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Systems based on principal component analysis have developed from exploratory data analysis in the past to current data
processing applications which encode and decode vectors of data using a changing projection space (eigenspace). Linear
systems, which need to be solved to obtain a constantly updated eigenspace, have increased significantly in their dimen-
sions during this evolution. The basic scheme used for updating the eigenspace, however, has remained basically the same:
(re)computing the eigenspace whenever the error exceeds a predefined threshold. In this paper we propose a computation-
ally efficient eigenspace updating scheme, which specifically supports high-dimensional systems from any domain. The
key principle is a prior selection of the vectors used to update the eigenspace in combination with an optimized eigenspace
computation. The presented theoretical analysis proves the superior reconstruction capability of the introduced scheme,
and further provides an estimate of the achievable compression ratios.
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1. Introduction

The use of eigenbases for projecting data was traditionally
part of performing Principal Component Analysis (PCA)
(Jolliffe, 1986). More precisely, performing a PCA
includes the computation of a static eigenbasis, usually
with the aim of exploratory data analysis (Lenz and
Bui, 2004; Turk and Pentland, 1991). A typical task
is to project various vectors of data using an identical
eigenbasis, in order to obtain a representation that best
explains the variance in the data (Han, 2010; Sumi et al.,
2012). While PCA is continuously applied in various
fields for statistical analysis, such as recently in the work
of Skraban et al. (2013), it has also been successfully
adapted for solving more complex tasks, e.g., for load
forecasting in power systems (Siwek et al., 2009) and for
automated recognition of faces (Liu et al., 2003; Turk and
Pentland, 1991).

In some of the recently introduced applications,
however, schemes based on PCA have been used for
projecting as well as reconstructing data (Gang and
Žalik, 2011; Perez-Iglesias et al., 2005; Söderström
and Li, 2005; 2007). More precisely, by projecting
high-dimensional data (e.g., videos) to a suitable
eigenbasis, the data can be successfully reconstructed on

the basis of a significantly smaller vector of projection
coefficients (Turk and Pentland, 1991). Based on this
concept, several methods for data compression have
been proposed (Perez-Iglesias et al., 2005; Söderström
and Li, 2005; 2007). While the promise of encoding
high-dimensional data using only a small set of
coefficients seems interesting, a key problem is in
computing, and even more so in maintaining, an
eigenbasis which is capable of representing a constantly
varying sequence of data. The difficulty in maintaining an
accurate eigenbasis is primarily due to the mathematical
complexity of its computation, which is in this case
strongly amplified by the high data dimensionality. An
estimate of that can be obtained by taking into account
typical video data (ITU, 2007). In concrete terms,
a single typical data vector contains at least several
hundred thousand elements (Lo et al., 2003; Taubman and
Marcellin, 2002). Considering state-of-the-art formats
(e.g., HDTV), a single data vector can consist even of
millions of elements (ITU, 2007). In the context of this
paper, a high-dimensional system is thus any system using
(eigen)vectors which contain at least several hundred
thousand elements.

Previously proposed applications have sought to
overcome the computational difficulty by introducing
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eigenspace update algorithms (Chandrasekaran et al.,
1997; Perez-Iglesias et al., 2005). While all of those
concepts are actually based on updating an eigenbasis
(matrix), the commonly used term describing the problem
is updating the eigenspace (matrix). For consistency
with previously published works, the term eigenspace up-
dating scheme is used here as well. An overview of
the proposed PCA-based compression schemes reveals
two basic concepts, which are common to most of
them. Firstly, the eigenspace is updated whenever the
error in the reconstructed data surpasses a predefined
threshold (Liu et al., 2003). The reconstruction error is
estimated by computing the vector distance between the
original data vector and the reconstructed data. Secondly,
the computational cost of the schemes is reduced by
computing estimates of the actual updated eigenspaces.

Using alternatives to a straightforward analytical
eigenspace computation appears almost obligatory due
to the high-dimensional data. The scheme proposed in
this paper uses mathematical workarounds for this task
as well, but is primarily designed to enable an efficient
reconstruction process. On the other hand, updating
the eigenspace in a manner that performs no analysis
of the original data sequence before processing it is
non-optimized, the more so that an initial analysis of the
data is a long established concept in data compression
and, therefore, at the core of many existing applications
(Richardson, 2003; ITU, 2007). Another common
property of many existing PCA-based applications is
in their usability, which is limited to a single (video)
data domain (Perez-Iglesias et al., 2005; Söderström and
Li, 2007). This is primarily due to the integration of
domain-specific knowledge, introduced with the aim of
decreasing reconstruction errors.

The aim of the present work is to introduce
a computationally efficient, yet mathematically exact,
eigenspace updating scheme which specifically supports
high-dimensional systems from any domain. The
updating scheme itself is introduced in Section 2.
Section 3 presents the inverse (reconstruction) process,
a theoretical analysis of the achievable compression
ratios as well as a comparison with previous eigenspace
updating schemes. The conclusion is given in Section 4.

2. Eigenspace updating for
high-dimensional systems

Without loss of generality, the initial data can be
interpreted as a time series, which is a model commonly
used in statistics as well as signal processing (Spiegel
et al., 2011). The data is therefore represented by a
finite sequence of T equally-sized vectors, denoted by
V = {vt}, where each element vt ∈ R

D and the
index t ∈ [1, T ]. While such a partitioning can be
derived from any kind of data (by padding), it is a

natural representation of high-dimensional data, where
the entirety is conventionally defined as a sequence
of structurally identical elements. The sizes, or
dimensionalities, of such elements are consequently
identical as well.

By interpreting the original data as a finite sequence
of vectors, the problem initially translates to selecting
a subsequence of vectors from V , which are used to
compute the eigenspace, denoted by V B = {vB

i }; V B ⊂
V, i ∈ [1, I]. The total number of selected base vectors
is hence denoted by I , where I < T . Because the ability
of the eigenspace to successfully represent and reconstruct
data is primarily defined by the vectors used to compute it,
the vectors included in V B are referred to as base vectors
(therefore the superscript B). Meanwhile, the algorithm
used to obtain the Projection Space (PS) from the selected
base vectors obviously remains the most critical part of
the entire scheme. The residual vectors from the initial
sequence V are afterwards projected using the obtained
eigenspace, and therefore described as non-base vectors.

According to the introduced model, the proposed
scheme consists of three phases:

• base vector selection,

• projection space creation, and

• non-base vector projection.

2.1. Base vector selection. Even though no complex
computation is performed during the initial phase,
the base vector selection algorithm is of significant
importance due to the relationship between the base
vectors and the domain of successfully representable
non-base vectors. Since the projection space domain
is directly defined by the base vectors, selecting them
in a process which is independent of the (data) domain
is critical to establish an entirely domain independent
scheme. Defining a single-criterion selection process
is complicated by contradicting aims; while including
fewer vectors decreases the computational burden,
counting more vectors extends the domain of successfully
representable vectors. More precisely, using more
properly selected base vectors results in a broader,
more detailed description of the domain. Therefore,
a double-criterion base vector selection algorithm is
introduced, comprising the following steps:

(i) The first vector of V , v1, is by definition included as

the first base vector in V B , thus vB
1

def= v1.

(ii) The subsequent d ∈ N
+ vectors from V are not

considered base vectors.

Here N
+ is used to specifically exclude the

possibility of d = 0, which would result in relying
entirely on Step (iii) for the base vector selection.
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(iii) Having performed Step (ii), we denote

• the last previously included base vector by vB
i ,

• the currently observed vector from V by vt0 ,

• the number of base vectors used (later-on) to
compute the PS by Des ∈ N>1,

• the threshold, which is the lower limit for the
similarity of two vectors by ε ∈ R,

in order to define the next base vector vB
i+1 as

vB
i+1

def= vmin(t′) dl1(vt′ , v
B
i′ ) > ε,

∀vB
i′ ∈ {vB

i−Des , . . . , vB
i } ∧ vt′ ∈ {vt0 , . . . , vT },

(1)

where dl1(x, y) denotes the l1 vector distance,
defined by

dl1(x, y) =
1
D

D∑

i=1

|xi − yi|. (2)

The basic idea, which is formalised by Eqns. (1) and
(2), is to define the next base vector as the first vector
from V , which appears at least 1 + d elements after
the previous base vector, and is at the same time
sufficiently varying from the last Des base vectors.
Initially, when Des base vectors have not yet been
selected, the comparison is performed only for the
already defined base vectors. While d and ε represent
straightforward algorithm parameters, the definition
of Des is additionally discussed in Section 2.2.

(iv) Steps (ii) and (iii) are repeated until the entire
sequence V has been analysed for possible base
vectors.

(v) If not included during previous steps, the last element
of V , vT , is included as the final base vector vB

I , thus

vB
I

def= vT .

As mentioned, d and ε function as parameters
of the base vector selection. Because their effect
becomes critical only in practical applications, where
reconstruction quality is perceived subjectively, the
optimal values were found empirically (on image and
video data, for example, the values used were d ∈
[4, 6] and ε ∈ [5, 8]). Besides representing a generally
subjective measure of similarity, the influence of d on
the ratio between the encoded and the original data size
(hereinafter referred to as Compression Ratio (CR)) is
especially significant. Since the encoded non-base vectors
are significantly smaller in size than the original and base
vectors, the CR’s upper bound converges to 1 : (1 + d)

as the data dimensionality D goes to infinity. In more
practical terms: as the data dimensionality increases, the
CR is ensured to be at least 1 : (1 + d). A rigorous proof
is presented in combination with the formal definition (see
Theorem 1 in Section 3).

Since the base vectors are further on represented in a
new sequence of vectors V B , their indices in the original
vector sequence V have to be known, thus stored, for
a successful reconstruction as well. The sequence of
non-base vectors, denoted by V NB = {vNB

j }; j ∈ [1, J ],
can now be finally defined as V NB = V \ V B .

2.2. Projection space creation. As important as an
optimized selection of the base vector subsequence may
be, the most critical step remains the process of efficiently
transforming the base vectors into projection spaces. Even
if computing a single PS based on the entire subsequence
V B appears possible in theory, the high-dimensional as
well as generally varying nature of data implies superior
solutions. This is true especially from a computational
point of view, where both factors have significant impact.

Based on the assumptions regarding the dimension
and variability of the original vector sequence, we
introduce the creation of a PS sequence. Each of the
PS is computed from Des adjacent base vectors, where
in general Des is significantly smaller than the number of
selected base vectors I , especially when assuming that the
original sequence V itself contains thousands of elements
(i.e., Des � I < T ). Adjacent PSs are not computed
simply from adjacent sets of base vectors; rather, they
are obtained from overlapping sets of base vectors. This
approach is taken to mitigate the shortcomings of previous
eigenspace updating schemes, where the reconstruction
error increased evidently before each update (Liu et al.,
2003; Perez-Iglesias et al., 2005; Söderström and Li,
2007). The reconstruction error of the proposed scheme
is in contrast throughout of a continuous nature. This
comparison is formally proven by Theorem 2.

Two important aspects of defining Des � I need
to be mentioned before the formal definition of the
computation scheme. Firstly, using a rather small set of
base vectors to compute the PS makes sense especially
when the vector sequence is constantly varying. This
holds because the eigenvectors forming the PS can
successfully represent only vectors which show a certain
degree of similarity. Therefore, using a PS obtained from
a large number of base vectors would result in effectively
‘using’ only a small subset of the PS’s eigenvectors, while
the majority of the produced projection coefficients would
be redundant. An additional aspect follows from the
assumed high data dimensionality, which implies that the
single possibility of defining a manageable system is in
constructing it from a significantly smaller number of
vectors (Des � D).
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PS computation can now be formally defined. The
base vectors from V B are firstly aligned as columns of
a single matrix, denoted by M ∈ R

D×I . Each PS is
actually computed from a submatrix of M containing Des

adjacent columns. Any such submatrix is in Step (i) of
PS creation denoted by Mn, whereby it contains Des

adjacent columns, counting from the n-th one onwards.
The computation is then performed in the following four
steps:

(i) The submatrix Mn is initially standardised. In
other words, the separate dimension averages are
translated to zero by subtracting the average
dimension value from the elements of that
dimension:

S = Mn − āneT , (3)

where S denotes the resulting standardised matrix,
e represents the ones vector of dimension D, and
ān corresponds to the vector of dimension averages,
which is defined by

ān
i =

1
Des

Des∑

j=1

Mn
ij . (4)

Further, the vector of dimension averages ān is
stored, since it is subtracted later on from the
non-base vectors as well.

(ii) In order to compute the eigenvectors which define
the PS, a Covariance Matrix (CM) has to be obtained
first. In the usual PCA scheme, the general definition
of a CM is used, thus it is defined as S · ST (Jolliffe,
1986). Due to the above-mentioned circumstances,
however, a slightly different approach is used, which
follows from the works of Jin and Wei (2007),
Nie et al. (2008) as well as Turk and Pentland
(1991). While the final results are identical, the
computational cost is reduced significantly, since
S · ST , yet alone its Singular Value Decomposition
(SVD), is never computed. Instead, the CM is
defined as

C = ST S, (5)

where C is a significantly smaller CM (compared to
S · ST ), C ∈ R

Des×Des
.

(iii) The following step is to compute the SVD of C. An
important fact lies in the definition of C, which is a
CM, and therefore at least positive semi-definite. A
further consequence is that the left- and right-hand
singular vectors of C are equal. Therefore, the
matrix of left (respectively, right), singular vectors

are denoted equally by W . The SVD of C is thus
given by

C = WΣWT . (6)

The initially required eigenvectors can now be
obtained, beginning with the eigenvalue problem of
C = ST S,

ST Sy = λy, (7)

where λ and y denote the eigenvalues, respectively
eigenvectors, of C. However, the eigenvector y
can be substituted with W from the SVD. This is
valid, because the singular- and eigenvectors, like the
singular- and eigenvalues, of C are identical (C is
positive semi-definite) (Meyer, 2000). Additionally,
Eqn. (7) is left-multiplied by the standardised matrix
S, thereby obtaining

SST SW = λSW. (8)

Finally, by introducing U = SW (respectively, x =
SW ), we obtain

SST U = λU, (9a)

SST x = λx, (9b)

where x denotes a particular eigenvector and U
is the matrix of all eigenvectors. This conclusion
(equality) is valid because the eigenvalues of SST ,
and ST S, are identical as well (Meyer, 2000).

While Eqns. (7) through (9) are parts of the
constructive proof, the solution is actually hiding in

U = SW, (10)

where W is the matrix of singular vectors of
C, S is the standardised matrix, and U is the
above-mentioned eigenvector matrix of SST .

(iv) To be exact, the obtained matrix U actually
represents only an orthogonal basis for SST . In
other words, the columns of U require normalisation
in order to obtain the required orthonormal set of
eigenvectors.

By finally considering the computational load to
compute W from Mn, respectively U from W , and
additionally taking into account the dimensions of W
in comparison with those of U , knowing W emerges
as critical for an efficient PS construction. W is,
therefore, in the following described as an intermediary
eigenspace. Remembering (storing) the intermediary
eigenspaces, which are computed during the coding
process, is consequently the basic concept of the
proposed (reconstruction) scheme that ensures efficient
data reconstruction.
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2.3. Non-base vector projection. Once the base
vectors are selected, and the PSs are created, the final step
of projecting the non-base vectors is almost a trivial task.
Actually, the single unanswered important aspect remains:
which PS exactly to use for projecting any given non-base
vector?

Denoting the possibly computable PS by U1, U2, . . . ,
UI−Des+1 (in respect to M1, M2, . . . , M I−Des+1), it
is evident that not all of the PSs are required. At least
every Des-th PS has to be computed in order to achieve a
continuous reconstruction error. Although Des is assumed
to be ‘small’, omitting the computation of some PS can
evidently reduce the computational load. One possibility
is to compute every second PS, and thereby reducing the
possible computational costs by half.

Independently of the actually computed PS, the aim
is always to project each non-base vector to the PS,
which is defined by the eigenvectors most similar to it.
Without additional analysis it can be assumed that for each
non-base vector this is the PS which is computed from
the base vectors that are closest to it in the original vector
sequence. By using the PS in this way, each non-base
vector is actually represented by eigenvectors which were
obtained from base vectors positioned before as well as
after it in V .

As for the projection itself, it is accomplished by
straightforward matrix multiplication:

pj = UT
n (vNB

j − ān), (11)

where vNB
j represents any non-base vector from the

non-base vector sequence (vNB
j ∈ V NB), UT

n is the PS,
which is defined by the base vectors closest to vNB

j in the
original sequence, ān is the vector of dimension averages
(as defined by Eqn. (4)) and, finally, pj is the vector of
projection coefficients (pj ∈ R

Des
).

Of special significance is the ratio between the
dimensions of the projected pj and the initial non-base
vNB

j vectors, namely, Des : D. That being the CR
for any particular non-base vector, it was defined from
the onset that Des � D. One of the implications
is the contribution of the projected non-base vectors to
the overall CR, which becomes negligible as the vector
dimensionality D increases.

3. Theoretical analysis

Since the introduced scheme is designed with the aim
of efficiently reconstructing (data) vectors, the inverse
(reconstruction) process is obviously computationally less
expensive. Before a thorough analysis is performed,
however, the details of the inverse process have to be
given.

In general, the reconstruction process consists of
performing the inverse of the last two steps, thus

recreating the PS, and reconstructing the non-base vectors.
The idea, as well as the equations, for recreating any
PS are already known. As mentioned before, the
previously computed intermediary eigenspaces W are
used to directly transform a standardised matrix S into a
PS using Eqn. (10). The steps of computing a CM and
finding its SVD (Eqns. (5) and (6)) are hence omitted.
Performing the standardisation procedure (Eqns. (3) and
(4)) from the beginning is less critical, since the (here
unknown) vector of dimension averages ān is required for
reconstructing non-base frames as well.

Once the PS Un and the vector of dimension averages
ān are recreated, a non-base vector vNB

j is reconstructed
from the vector of projection coefficients pj by

v′NB
j = Unpj + ān, (12)

where v′NB
j denotes the reconstructed non-base vector

vNB
j , where in general v′NB

j � vNB
j .

Proceeding with the theoretically ensured properties
of the scheme, an assumption regarding the ‘worst case’
CR was already given in Section 2.1, but left without a
proof.

Theorem 1. As the data dimensionality within the context
of the presented scheme goes to infinity, D → ∞, the
compression ratio’s upper bound converges to 1 : (1+d).

Proof. The CR, denoted equally by CR, is formally
defined by (Taubman and Marcellin, 2002)

CR =
encoded data size
original data size

, (13)

where the original data size equals the number of vectors
in V multiplied by the vector dimensionality, thus T · D.
Meanwhile, encoded data size equals the combined size
of all data, required to reconstruct the original data. More
precisely, encoded data size equals the sum of sizes of
the non-encoded base vectors, the vectors of projection
coefficients, and the intermediary eigenspaces. Assuming
that every second eigenspace is computed (stored), the
three mentioned terms sum up to

encoded data size

= ID + (T − I)Des +
I

2
Des2, (14)

where the number of eigenspaces is rounded from
I − Nes + 1 to I .

Using the derived values in Eqn. (13) results in

CR =
ID + (T − I)Des + I

2Des2

TD
, (15)
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where the number of base frames I still needs to be
resolved.

Following the assumption of a ‘worst case’ scenario,
the upper bound of CR is defined by selecting the most
possible base vectors. In terms of the base vector selection
algorithm, this would be equivalent to setting ε = 0, and
therefore producing

I =
T

1 + d
, (16)

hence skipping always exactly d vectors from vn before
including the next base vector.

Rearranging Eqn. (15) and combining it with Eqn.
(16) result in

CR =
ID

TD
+

TDes

TD
− IDes

TD
+

IDes2

2TD

=
I

T
+

Des

D
+

IDes(Des − 2)
2TD

=
T

(1 + d)T
+

Des

D
+

TDes(Des − 2)
2(1 + d)TD

=
1

1 + d
+

Des

D
+

Des(Des − 2)
2(1 + d)D

. (17)

Taking finally into account that D → ∞ provides the
proof as

lim
D→∞

CR = lim
D→∞

(
1

1 + d
+

Des

D
+

Des(Des − 2)
2(1 + d)D

)
,

lim
D→∞

CR =
1

1 + d
. (18)

�

While the influence of d on the CR is to some degree
less important from a theoretical point of view, it provides
a straightforward estimate as well as a control parameter
of the expected CR in practical environments.

Besides analysing the scheme, a comparison with
previously presented eigenspace updating schemes is of
critical importance. The proposed scheme is therefore
analytically compared with the generally used updating
scheme, where the eigenspace is updated whenever
the reconstruction error exceeds a predefined threshold
(Perez-Iglesias et al., 2005; Liu et al., 2003). In order
to formalise the comparison, though, a measure of the
reconstruction error needs to be defined firstly. For this
purpose, the reconstruction error sequence is introduced.
For the presented scheme it is denoted by E = {et}; et ∈
R, t ∈ [1, T ], and (since V NB = V \ V B) defined as

et =

{
dl1(vt, v

′
t) if vt ∈ V NB ,

0 otherwise,
(19)

where vt represents a vector from V , which has not been
defined as a base vector, v′

t represents its reconstruction

using the introduced scheme, and the error is computed
by using the metric as defined in Eqn. (2). All of the
base vectors are known in their initial form during the
reconstruction process, and therefore introduce no error
to the sequence.

The reconstruction error sequence of the compared
scheme, denoted by G = {gt}, gt ∈ R, t ∈ [1, T ],
is meanwhile defined equivalently to E, assuming that
the base vectors are selected, respectively the eigenspace
is updated, whenever the reconstruction error exceeds
a predefined threshold. Additionally, the average
reconstruction errors are defined by

Ē =
1
T

T∑

t=1

et, (20a)

Ḡ =
1
T

T∑

t=1

gt. (20b)

While the key difference between the two schemes
has already been mentioned (see Section 2.2), it is
formalised by the following result:

Theorem 2. The reconstruction error sequence E of
the introduced eigenspace updating scheme is always of a
periodic and continuous nature. The average reconstruc-
tion error Ē is additionally always smaller than the aver-
age reconstruction error Ḡ created by using an updating
scheme where the eigenspace is updated always when the
reconstruction error exceeds a predefined threshold.

Proof. As the above theorem compares two different
but conceptually similar schemes, it has to be understood
within its scope. It is obviously assumed that for the
comparison both schemes are applied to the same vector
sequence, V . Using the exactly same subsequence of base
vectors V B is impossible due to the varying definitions.
Therefore, it is assumed that both schemes use every
(1 + d)-th vector from V as a base vector (excluding
the first Des vectors, which are used for initialising the
eigenspace), and compute the PS always from Des vectors
at a time. The roles of parameter ε in the presented scheme
(respectively, of the predefined threshold in the compared
scheme) are eliminated by applying these assumptions.
It is important to note that such an approach modifies
(respectively, narrows) the schemes to some degree, but
primarily it creates the required neutral conditions where
the two algorithms used to update the eigenspace can be
compared. Hence, the proof is focused on the effect of the
modified updating scheme.

Figure 1 shows an illustration of typical
reconstruction error sequences E and G as obtained
from numerical experiments using video data of varying
content. Since the experiments were performed on various
samples, the illustration in Fig. 1 represents the averaged
results, whereby the exact parameters used are given in
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(a) (b)

Fig. 1. Illustrations of typical reconstruction error sequences as obtained by the proposed scheme (a), and by the scheme, where the
eigenspace is updated when the error crosses a predefined threshold (b). The according parameters used in (a) are Des = 3,
d = 3, and ε = 0, while the compared scheme (b) updates the eigenspace on every (1 + d)-th, thus 4-th vector. No actual
threshold is used in this case in (b), in order to create the required neutral conditions.

the figure caption. Although some assumptions were
necessary in order to be able to compare the two schemes,
a computational proof would require additionally the
exact evaluation of the reconstruction error sequences.
Since this is beyond the scope of this paper, only the
reasoning for the correctness of the first part of the stated
theorem is given. Even though confirmed by various
experiments, which are also illustrated in Fig. 1, this has
to be consequently understood rather as an indication
than an exact proof.

The graphs of the sequences E and G clearly indicate
that actually both of the reconstruction error sequences are
of a periodic nature. Intuitively this can be traced to the
periodic nature of the distance between the position of a
given vector and the base vector used for its projection,
which is closest to it in the initial sequence. While we
develop this idea in order to prove the second part of the
stated theorem, it says little about the continuity of the
reconstruction error sequence E.

Comparing the graphs, it is evident that the intervals
of discontinuous nature in G, actually the intervals where
the eigenspace is updated, are transformed to intervals
of a continuous nature. The key observation here is
the influence of the introduced scheme, where the base
vectors are throughout the sequence chosen in advance.
Therefore, the number of elements between the currently
projected vector and the base vector closest to it always
follow a continuous sequence. Even more, all of the
non-base vectors are projected to a PS that is computed
from base vectors which are positioned before as well as
after them in the original sequence V .

While the given reasoning implies to some degree
the correctness of the second part of the stated theorem
as well, an analytic proof is complicated again by
the requirement to exactly evaluate the elements of E,
respectively G. To actually prove the second part,

however, it is sufficient to use any estimate which
preserves relations between the elements of the sequences.
The most critical relation is formalised by

et < gt ⇔ e′t < g′t, ∀et ∈ E ∧ ∀gt ∈ G, (21)

where et and gt represent elements of the reconstruction
error sequences E and G, while e′t and g′t represent
the estimated values of the according elements from E,
respectively G. In simpler terms: as long as any element
et, which is smaller than gt, is transformed into an element
e′t, which is smaller than g′t, and vice-versa, the estimate
producing this transformation can be used to prove the
second part of Theorem 2.

Based on the assumptions made, and confirmed
by the described experiments, the distance between a
non-base vector and the closest base vector, which is used
for creating the PS, represents an appropriate estimate of
the reconstruction error. This estimate is used for both
schemes, since both are assumed to compute the PS and
project the non-base vectors using the same equations.
The definition for the estimated values e′t and g′t is thus
defined for both schemes by

{e′t, g′t} 
→ |t − i|, vt ∈ V ∧ vB
i ∈ V B, (22)

where, most importantly, vB
i denotes the base vector

closest to vt, which was used to create the PS that vt was
projected onto. In this particular equation, i refers to the
index of vB

i in the initial sequence V , not the base vector
sequence V B .

With all elements finally in place, the average
reconstruction errors Ē and Ḡ can now be estimated as

Ē ≈ 1
T

T∑

t=1

e′t, (23a)
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Ḡ ≈ 1
T

T∑

t=1

g′t. (23b)

While using the entire sequences E′ and G′ is
required to obtain an exact value, the proof can be
obtained actually from shorter subsequences. As an
estimate is used here, computing an exact value (of the
estimate) provides obviously no additional information.
Since all of the base vectors are reconstructed without
errors, they can be, without loss of validity, omitted. Even
more, because both sequences are periodical (as illustrated
in Fig. 1), the result is equal when computing the average
reconstruction error of a single period of reconstructed
non-base vectors. Using the developed ideas in Eqn. (23)
results in

Ē ≈ 1
d

d∑

t=1

e′t, (24a)

Ḡ ≈ 1
d

d∑

t=1

g′t. (24b)

Finally, by using the values produced by Eqn. (22) in
(24), the average reconstruction errors can be computed as

Ē =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
d
2

d/2∑
i=1

i if d is even,

1
d
(
�d/2�∑
i=1

i +
�d/2�∑
i=1

i) if d is odd,

(25a)

Ḡ =
1
d

d∑

i=1

i. (25b)

Only the most interesting scenario, the case of Ē when d
is odd, is explicitly developed here:

Ē =
1
d

( �d/2�∑

i=1

i +
�d/2�∑

i=1

i
)

=
1
d

( (1 + d−1
2 )(d − 1)
4

+
(1 + d+1

2 )(d + 1)
4

)

=
( d(d−1)

2 − d−1
2 + d − 1 + d(d+1)

2 + d+1
2 + d + 1

4d

)

=
d(d−1+(d+1))

2 + d+1+1−d
2 + 2d

4d

=
d2 + 2d + 1

4d
=

d

4
+

1
2

+
1
4d

. (26)

Meanwhile, evaluating all three scenarios (by the
principally identical process) finally provides the proof as

Ē =

⎧
⎪⎨

⎪⎩

d

4
+

1
2

if d is even,

d

4
+

1
2

+
1
4d

if d is odd,
(27a)

Ḡ =
d

2
+

1
2
. (27b)

�
It is important to note that different metrics, for example,
as defined by Eqn. (2), are generally used in practical
applications. The proof, as well as the theorem itself,
does not therefore exactly compute the ratio between the
average reconstruction errors. This, however, does not
harm the validity of either.

4. Conclusion

While several new applications for PCA-based systems
have been proposed in the recent years, no dedicated
mechanism for using projection spaces (eigenspaces)
in a truly dynamic environment has been developed.
The approach of using originally static algorithms, and
schemes, has proven to be sufficient only for basic tasks,
respectively low-dimensional problems.

In order to use eigenspaces for the projection and
reconstruction of high-dimensional (data) vectors, an
eigenspace updating scheme has been introduced, which
performs a beforehand analysis of the data to optimally
select the base vectors. An efficient reconstruction process
is achieved by employing ‘intermediary’ eigenspaces,
which are basically intermediate products of the
eigenspace computation stored for later use.

The reconstruction quality, as well as the achievable
compression ratios of the introduced scheme, have been
examined analytically. Not only does the introduced
scheme provide superior reconstruction in comparison
with the previously used approach, but also the
compression ratio can be practically defined by a single
parameter.

Acknowledgment

This work was supported by the Slovenian Research
Agency under the grant 1000-10-310121 and the project
P2-0041, and produced within the framework of the
operation entitled Centre of Open Innovation and
Research UM. The operation is co-funded by the
European Regional Development Fund and conducted
within the framework of the Operational Programme
for Strengthening Regional Development Potentials
for the period 2007–2013, Development priority 1:
Competitiveness of companies and research excellence,
Priority axis 1.1: Encouraging competitive potential of
enterprises and research excellence.

References
Chandrasekaran, S., Manjunath, B., Wang, Y., Winkeler, J. and

Zhang, H. (1997). An eigenspace update algorithm for
image analysis, Graphical Models and Image Processing
59(5): 321–332.



An efficient eigenspace updating scheme for high-dimensional systems 131
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