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We investigate parametric interval linear systems of equations. The main result is a generalization of the Bauer–Skeel
and the Hansen–Bliek–Rohn bounds for this case, comparing and refinement of both. We show that the latter bounds are
not provable better, and that they are also sometimes too pessimistic. The presented form of both methods is suitable
for combining them into one to get a more efficient algorithm. Some numerical experiments are carried out to illustrate
performances of the methods.
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1. Introduction

Solving systems of interval linear equations is a fun-
damental problem in interval computing (Fiedler et al.,
2006; Neumaier, 1990). Therein, one assumes that the
matrix entries and the right-hand side components perturb
independently and simultaneously within given intervals.
However, this assumption is hardly true in practical prob-
lems. Very often various correlations between input quan-
tities appear, e.g., in robotics (Merlet, 2009) or in dynamic
systems (Busłowicz, 2010).

Linear dependences were investigated by several au-
thors. The first paper on parametric interval systems (with
a special structure) is that by Jansson (1991). For a spe-
cial class of parametric systems, Neumaier and Pownuk
(2007) proposed an effective method. The general prob-
lem of interval parameter dependent linear systems was
first treated by Rump (1994).

Theoretical papers involve, e.g., characterization of
the boundary of the solution set (Popova and Krämer,
2008), the quality of the solution set (Popova, 2002), or
an explicit characterization of a class of parametric inter-
val systems (Hladı́k, 2008; Popova, 2009). Shapes of the
particular solution sets were first analyzed by Alefeld et
al. (1997; 2003).

Kolev (2006) proposed a direct method and an itera-

tive one (Kolev, 2004) for computing an enclosure of the
solution set. Parametrized Gauss–Seidel iteration was em-
ployed by Popova (2001). A direct method was given by
Skalna (2006), and a monotonicity approach by Popova
(2006a), Rohn (2004), and Skalna (2008). Inner and outer
approximations by a fixed-point method were developed
by Rump (1994; 2010), and implemented by Popova and
Krämer (2007). A Mathematica package for solving para-
metric interval systems is introduced by Popova (2004a).

Let

p := [p, p] = {p ∈ R
K | p ≤ p ≤ p}

be an interval vector. By pc := 1
2 (p + p) and pΔ :=

1
2 (p − p) we denote the corresponding center and the ra-
dius vector. Analogous notation is used for interval matri-
ces. We suppose that the reader is familiar with the basic
interval arithmetic.

In this paper, we consider a general parametric sys-
tem of interval linear equations in the form

A(p)x = b(p), p ∈ p, (1)

where

A(p) =
K∑

k=1

pkAk, b(p) =
K∑

k=1

pkbk.
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Herein, p is the interval vector representing K interval pa-
rameters, and Ak ∈ R

n×n and bk ∈ R
n, k = 1, . . . , K,

are given matrices and vectors. Notice that this linear
parametric form comprises affine linear parametric matri-
ces and vectors,

A0 +
K∑

k=1

pkAk, b0 +
K∑

k=1

pkbk,

since one can simply introduce an idle parameter p0 :=
[1, 1]. In our approach, no better results are obtained ex-
plicitly for the affine linear parametric structure.

The solution set is defined as

Σ := {x ∈ R
n | A(p)x = b(p), p ∈ p}.

We use the following notation: ρ(A) stands for the
spectral radius of a matrix A, Ai. for the i-th row of A, I
for the identity matrix and ei for its ith column. The diag-
onal matrix with entries z1, . . . , zn is denoted by diag(z),
and A(p) is a short form for a family A(p), p ∈ p. We
write interval quantities in boldface.

The paper is structured as follows. In Section 2 we
discuss the regularity of a parametric interval matrix, and
in Section 3 enclosures of a parametric interval linear sys-
tem. We generalize the Bauer–Skeel and the Hansen–
Bliek–Rohn bounds, which were developed for a standard
interval linear system; for the reader’s convenience, we
recall the original formulae in Appendix. Moreover, we
propose efficient refinements of both methods.

2. Regularity of parametric interval
matrices

In order to develop an enclosure for the parametric interval
system we have to discuss the regularity of the parametric
interval matrix A(p) first. The parametric interval matrix
is called regular if A(p) is nonsingular for every p ∈ p.

Preconditioning and relaxing the parametric interval
matrix, we obtain an interval matrix

A =
K∑

k=1

pk(RAk),

i.e.,

Aij =
[ K∑

k=1

min
(
p

k
(RAk)ij , pk(RAk)ij

)
,

K∑

k=1

max
(
p

k
(RAk)ij , pk(RAk)ij

)]
.

Clearly, if A is regular, then so is A(p). Thus we can em-
ploy the well-known Beeck–Rump sufficient condition for
the regularity of interval matrices (Beeck, 1975; Rump,
1983; Rex and Rohn, 1998).

Theorem 1. Let R ∈ R
n×n be such that

ρ

(
|I − RA(pc)| +

K∑

k=1

pΔ
k |RAk|

)
< 1. (2)

Then A(p) is regular.

Usually, the best choice for the matrix R is the nu-
merically computed inverse of A(pc). In the following, we
consider the case R = A(pc)−1. For this special case, the
sufficient condition was already stated by Popova (2004b).

How strong is the sufficient condition presented in
Theorem 1? The following result shows a class of
problems where the condition is not only sufficient, but
also necessary. It is a generalization of Rohn’s result
(Rohn, 1989, Corollary 5.1.(ii)).

Proposition 1. Suppose that A(pc) is nonsingular and
there are z ∈ {±1}n and y ∈ {±1}K such that for every
k ∈ {1, . . . , K} we have

yk diag(z)A(pc)−1Ak diag(z) ≥ 0.

Then A(p) is regular if and only if

ρ

(
K∑

k=1

pΔ
k |A(pc)−1Ak|

)
< 1.

Proof. One implication is obvious in view of Theorem 1.
We prove the converse by contradiction. Denote

A∗ :=
K∑

k=1

pΔ
k |A(pc)−1Ak|

=
K∑

k=1

pΔ
k yk diag(z)A(pc)−1Ak diag(z),

and suppose for contradiction that ρ(A∗) ≥ 1. Since A∗

is non-negative, according to the Perron–Frobenius theo-
rem (Horn and Johnson, 1985; Meyer, 2000) there is some
non-zero vector x such that

A∗x = ρ(A∗)x

or, equivalently,
(

I − 1
ρ(A∗)

A∗
)

x = 0.

Premultiplying by A(pc) diag(z), we get
(

A(pc) diag(z)− 1
ρ(A∗)

A(pc) diag(z)A∗
)

x = 0

or
(

K∑

k=1

(
pc

k − yk

ρ(A∗)
pΔ

k

)
Ak

)
(diag(z)x) = 0.
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The vector diag(z)x is non-zero, and the constraint ma-
trix belongs to A(p) since

pc
k − yk

ρ(A∗)
pΔ

k ∈ pk, k = 1, . . . , K.

Thus we found a singular matrix in A(p), which is a con-
tradiction. �

3. Enclosures for parametric interval linear
systems

The main problem studied within this paper is to find a
tight enclosure for the solution set Σ, where an enclosure
is any interval vector containing Σ. A simple enclosure
can be acquired by relaxing the system (1) to an interval
linear system Ax = b, where (by using interval arith-
metic)

A :=
K∑

k=1

pkAk, b :=
K∑

k=1

pkbk.

Since many efficient solvers of interval linear systems use
preconditioning, we should note that instead of precondi-
tioning the system Ax = b by a matrix R it is better to
precondition the original data. That is, consider A′x = b′,
where

A′ :=
K∑

k=1

pk(RAk), b′ :=
K∑

k=1

pk(Rbk). (3)

Proposition 2. We have A′ ⊆ RA and b′ ⊆ Rb.

Proof. Let i, j ∈ {1, . . . , n}. Due to the sub-distributivity
of interval arithmetic, we can write

A′
ij =

K∑

k=1

pk(RAk)ij =
K∑

k=1

pk

(
n∑

l=1

RilA
k
lj

)

⊆
K∑

k=1

n∑

l=1

pkRilA
k
lj =

n∑

l=1

K∑

k=1

Ril(pkAk
lj)

=
n∑

l=1

Ril

(
K∑

k=1

pkAk
lj

)
=

n∑

l=1

RilAlj = (RA)ij .

We proceed similarly for b′ ⊆ Rb. �
To obtain tighter enclosures, we have to inspect para-

metric systems more carefully. Recently, Popova (2009)
proved that the inequality system given below in (4) is an
explicit description of a parametric interval linear system
of the so-called zero or first class; in this class, for each
k = 1, . . . , K , the nonzero entries of (Ak | bk) are situ-
ated in one row only. First we show this is a necessary (but
not sufficient in general) characterization for any paramet-
ric interval linear system.

Theorem 2. If x ∈ R
n solves (1) for some p ∈ p, then it

solves

|A(pc)x − b(pc)| ≤
K∑

k=1

pΔ
k |Akx − bk|. (4)

Proof. Let x ∈ R
n be a solution to A(p)x = b(p) for

some p ∈ p. Then, in a similar way as for the well known
Oettli–Prager theorem, we derive

|A(pc)x − b(pc)|

=
∣∣∣∣

K∑

k=1

pc
k(Akx − bk)

∣∣∣∣

=
∣∣∣∣

K∑

k=1

pc
k(Akx − bk) −

K∑

k=1

pk(Akx − bk)
∣∣∣∣

=
∣∣∣∣

K∑

k=1

(pc
k − pk)(Akx − bk)

∣∣∣∣

≤
K∑

k=1

|pc
k − pk||Akx − bk|

≤
K∑

k=1

pΔ
k |Akx − bk|.

�
A sufficient and necessary characterization of Σ is

given below in terms of infinite systems of inequalities.
From another viewpoint, the system is composed of a
union of systems (4) over all possible preconditionings
of (1). An open question arises whether or not particular
extremal points of Σ can be achieved by an appropriate
preconditioning of (1).

Theorem 3. We have that x ∈ Σ if and only if it solves

yT (A(pc)x − b(pc)) ≤
K∑

k=1

pΔ
k |yT (Akx − bk)| (5)

for every y ∈ R
n.

Proof. Let x ∈ R
n. Then x ∈ Σ if and only if there is a

vector q ∈ [−1, 1]K such that

A(pc)x − b(pc) =
K∑

k=1

qkpΔ
k (Akx − bk).

Set d := A(pc)x − b(pc), and let D ∈ R
n×K be

a matrix whose k-th column is equal to pΔ
k (Akx − bk),

k = 1, . . . , K . Then x ∈ Σ if and only if there is an
optimal solution to the linear system

Dq = d, −1 ≤ q ≤ 1,
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or, in other words, if and only if the linear program

max 0T q subject to Dq = d, −1 ≤ q ≤ 1

has an optimal solution. Consider the corresponding dual
problem

min dT y + 1T (u + v)

subject to

DT y + u − v = 0, u, v ≥ 0,

which is always feasible. According to the theory of
duality in linear programming (Padberg, 1999; Schri-
jver, 1998), the existence of an optimal solution to one
problem implies the same for the second one and the opti-
mal values are equal.

For an optimal solution of the dual problem and every
i ∈ {1, . . . , K} either ui = 0 or vi = 0. Otherwise, we
can subtract a small positive amount from both ui and vi

and decrease the optimal value. If ui = 0, then (u+v)i =
vi = (DT y)i ≥ 0. Similarly, vi = 0 implies (u + v)i =
ui = −(DT y)i ≥ 0. Hence we can derive u+v = |DT y|,
and the dual problem takes the form

min dT y + 1T |DT y| subject to y ∈ R
n.

Since the objective function is positive homogeneous, the
problem has an optimal solution (equal to zero) if and only
if the objective function is non-negative, i.e.,

dT y + 1T |DT y| ≥ 0, ∀y ∈ R
n

or, substituting y := −y,

yT d ≤ |yT D|1, ∀y ∈ R
n.

In the setting of D and d, we get (5). �
Based on Theorem 2 we develop a generalization of

the Bauer–Skeel bounds (Rohn, 2010; Stewart, 1998) to
parametric interval systems. Note that the generalized
Bauer–Skeel bounds yield the same enclosure as the direct
method by Skalna (2006). However, the following form is
more convenient for combining it with the Hansen–Bliek–
Rohn method and for refinements.

Theorem 4. Suppose that A(pc) is nonsingular. Write

M :=
K∑

k=1

pΔ
k |A(pc)−1Ak|,

x∗ := A(pc)−1b(pc).

If ρ(M) < 1, then
[
x∗ − (I − M)−1

K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|,

x∗ + (I − M)−1
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|

]

is an interval enclosure to Σ.

Proof. Preconditioning the system A(p)x = b(p)
by the matrix A(pc)−1, we obtain an equivalent system
A(pc)−1A(p)x = A(pc)−1b(p), or

K∑

k=1

pkA(pc)−1Akx =
K∑

k=1

pkA(pc)−1bk, p ∈ p.

According to Theorem 2 each solution to this system sat-
isfies

|A(pc)−1A(pc)x − A(pc)−1b(pc)|

≤
K∑

k=1

pΔ
k |A(pc)−1(Akx − bk)|.

Rearranging the system, we get

|x − x∗| ≤
K∑

k=1

pΔ
k |A(pc)−1(Akx − bk)| (6)

=
K∑

k=1

pΔ
k |A(pc)−1(Ak(x − x∗ + x∗) − bk)|

≤
K∑

k=1

pΔ
k |A(pc)−1Ak(x − x∗)|

+
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|

≤
K∑

k=1

pΔ
k |A(pc)−1Ak||x − x∗|

+
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|.

Equivalently,

(
I −

K∑

k=1

pΔ
k |A(pc)−1Ak|

)
|x − x∗|

≤
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|.

From ρ(M) < 1, it follows (Fiedler et al., 2006;
Meyer, 2000, Theorem 1.31) that

(I − M)−1 =
∞∑

j=0

M j .

Since the matrix M is non-negative, so is (I − M)−1.
Thus we may multiply the system by (I−M)−1 to obtain

|x − x∗| ≤ (I − M)−1
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|.
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This means, that

x ≥ x∗ − (I − M)−1
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|,

x ≤ x∗ + (I − M)−1
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|.

�
The Hansen–Bliek–Rohn method (Fiedler et al.,

2006; Rohn, 1993, Theorem 2.39) gives an enclosure for
the solution set of an interval linear system. The fol-
lowing is a generalization to parametric interval linear
systems; however, the result is the same as the Hansen–
Bliek–Rohn bounds applied on the preconditioned system
(3) by R := A(pc)−1. For the reader’s convenience, we
present a detailed proof, which will be followed up in the
next section for a refinement. Note that an alternative form
of the enclosure was developed by Neumaier (1999) as
well as Ning and Kearfott (1997).

Theorem 5. Suppose that A(pc) is nonsingular. Using the
notation from Theorem 4, write

M∗ := (I − M)−1,

x0 := M∗|x∗| +
K∑

k=1

pΔ
k M∗|A(pc)−1bk|.

If ρ(M) < 1, then any solution x to (1) satisfies

xi ≤ max
{

x0
i + (x∗

i − |x∗
i |)m∗

ii,

1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)}
,

and

xi ≥ min
{
− x0

i + (x∗
i + |x∗

i |)m∗
ii,

1
2m∗

ii − 1
(− x0

i + (x∗
i + |x∗

i |)m∗
ii

)}
.

Proof. From the proof of Theorem 4 we know that each
solution to (1) satisfies

|x − x∗| ≤
K∑

k=1

pΔ
k |A(pc)−1(Akx − bk)| (7)

≤
K∑

k=1

pΔ
k |A(pc)−1Ak||x| +

K∑

k=1

pΔ
k |A(pc)−1bk|.

This inequality system implies

x − x∗

≤
K∑

k=1

pΔ
k |A(pc)−1Ak||x| +

K∑

k=1

pΔ
k |A(pc)−1bk|, (8)

and

|x| − |x∗|

≤
K∑

k=1

pΔ
k |A(pc)−1Ak||x| +

K∑

k=1

pΔ
k |A(pc)−1bk|. (9)

Let i ∈ {1, . . . , n}. Consider the system (9) in which
the i-th inequality is replaced by the i-th inequality from
(8),

|x| − |x∗| + (xi − x∗
i − |x|i + |x∗

i |)ei

≤
K∑

k=1

pΔ
k |A(pc)−1Ak||x| +

K∑

k=1

pΔ
k |A(pc)−1bk|.

This can be rewritten as

(
I −

K∑

k=1

pΔ
k |A(pc)−1Ak|

)
|x| + (xi − |x|i)ei

≤ |x∗| + (x∗
i − |x∗

i |)ei +
K∑

k=1

pΔ
k |A(pc)−1bk|.

From ρ(M) < 1, it follows (Fiedler et al., 2006;
Meyer, 2000, Theorem 1.31) that

(I − M)−1 =
∞∑

j=0

M j .

Since the matrix M is non-negative, M∗ = (I −M)−1 ≥
I . Thus we may multiply the system by M∗ ≥ 0 to obtain

|x| + (xi − |x|i)M∗ei

≤ M∗|x∗| + (x∗
i − |x∗

i |)M∗ei

+
K∑

k=1

pΔ
k M∗|A(pc)−1bk|.

Setting

x0 = M∗|x∗| +
K∑

k=1

pΔ
k M∗|A(pc)−1bk|,

the system reads

|x| + (xi − |x|i)M∗ei ≤ x0 + (x∗
i − |x∗

i |)M∗ei.

The i-th inequality becomes

|xi| + (xi − |x|i)m∗
ii ≤ x0

i + (x∗
i − |x∗

i |)m∗
ii.

Distinguish two cases. If xi ≥ 0, then

xi ≤ x0
i + (x∗

i − |x∗
i |)m∗

ii.
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If xi < 0, then

−xi + 2xim
∗
ii ≤ x0

i + (x∗
i − |x∗

i |)m∗
ii.

Using the fact that M∗ ≥ I , we get that 2m∗
ii ≥ 2 > 1

and

xi ≤ 1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)
.

Summing up, we have an upper bound on xi as follows:

xi ≤ max
{
x0

i + (x∗
i − |x∗

i |)m∗
ii,

1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)}
.

To obtain a lower bound on xi, we realize that Ax =
b if and only if A(−x) = −b. Thus, we apply the previous
result to the parametric interval system

A(p)(−x) = −b(p).

That is, the sign of bc and x∗ will be changed and

−xi ≤ max
{
x0

i + (−x∗
i − |x∗

i |)m∗
ii,

1
2m∗

ii − 1
(
x0

i + (−x∗
i − |x∗

i |)m∗
ii

)}
,

or,

xi ≥ min
{
− x0

i + (x∗
i + |x∗

i |)m∗
ii,

1
2m∗

ii − 1
(− x0

i + (x∗
i + |x∗

i |)m∗
ii

)}
.

�

Remark 1. The Bauer–Skeel and Hansen–Bliek–Rohn
methods are similar to each other since they are derived
from the same basis. Nevertheless, as we will see in Sec-
tion 6, both methods are incomparable, that is, sometimes
the former is better and sometimes the latter. Thus, to ob-
tain enclosure as tight as possible we propose to compute
both and take their intersection. The overall computa-
tional cost is low since we calculate the inverses A(pc)−1,
M∗ = (I − M)−1 and other intermediate expressions
only once. Using notations of Theorems 4 and 5, we com-
pute the upper endpoints of the resulting enclosure as the
minima of

x∗
i + M∗

i.
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|,

and

max
{
x0

i + (x∗
i − |x∗

i |)m∗
ii,

1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)}
,

i = 1, . . . , n. We proceed similarly for the lower end-
points.

4. Refinement of enclosures

Now we show that the enclosures discussed in the previ-
ous section can be made tighter. The idea is to use those
enclosures to check some sign invariances, and if they
hold true, then the process of deriving the enclosures can
be refined. Note that the proposed refinements run always
in polynomial time.

Let x be the enclosure obtained by Theorems 4 or 5
or by any other method, and let k ∈ {1, . . . , K}. Write
ak := A(pc)−1(Akx − bk). We will employ notations
from Theorems 4 and 5, too. For the refinements, we as-
sume ρ(M) < 1.

4.1. Refinement of the Bauer–Skeel bounds. First,
we consider the Bauer–Skeel bounds. If ak ≥ 0, then for
every x ∈ Σ one has

|A(pc)−1(Akx − bk)|
= A(pc)−1Ak(x − x∗) + A(pc)−1(Akx∗ − bk). (10)

Otherwise, if ak ≤ 0, then

|A(pc)−1(Akx − bk)|
= −A(pc)−1Ak(x − x∗) − A(pc)−1(Akx∗ − bk).

(11)

Otherwise, we estimate the term from above as in the
proof

|A(pc)−1(Akx − bk)|
≤ |A(pc)−1Ak||x − x∗| + |A(pc)−1(Akx∗ − bk)|.

(12)

Anyway, the inequality (6) can be written as

|x − x∗| ≤
K∑

k=1

pΔ
k |A(pc)−1(Akx − bk)|

≤ Y (x − x∗) + y + Z|x − x∗| + z

for some Y, Z ∈ R
n×n, y, z ∈ R

n, and Z ≥ 0. Here, Y
and y are summed up from (10) and (11), whereas Z and
z come from (12). Now, we proceed as follows:

|x − x∗| ≤ |Y ||x − x∗| + y + Z|x − x∗| + z,

whence

(I − |Y | − Z)|x − x∗| ≤ y + z,

and

x ≤ x∗ + (I − |Y | − Z)−1(y + z),

x ≥ x∗ − (I − |Y | − Z)−1(y + z).
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Algorithm 1 (Refinement of the Bauer–Skeel method)
1: Y := 0; y := 0; Z := 0; z := 0;
2: x∗ := A(pc)−1b(pc);
3: Let x be an initial enclosure to Σ;
4: for k = 1, . . . , K do
5: ak := A(pc)−1(Akx − bk);
6: for j = 1, . . . , n do
7: if ak

j ≥ 0 then
8: Yj. := Yj. + pΔ

k A(pc)−1
j. Ak; yj := yj + pΔ

k A(pc)−1
j. (Akx∗ − bk);

9: else if ak
j ≤ 0 then

10: Yj. := Yj. − pΔ
k A(pc)−1

j. Ak; yj := yj − pΔ
k A(pc)−1

j. (Akx∗ − bk);
11: else
12: Zj. := Zj. + pΔ

k |A(pc)−1
j. Ak|; zj := zj + pΔ

k |A(pc)−1
j. (Akx∗ − bk)|;

13: end if
14: end for
15: end for
16: return

[
x∗ − (I − |Y | − Z)−1(y + z), x∗ + (I − |Y | − Z)−1(y + z)

]
, an enclosure to Σ.

Since |Y |+Z is non-negative and |Y |+Z ≤ M , the
inverse matrix (I−|Y |−Z)−1 exists and is non-negative.

Notice that even tighter bounds can be calculated by
splitting the terms of (6) componentwise. That is, we
check the signs of ak

i and ak
i for every i = 1, . . . , n, and

use the i-th estimate either in (10), (11) or (12) accord-
ingly. The method is described in Algorithm 1.

In the following we claim that the resulting enclosure
is always as good as the initial Bauer–Skeel bounds.

Proposition 3. Let x be the enclosure obtained by The-
orem 4, and x′ the enclosure obtained by Algorithm 1.
Then x′ ⊆ x.

Proof. Recall that

x = x∗ + (I − M)−1
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|

= x∗ +
∞∑

j=1

M j
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|,

and

x ′ = x∗ + (I − |Y | − Z)−1(y + z)

= x∗ +
∞∑

j=1

(|Y | + Z)j(y + z).

From

y + z ≤
K∑

k=1

pΔ
k |A(pc)−1(Akx∗ − bk)|

and 0 ≤ |Y | + Z ≤ M,we obtain x ′ ≤ x. We proceed
Similarly for x′ ≥ x. �

4.2. Refinement of the Hansen–Bliek–Rohn bounds.
We will refine the Hansen–Bliek–Rohn bounds in the
same manner as the Bauer–Skeel ones. If ak ≥ 0, then

|A(pc)−1(Akx − bk)|
= A(pc)−1Akx − A(pc)−1bk. (13)

Otherwise, if ak ≤ 0, then

|A(pc)−1(Akx − bk)|
= −A(pc)−1Akx + A(pc)−1bk. (14)

Otherwise, we use the standard estimation for the
Hansen–Bliek–Rohn method,

|A(pc)−1(Akx − bk)|
≤ |A(pc)−1Ak||x| + |A(pc)−1bk|. (15)

Thus (7) takes the form of

|x − x∗| ≤
K∑

k=1

pΔ
k |A(pc)−1(Akx − bk)|

≤ Y x − y + Z|x| + z

≤ (|Y | + Z)|x| − y + z,

where Y, Z ∈ R
n×n, y, z ∈ R

n, and Z ≥ 0. Next, we
proceed as in the proof of Theorem 5. The method is sum-
marized in Algorithm 2.

We show that the refinement of the Hansen–Bliek–
Rohn method is in each component at least as tight as the
original Hansen–Bliek–Rohn bounds.

Proposition 4. Let x be the enclosure obtained by The-
orem 5, and x′ the enclosure obtained by Algorithm 2.
Then x′ ⊆ x.
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Algorithm 2 (Refinement of the Hansen–Bliek–Rohn method)
1: Y := 0; y := 0; Z := 0; z := 0;
2: x∗ := A(pc)−1b(pc);
3: Let x be an initial an enclosure to Σ;
4: for k = 1, . . . , K do
5: ak := A(pc)−1(Akx − bk);
6: for j = 1, . . . , n do
7: if ak

j ≥ 0 then
8: Yj. := Yj. + pΔ

k A(pc)−1
j. Ak; yj := yj + pΔ

k A(pc)−1
j. bk;

9: else if ak
j ≤ 0 then

10: Yj. := Yj. − pΔ
k A(pc)−1

j. Ak; yj := yj − pΔ
k A(pc)−1

j. bk;
11: else
12: Zj. := Zj. + pΔ

k |A(pc)−1
j. Ak|; zj := zj + pΔ

k |A(pc)−1
j. bk|;

13: end if
14: end for
15: end for
16: M∗ := (I − |Y | − Z)−1; x0 := M∗(|x∗| − y + z);
17: for i = 1, . . . , n do

18: x ′
i := max

{
x0

i + (x∗
i − |x∗

i |)m∗
ii,

1
2m∗

ii−1

(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)}
;

19: x ′
i := min

{
−x0

i + (x∗
i + |x∗

i |)m∗
ii,

1
2m∗

ii−1

(− x0
i + (x∗

i + |x∗
i |)m∗

ii

)}
;

20: end for
21: return x ′, an enclosure to Σ.

Proof. Let i ∈ {1, . . . , n}. We prove x ′
i ≤ xi. The lower

case is done accordingly. Write

M ′∗ := (I − |Y | − Z)−1,

x′0 := M∗(|x∗| − y + z).

Clearly, M ′∗ ≤ M∗ and x′0 ≤ x0. Thus

−x′0
i + (x∗

i + |x∗
i |)m′∗

ii ≤ −x0
i + (x∗

i + |x∗
i |)m∗

ii.

Since m′∗
ii ≥ 1, we have

1
2m′∗

ii − 1
≤ 1,

and the term

1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)

is the maximizer in Step 18 of Algorithm 2 if and only if
it is non-positive. In this case,

1
2m′∗

ii − 1
(
x′0

i + (x∗
i − |x∗

i |)m′∗
ii

)

≤ 1
2m∗

ii − 1
(
x0

i + (x∗
i − |x∗

i |)m∗
ii

)
,

which completes the proof. �

5. Time complexity

Let us analyse the theoretical time complexity of the pro-
posed methods. Both Bauer–Skeel and Hansen–Bliek–
Rohn methods have the same asymptotic time complex-
ities. The most computationally expensive is to calcu-
late the matrix M . It costs O(n3K) operations by us-
ing a naive implementation. However, the matrices Ak,
k = 1, . . . , K , are usually sparse, in which case the com-
plexity is lower.

Denote by P the maximum number of non-zero en-
tries in some Ak, k = 1, . . . , K , that is, the maximum
number of appearances of some parameter pk. Then, com-
putation of M can be implemented in O(nK(n+P )), the
matrix inverse is in O(n3) and the remaining calculation
is negligible with respect to the worst case time complex-
ity. Thus the algorithms are in O(n3 + n2K + nPK).

For instance, for symmetric interval systems, we
have P = 2, K = 1

2n(n − 1), so the total cost is O(n4).
For Toeplitz systems we have P = O(n), K = O(n), so
the time complexity is O(n3).

Concerning the refinements discussed in Section 4 it
turns out that their asymptotic time complexity is the same
as that of the original methods, that is, O(n3 + n2K +
nPK). Of course, the multiplicative terms are greater,
which causes the higher computational time presented in
Section 6.

The iterative methods by Rump or Popova and
Krämer requireO(n3+n2KI) operations, where I stands
for the number of iterations. Thus our approach is not
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asymptotically worse provided that P = O(nI).

6. Examples and numerical experiments

In his paper, Rohn (2010) claims that for the standard sys-
tem of interval linear equations the Hansen–Bliek–Rohn
bounds are never worse than the Bauer–Skeel ones. In
the following examples we show that this is not the case
for (more general) parametric systems. Surprisingly, the
Bauer–Skeel bounds are sometimes notably better (Exam-
ple 2).

Example 1. Consider Okumura’s problem of a linear re-
sistive network (Popova and Krämer, 2008, Example 5.3.).
It obeys the form of (1) with

A(p) =

⎛

⎜⎜⎜⎜⎝

p1 + p6 −p6 0
−p6 p2 + p6 + p7 −p7

0 −p7 p3 + p7 + p8

0 0 −p8

0 0 0

0 0
0 0

−p8 0
p4 + p8 + p9 −p9

−p9 p5 + p9

⎞

⎟⎟⎟⎟⎠
,

b(p) = (10, 0, 10, 0, 0)T , and pi ∈ [0.99, 1.01], i =
1, . . . , 9. The Bauer–Skeel bounds computed according
to Theorem 4 are

([7.0148, 7.1671], [4.1173, 4.2463], [5.3933, 5.5158],

[2.1377, 2.2260], [1.0601, 1.1217])T ,

and the refinement by Algorithm 1 yields

([7.0151, 7.1667], [4.1180, 4.2456], [5.3938, 5.5153],

[2.1382, 2.2255], [1.0605, 1.1213])T .

The Hansen–Bliek–Rohn method (Theorem 5) re-
sults in a not-as-tight enclosure,

([6.9693, 7.2150], [4.0689, 4.2971], [5.3501, 5.5612],

[2.1083, 2.2568], [1.0397, 1.1431])T .

The refinement by Algorithm 2 gives

([6.9925, 7.1913], [4.1134, 4.2504], [5.3799, 5.5307],

[2.1324, 2.2317], [1.0576, 1.1244])T .

Notice that for this example the exact interval hull of the
solution set Σ is known (Popova and Krämer, 2008),

([7.0170, 7.1663], [4.1193, 4.2454], [5.3952, 5.5150],

[2.1392, 2.2253], [1.0614, 1.1211])T .

�

Example 2. From Example 3.4 of Popova and Krämer
(2008) we have

(
p1 p2 − 1
p2 p1

)
x =

(−p2 + 1
3

p2

)
,

where p1 ∈ [−2,−1] and p2 ∈ [3, 5]. Here, the Bauer–
Skeel enclosure gives

([0.1282, 1.2052], [−1.4103,−0.3675])T ,

whereas the Hansen–Bliek–Rohn method yields

([−0.4359, 3.7693], [−4.8718,−0.0923])T .

No refinement for this very low dimensional example was
successful. �

Example 3. The last example is devoted to numerical
experiments with randomly generated data. Even though
the real-life data are not random, such experiments reveal
something on the performance of algorithms. The compu-
tations were carried out in MATLAB 7.7.0.471 (R2008b)
on a machine with an AMD Athlon 64 X2 Dual
Core Processor 4400+, 2.2 GHz, CPU with 1004
MB RAM. Interval arithmetics and some basic interval
functions were provided by the interval toolbox INTLAB
v5.3 (Rump, 2006). We used just a simple implemen-
tation of the methods presented. Notice, for large-scale
problems in particular, that a more subtle implementation
utilizing the sparsity of matrices Ak, k = 1, . . . , K , could
be used.

First, we consider systems with symmetric matri-
ces that were generated in the following way. First,
entries of Ac were chosen randomly and independently
in [−10, 10] with uniform distribution, and then we set
Ac := Ac + (Ac)T + 10nI . The entries of the radius
matrix AΔ are equal to R, where R > 0 is a parameter.
The right-hand side interval vector was chosen to be de-
generate (zero width) with entries chosen randomly from
[−10, 10].

In diverse settings of the dimension n and the radius
R we carried out sequences of 10 runs. The results are
summarized in Table 1. We compare the resulting enclo-
sures by relative sums of radii with respect to the Bauer–
Skeel bounds. That is, for a given enclosure w and the
Bauer–Skeel enclosure v, we display

n∑
i=1

wΔ
i

n∑
i=1

vΔ
i

.

On the average, the Bauer–Skeel (BS) method gives
tighter enclosures than the Hansen–Bliek–Rohn (HBR)
one. The refinement is more conclusive for the latter than
for the former.
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Table 1. Symmetric systems with random data.

n R relative sum of radii average execution time (in sec.)
BS refined BS HBR refined HBR BS refined BS HBR refined HBR

5 0.05 1 0.9994 1.06 1.003 0.01537 0.0893 0.01421 0.0886
5 0.1 1 0.9988 1.058 1.001 0.0155 0.09176 0.0148 0.08898
5 0.5 1 0.9947 1.044 0.9931 0.01553 0.09054 0.01441 0.0911
5 1 1 0.9907 1.026 0.9795 0.01412 0.08438 0.01366 0.08453

10 0.05 1 0.999 1.1 1.001 0.04731 0.5632 0.0456 0.5579
10 0.1 1 0.9981 1.099 1.001 0.04588 0.5559 0.04498 0.5494
10 0.5 1 0.9912 1.092 1.001 0.04839 0.5813 0.04604 0.5679
10 1 1 0.984 1.082 1 0.04638 0.5461 0.04401 0.5449
15 0.05 1 0.999 1.104 1 0.1017 1.802 0.1 1.778
15 0.1 1 0.9979 1.103 1 0.09783 1.719 0.09587 1.695
15 0.5 1 0.9903 1.099 1.001 0.09836 1.759 0.09593 1.724
15 1 1 0.9825 1.092 1.004 0.09666 1.733 0.0956 1.731
20 0.05 1 0.999 1.104 1.001 0.1758 3.979 0.1695 3.956
20 0.1 1 0.998 1.103 1.001 0.1721 3.937 0.1697 3.928
20 0.5 1 0.9906 1.1 1.003 0.1726 3.961 0.1671 3.976
20 1 1 0.9831 1.095 1.008 0.1699 4.01 0.169 3.996
25 0.05 1 0.999 1.097 1 0.2774 7.591 0.2647 7.524
25 0.1 1 0.9981 1.096 1 0.283 7.712 0.2775 7.644
25 0.5 1 0.9909 1.094 1.003 0.2726 7.599 0.2669 7.493
25 1 1 0.9837 1.09 1.008 0.2767 7.723 0.2704 7.77
50 0.05 1 0.999 1.099 1 6.399 57.36 6.327 56.72
50 0.1 1 0.9981 1.099 1.001 6.505 57.13 6.31 56.63
50 0.5 1 0.9911 1.097 1.006 6.395 57.64 6.341 57.11
50 1 1 0.984 1.095 1.013 6.371 57.78 6.317 57.36

100 0.05 1 0.999 1.095 1 90.71 511.9 90.07 488.2
100 0.1 1 0.9981 1.095 1.001 91.75 527 88.77 489.9
100 0.5 1 0.991 1.095 1.006 92.68 526.7 89.01 489.1
100 1 1 0.9838 1.094 1.014 90.5 522.4 89.23 498.7

Second, we consider Toeplitz systems, i.e, systems
with matrices A satisfying ai,j = ai+1,j+1, i, j =
1, . . . , n − 1. Herein, Ac

i,1 and Ac
1,i, i = 2, . . . , n, were

chosen randomly in [−10, 10], whereas Ac
1,1 in [−10 +

10n, 10 + 10n]. The entries of AΔ are equal to R. The
right-hand side vector was again degenerate with entries
selected randomly in [−10, 10]. The results are displayed
in Table 2.

Third, we consider symmetric systems again gener-
ated in the same way as above. We compare the combi-
nation of the Bauer–Skeel and Hansen–Bliek–Rohn meth-
ods (Remark 1) with the interval Cholesky method (Ale-
feld and Mayer, 1993; 2008). We implemented the ba-
sic version of the interval Cholesky method since the
more sophisticated algorithm based on pivot tightening
(Garloff, 2010) is intractable, having the exponential com-
plexity. Table 3 demonstrates that the proposed method is
much more efficient than the interval Cholesky one. Even
though the computing time is slightly better for the latter,
the former yields a significantly tighter enclosure.

Finally, we did some comparisons with the paramet-
ric solver by Popova (2004a; 2006b); see Table 4. Again,

we considered symmetric interval systems. On the aver-
age, our approach is slightly better, and the refinement is
more significantly better.

7. Concluding remarks

Numerical experiments revealed that a generalization of
the Bauer–Skeel method is a competitive alternative to the
Hansen–Bliek–Rohn method. It is best to use a combina-
tion of both to obtain a tight enclosure. As observed in the
numerical experiments, the resulting (direct) algorithm is
a competitive alternative to existing direct or iterative al-
gorithms. Moreover, efficient refinements of both meth-
ods were proposed in order to compute tighter enclosures.

As pointed out by one referee, the performance of
this centered form approach is limited (cf. Neumaier and
Pownuk, 2007). A non-centered form approach may lead
to further improvements.
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Table 2. Toeplitz systems with random data.

n R relative sum of radii average execution time (in sec.)
BS refined BS HBR refined HBR BS refined BS HBR refined HBR

5 0.05 1 0.9985 1.217 1.01 0.008363 0.05246 0.008132 0.05139
5 0.1 1 0.997 1.215 1.008 0.0102 0.05672 0.009942 0.05684
5 0.5 1 0.9859 1.2 1.01 0.01007 0.05786 0.009805 0.05706
5 1 1 0.976 1.179 1.014 0.01092 0.05661 0.009788 0.05831

10 0.05 1 0.9979 1.317 1.002 0.01879 0.2069 0.01853 0.21
10 0.1 1 0.9959 1.316 1.001 0.01832 0.2046 0.0172 0.2001
10 0.5 1 0.9792 1.307 0.9978 0.018 0.2023 0.01751 0.1963
10 1 1 0.9588 1.295 0.9967 0.01894 0.2084 0.01806 0.2091
15 0.05 1 0.9979 1.363 1.005 0.02552 0.4194 0.02465 0.4127
15 0.1 1 0.9958 1.362 1.005 0.02636 0.4542 0.03089 0.455
15 0.5 1 0.9794 1.356 1.012 0.02747 0.4478 0.02632 0.4443
15 1 1 0.9605 1.349 1.03 0.02684 0.4291 0.02627 0.4324
20 0.05 1 0.9978 1.389 1.008 0.03518 0.7715 0.03548 0.7492
20 0.1 1 0.9956 1.388 1.01 0.03628 0.7911 0.03554 0.7797
20 0.5 1 0.9786 1.384 1.024 0.03488 0.757 0.03406 0.7627
20 1 1 0.9585 1.378 1.038 0.03498 0.769 0.03447 0.776
25 0.05 1 0.9977 1.421 1.007 0.04478 1.157 0.04359 1.156
25 0.1 1 0.9954 1.42 1.009 0.04647 1.195 0.04478 1.192
25 0.5 1 0.9779 1.417 1.031 0.0467 1.198 0.04404 1.194
25 1 1 0.9582 1.412 1.061 0.04455 1.166 0.04308 1.165
50 0.05 1 0.9978 1.418 1.005 0.5689 4.549 0.5276 4.48
50 0.1 1 0.9956 1.418 1.009 0.528 4.519 0.526 4.509
50 0.5 1 0.9787 1.416 1.035 0.5322 4.719 0.535 4.629
50 1 1 0.9599 1.414 1.068 0.5278 4.634 0.531 4.616

100 0.05 1 0.9976 1.452 1.004 3.704 20.19 3.694 19.7
100 0.1 1 0.9953 1.452 1.008 3.717 20.13 3.91 19.84
100 0.5 1 0.9776 1.451 1.043 3.719 20.22 3.705 20.11
100 1 1 0.9582 1.45 1.087 3.678 20.41 3.663 20.26
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Popova, E.D. and Krämer, W. (2008). Visualizing parametric
solution sets, BIT Numerical Mathematics 48(1): 95–115.

Rex, G. and Rohn, J. (1998). Sufficient conditions for regular-
ity and singularity of interval matrices, SIAM Journal on
Matrix Analysis and Applications 20(2): 437–445.

Rohn, J. (1989). Systems of linear interval equations, Linear
Algebra and Its Applications 126(C): 39–78.

Rohn, J. (1993). Cheap and tight bounds: The recent result by E.
Hansen can be made more efficient, Interval Computations
(4): 13–21.

Rohn, J. (2004). A method for handling dependent
data in interval linear systems, Technical Report



Enclosures for the solution set of parametric interval linear systems 573

Table 4. Comparison with the parametric solver by Popova.
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Appendix

Consider a system of interval linear equations Ax = b,

which is a special case of (1), and the solution set Σ̂ :=
{x ∈ R

n | Ax = b, A ∈ A, b ∈ b}. The Bauer–Skeel
bounds (Rohn, 2010; Stewart, 1998) and the Hansen–
Bliek–Rohn bounds (Fiedler et al., 2006; Rohn, 1993,
Theorem 2.39) on Σ̂ are given below.

Theorem 6. (Bauer–Skeel) Let Ac nonsingular and
ρ(|(Ac)−1|AΔ) < 1. Write x̂∗ := (Ac)−1bc, M̂ :=
(Ac)−1|AΔ and M̂∗ := (I−M̂)−1. Then for each x ∈ Σ̂
we have

x ≥ x̂∗ − M̂∗|(Ac)−1|(AΔ|x̂∗| + bΔ),

x ≤ x̂∗ + M̂∗|(Ac)−1|(AΔ|x̂∗| + bΔ).

Theorem 7. (Hansen–Bliek–Rohn) Under the same as-
sumption and notation as in the previous theorem, we have

xi ≤ max
{

x̂0
i + (x̂∗

i − |x̂∗
i |)m̂∗

ii,

1
2m̂∗

ii − 1
(
x̂0

i + (x̂∗
i − |x̂∗

i |)m̂∗
ii

)}
,

http://uivtx.cs.cas.cz/~rohn/publist/
rp911.ps.
http://uivtx.cs.cas.cz/~rohn/publist/
bauerskeel.pdf
http://www.ti3.tu-harburg.de/rump/
intlab/.
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and

xi ≥ min
{
− x̂0

i + (x̂∗
i + |x̂∗

i |)m̂∗
ii,

1
2m̂∗

ii − 1
(− x̂0

i + (x̂∗
i + |x̂∗

i |)m̂∗
ii

)}
,

where x̂0 := M̂∗(|x̂∗| + |(Ac)−1|bΔ).
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