
early—close to the beginning of the meta-learning process
(see Fig. 17, task IDs 1 and 2), while for benchmark image
(Fig. 18) there are no solutions with such a high accuracy
found first. The best one is found as one of most complex
machines: see the task ID 32, which is tuned by MPS with
the SVM with a Gaussian kernel (for ionosphere-ALL),
and the best one for the image was the task IDs 28 and 29,
which are tuned by MPS with the kNN machine with the
Euclidean and Euclidean/Hamming distance metric.

Naturally, in most cases, more optimal machine con-
figuration may be found when using more sophisticated
configuration generators and larger sets of classifiers and
data transformations (for example, adding decision trees,
instance selection methods, feature aggregation, etc.) and
performing a deeper parameter search.

6. Summary

To efficiently solve different problems with algorithms
around computational intelligence, we need a really flexi-
ble higher order algorithm (meta-learning) that can make
use of different algorithms (meta-learning can), also by
analyzing them at the meta level. Without advanced meta-
learning algorithms, the space of problems that can be sat-
isfactorily solved dramatically shrinks.

In previous approaches to meta-learning, researches
used only “flat” spaces (just small sets of machines were
tested and compared). The framework for meta-learning
search presented here, featuring a very flexible way of
defining the functional search space of meta-learning, can
explore broad spectra of machines and may be used for
very different kinds of problems. It mimics human ex-
pert behavior in searching for an interesting decomposi-
tion of learning machines with the advantage of general
meta-knowledge about reasonable combinations of ma-
chine components and specific knowledge gathered dur-
ing the search (about the fitness of different methods to the

8In the case of time complexity, t/ log t is plotted, not the time t
itself.

problem being solved). With this MLA, browsing through
complex machine structures is as easy as testing several
simple configurations. The MLA can be easily extended
with new machine generators specializing in particular
types of machine configurations. Moreover, thanks to ad-
vanced machine generators, the search space may change
during learning.

Advanced generators give the possibilities of provid-
ing intelligent behavior at different levels of abstraction.
This will give outstanding possibilities in future.

In addition to the flexible search space, our approach
uses complexity control for test task ordering. This feature
helps the MLA perform test tasks in the most reasonable
order—first the simplest learning machines are tested and
then more and more complex ones are tried. Such an ap-
proach increases the probability of finding solutions of an
attractive balance between machine simplicity and accu-
racy. It is important to see that the MLA provides approx-
imation of a simple and a complex machine configuration
in the same way.

The next step toward more sophisticated meta-
learning is to design more and more advanced machine
configuration generators, able to collect different kinds of
knowledge and use it in a suitable way. The independence
of machine generators gives opportunity to spread the re-
sponsibility of knowledge distribution. There is no need
to have a single machine generator which “knows every-
thing”. Machine generators can specialize in a chosen
type of behavior/subproblems.
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