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Essential ingredients for robust control are the ability to cope with different types of system behavior following modeling
imperfections and the ability to assure a certain performance level. In this paper, we propose to use an actuator fault-tolerant
control law to govern, during experiments, the stabilization of a bicycle robot with an inertial wheel in order to take into
account unmodeled uncertainty introduced by using a linearized model in an LQR fashion. Our proposal is illustrated by
signal plots and the values of performance indices obtained from a set of experiments.
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1. Introduction

The problem of stabilization, or robust control, is
widely discussed in the literature. Some papers are
related to performance measures as a quadratic cost for
uncertain systems, as the works of Chang and Peng
(1972) or Petersen and McFarlane (1992) for the case
of continuous-time control systems. In the case of
discrete-time control systems, the guaranteed-cost control
has been addressed by, e.g., Xie and Soh (1995).

Control algorithms, when implemented, are prone
to failures. Thus it is important to use controllers that
can tolerate these failures, to guarantee stability and a
certain level of performance. This paper adopts the
approach presented by Yang et al. (2000b) to apply
LQR/LQI control strategies to stabilize a bicycle robot
in an unstable equilibrium point, based on its linearized
model. The actuator failure feature of the controller is
used to introduce the uncertainty that originates from
adopting a linearized model to control a nonlinear system
that can be modeled by nonlinear state-space equations.
Appropriate results are shown on the basis of a set of
performed experiments with a bicycle robot.

The state-feedback control law is used to guarantee
the cost in the case of actuator failure or, in other words, to
assure that the lack of consistency between the linearized
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model and the “true” model of the plant is compensated,
projecting the “robustness area” on the static characteristic
of the nonlinearity present in the control system or an
unknown static characteristic of the nonlinear system.

The principle and basic introduction to inertial wheel
stabilization can be found in the work of Owczarkowski
et al. (2014). The LQR approach to stabilize an unmanned
bicycle is presented by Yang et al. (2011) or Smerpitak
et al. (2012), but only as a result of simulations and no
robustness introduced to the control system. The dynamic
characteristics, i.e., the response of the closed-loop system
to the initial conditions presented in this paper, are similar
to the ones presented in the above-cited works, but they
can take the uncertainty of the linearized model of the
robot into account.

2. Experimental setup: An unmanned
bicycle robot

Figure 1 shows a real robot. It has two degrees of freedom
(the deflection angle from the vertical position and the
angle of the reaction wheel) and one actuator (electric
motor). The main goal of the control system is to stabilize
the robot at an unstable equilibrium point using as little
energy as possible. The DC brushed electric motor is fitted
inside the construction and accelerates or decelerates the
rotating mass (the steering wheel, the reaction wheel).
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Fig. 1. Picture of a real robot.

The motor shaft torque creates a reaction which is
used for stabilization and is the core principle of operation
of this robot. The only control signal is the electric motor
current proportional to the torque, which makes the direct
torque control absolutely vital and fundamental in this
case. The measurement system consists of three sensors:
a one-axis accelerometer, a one-axis gyroscope and an
encoder. Raw measurement values would be useless
without a specially prepared filtering and estimation
process. To obtain a reliable state vector, we decided to
use a combination of Kalman and FIR filters. The studies
presented by Drapikowski et al. (2012) prove that this
measurement system is sufficient for this kind of robot.
Every calculation is made by an embedded system with a
high performance 32-bit STM32 microcontroller.

There are some constraints in the system that must be
taken into account, namely, the maximum angle from the
vertical position, the maximum velocity of the reaction
wheel and the maximum control value. In other words,
every electric motor has its own limits, i.e., the maximum
velocity and the maximum torque. If one of these values
saturates, the system becomes much more difficult to
control. In such a situation, the actuator is uncontrollable.
This article shows how to cope with actuator failures using
modified LQR control.

3. Model of the robot

3.1. Continuous-time 2DOF model of the plant
and the solution procedure for nonlinear differ-
ence equations. The full mathematical model of the
robot is defined by the following non-linear differential
equations (time index omitted for brevity):

ẋ1(t) = x2(t) , (1)

ẋ2(t) =
g hr mr sin(x1(t))

Irg
− br x2(t)

Irg
(2)

− bI x4(t)

Irg
+

km u(t)

Irg
,

ẋ3(t) = x4(t) , (3)

ẋ4(t) =
km u(t)

II + Imr
− bI x4(t)

II + Imr
, (4)

where (see Fig. 2 for the kinematic scheme of the object)
x is the state vector, x1 is the angle of the robot from
the vertical, x2 is the angular velocity of the robot, x3 is
the rotation angle of the reaction wheel, x4 is the angular
velocity of the reaction wheel, u stands for control, ui is
the current of the i-th motor, mr is the weight of the robot,
II is the moment of inertia of the reaction wheel, Imr1 is
the moment of inertia of the rotor of the motor 1, Irg is
the moment of inertia of the robot relative to the ground,
hr is the distance from the ground to the center of mass
of the robot, g is the gravity of the Earth, kmi is the i-th
motor constant, br is the coefficient of friction in the robot
rotation, bI is the coefficient of friction in the rotation of
the reaction wheel, P1, P2 are contact points of the wheels
with the ground, C1 is the center of the rear wheel, C2 is
the center of the front wheel, COM stands for the center
of mass.

The above model takes centrifugal force, gravitation
force and also the reaction momentum from an inertial
drive into account. It has been derived with reference
to the rules described by Block et al. (2007), and yet,
apart from taking the listed phenomena into account, it
is a simplification of reality to some extent.
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Fig. 2. Kinematic scheme of a bicycle robot: main view (a), side
view (b).

The system can be linearized by a Jacobian matrix to
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the form ẋ(t) = Alx(t) + b lu(t), where

Al =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0
ghrmr

Irg
− br
Irg

0 − bI
Irg

0 0 0 1

0 0 0 − bI
II + Imr

⎤
⎥⎥⎥⎥⎥⎦
, (5)

b l =

⎡
⎢⎢⎢⎢⎢⎣

0
km
Irg
0
km

II + Imr

⎤
⎥⎥⎥⎥⎥⎦
, (6)

with the linealization point (units have been omitted
here) xl = [0.5, 0, 0, 0]T . The physical model
of the robot has the following parameters: mr =
3.96 kg, hr = 0.13m, II = 0.0094 kg ·m2, Imr1 =
0.0008 kg ·m2, Irg = 0.0931 kg ·m2, rw = 0.03m, g =
9.80665m · s2, λ = π/2 rad, km1 = 0.421N ·m · A−1,
br = 0.0013N ·m · s, bI = 0.0003N ·m · s, identified
by means of previous experiments or appropriate
measurements.

3.2. Discrete-time model of the plant. In order
to apply the controller on hardware, the following
multivariable model of the linearized plant must be
introduced:

x t+1 = Ax t + but , (7)

y
t
= Cx t , (8)

where the appropriate matrices and vectors have known
sizes and are the result of step-invariant discretization of
the continuous-time model of the plant (5), (6), with a
chosen sample period TS . The output vector y ∈ R

p, the
constrained control signal u, and the state vector x ∈ R

n

are in the discrete-time domain (denoted henceforth by the
subscript t).

4. Actuator failure models

The LQR-type approach to control a bicycle robot
assuring some degree of robustness to actuator failures
is applied in the paper. In the proposed algorithm, the
control performance index is defined as in the standard
LQR control (Kwakernaak and Sivan, 1972),

J =

∞∑
t=0

(
xT

tQx t +Ru2
t

)
, (9)

with the weighing matrix Q ≥ 0, and R ≥ 0. In the most
general case, one can assume the actuator failure model as
in the work of Zuo et al. (2010), i.e.,

uk
t = (1− ρkt )sat(vt; α), k = 1, . . . , gF , (10)

where ρkt is an unknown constant from the span that will
be defined in a further part of the text, index k denotes
the k-th failure model, and gF is the total number of
failure models. The symbol uk

t refers to the constrained
control signal, assuming that an actuator failure takes
place (in the other case, uk

t = vt). For any actuator failure
model, including the situation for constraints imposed on
the control signal, the constant ρkt lies in ρk−,t ≤ ρkt ≤
ρk+,t, and the function sat defines the method of applying
constraints (e.g., a cut-off constraint).

Having taken a single model of failure into account,
(10) can be transformed (Yang et al., 2000b; 2000a; Horla
and Królikowski, 2011) to

uF
t = �vt , (11)

where

0 ≤ �− ≤ � ≤ �+, (12)

with �− ≤ 1 and �+ ≥ 1. This enables us to
mimic uncertainty introduced by the linearized model
with a kind of actuator failure—the control signal applied
to the system causes different behavior, as expected.
Furthermore, for the robot considered, current constraints
introduce additional failure-like behavior (inability to
generate computed, i.e., required, torques).

With reference to (10), �− = �+ means that there are
no active constraints imposed on the control signal or no
failures have taken place, and uF

t = vt. The case �− > 0
corresponds to a partial failure, and �− = 0 to the outage
case.

In order to streamline the further presentation, the
following notation has been adopted from Yang et al.
(2000a) as well as Horla and Królikowski (2011):

ut = uF
t . (13)

5. Control strategies considered

Firstly, the LQR control law of the form

vt = kTx t (14)

is considered, where x t is the sampled state vector from
the robot, measured by means of a suitable combination of
filtering and estimation of signals from the accelerometer,
the gyroscope and the encoder. It refers to the equations of
the nonlinear model of the plant (1)–(4). The latter control
law is called reliable and assures that a specified value of
the performance index (9) is not exceeded for the given
plant model (referring to the real-world control system), if
it is connected to a certain matrix P , the system (7), (8),
and if P satisfies the inequality (Yang et al., 2000a; Horla
and Królikowski, 2011)

(
A+ �bkT

)T

P
(
A+ �bkT

)

− P +R�2kkT +Q ≤ 0 . (15)
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The closed-loop model of the system

x t+1 =
(
A+ �bkT

)
x t (16)

is then stable, and the performance index over an infinite
horizon satisfies

J =
∞∑
t=0

xT
t

(
Q+R�2kkT

)
x t ≤ xT

0Px 0 . (17)

If no robustness against the actuator failure is taken
into consideration, the optimal state-feedback vector k for
the control law (14) is derived as a solution of the set of
equations

kT = −
(
bTP b +R

)−1

bTPA , (18)

P = QATPA

−ATP b
(
bTP b+R

)−1

bTPA , (19)

with an optimal value Jk of the performance index (9),
based on deriving k according to (18) and (19), being at
the same time the upper boundary of (17), given as

Jk = xT
0Px 0 . (20)

Secondly, the LQI control law is also taken into
account,

v t = kTx t + kTI x I,t , (21)

where x t is the measured state vector of the robot, as in
the latter case, and x I,t is an appropriate integral of the
state vector, whereas kI for the described problem is a
zero vector with the third element with the value a �= 0
(compensation of the gyroscopic drift in x3).

6. Derivation of an optimal state-feedback
vector in the case of an actuator failure

The following algorithm (Yang et al., 2000a) enables
derivation of the optimal state-feedback vector k to
increase the robustness of the system against actuator
failure:

1. solve (19) with respect to P (mark the result as P ∗),
and choose an arbitrary R0, satisfying

R0 ≤
(
bTP ∗b +R

)−1

; (22)

2. solve

P = Q+ATPA−ATP J0PA (23)

with respect to the stabilizing P and check the
condition

R0 ≤
(
bTP b+R

)−1

, (24)

where

J0 = b
(
1− γ2

0

) ((
bTP b+R

) (
1− γ2

0

)

+R−1
0 γ2

0

)−1
bT , (25)

(γ0 will be defined in due course);

3. if the inequality (22) is satisfied for R0 and P , increase
R0 and proceed to Step 2; otherwise, decrease R0 and
proceed to Step 2, checking if Step 4 is satisfied;

4. if the inequality (22) is satisfied for R0 and P , the
stabilizing matrix P satisfies Eqn. (23), and there is
no positive-definite solution for the pair R0 and P for
arbitrary R′

0, where

R0 ≤ R′
0 ≤

(
bTP ∗b+R

)−1

,

then stop the algorithm; in this case, the state-feedback
vector is given as

kT = −γ−1
(
1−(

X−1−R0

)((
1−γ2

0

)
(26)

+ γ2
0R

−1
0 X−1

)−1
γ2
0R

−1
0

)
X−1bTPA ,

where X = bTP b+R.

The following notation has been adopted in the above
algorithm (Yang et al., 2000a):

γ =
�+ + �−

2
, (27)

γ0 =
�+ − �−
�+ + �−

. (28)

The matrix P satisfying the equation

P = QATPA

−ATP b
(
bTP b+R

)−1

bTPA (29)

is called the stabilizing Ricatti solution to the Ricatti
equation, and all eigenvalues of the matrix A−b

(
bTP b+

R
)−1

bTPA are inside the unit circle.
In addition, we have (Yang et al., 2000b)

� = (1 + �0) γ , (30)

|�0| ≤ γ0 ≤ 1 , (31)

where

�0 =
�− γ

γ
.
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7. Actuator failure vs. active constraints
and undermodeling errors

When the input signal of the actuator saturates, in
amplitude-constrained control, it may be treated as a
special case of actuator failure. In such a situation, it is
assumed that γ = α and the constrained control signal
becomes (Horla and Królikowski, 2011)

uF
t = sat

(
kTx t;α

)
, (32)

where sat is a function that imposes constraints on the
control signal in the span of ±α.

A single actuator failure on the basis of (11) and (32)
is presented in Fig. 3. The assumed failure model can be
put in the form

uF
t = sat (�vt;α) , (33)

as a compilation of the models (32) and (11) (the dashed
area in Fig. 3).

vt

uF

t

α

−α

−α
tanϕ− = �−

tanϕ+ = �+

α

Fig. 3. Actuator failure and amplitude constraints.

The dashed cones in Fig. 3 might also depict the
uncertainty introduced by using a linearized model instead
of a true nonlinear model of the plant, e.g., due to the
existence of the nonlinear static characteristic. Whenever
control signals computed for the linearized case fail
to result in expected changes in output signals due to
undermodeling, one can treat this case as an actuator
failure and use algorithms cited in this paper.

Figure 4 presents robustness areas for different
values of �+, �−, making it possible to visualize the
“robustness area” of the control law applied and its
analogy to the actuator failure case in the controller. As
has been already mentioned, the more different the values
of �+ and �−, the larger the cones.

8. Experimental comparison of control
strategies

8.1. Experiment conditions. Figure 5 presents the
robot during the experiment. As can be seen, there is a

vt

uF

t

(a)

vt

uF
t

(b)

vt

uF
t

(c)

vt

uF
t

(d)

Fig. 4. Robust action areas for ρ+ = 1 + δ, ρ− = 1 − δ with
δ = 0.2 (a), δ = 0.4 (b), δ = 0.6 (c), δ = 0.8 (d).

small block on the left which supports the construction
every time right before the trigger. When the trigger
appears, it immediately turns on the control system and
the data acquisition one. For the next few seconds, the
machine restores its upright position and is trying to reach
the equilibrium point. All important signal values are
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Fig. 5. Real robot during the experiment.

stored in the SD card with a frequency of 200 Hz. The
initial deflection angle in every experiment is the same
(x1,0 = −0.06 rad).

The controllers considered work in discrete-time
with their output fed to zero-order hold and based on the
discretised model of the linearized plant (5), (6).

During the experiment, the following
parameters have been fixed: TS = 0.02 s, Q =
diag {1, 1, 0.01, 0.4}, R = 10, 0 ≤ δ ≤ 0.8, ρ+ = 1+δ,
ρ− = 1 − δ, α = 2.1A, R0 = 0.1, kI = [0, 0, 0.2, 0]T ,
x 0 = [−0.06 rad, 0 rad · s−1, 0 rad, 0 rad · s−1]T . For
each of 18 values of δ, a series of 5 experiments was
carried out for both LQR and LQI controllers, producing
two sets of 90 experiments. The results presented
in subsequent sections are mean values from every
experiment series.

It is to be stressed that Q and R have been
chosen to assure that optimal k computed via a standard
LQR procedure provides acceptable dynamics of the
closed-loop system, and guarantees that the control signal
does not saturate frequently and the mechanics of the
machinery are far from resonant-line behavior.

8.2. Performance indices. In order to verify the
behavior of the control system, the following two
performance indexes were introduced:

Jxi =

N∑
t=0

x2
i,t (i = 1, . . . , 4) , (34)

Ju =
N∑
t=0

u2
t , (35)

where N denotes the number of samples collected at each
multiplicity of TS from the sampled-data control system.
The experiment time was equal in all cases and set to 7.5 s.
The first index is related to the energy carried by xi,t. In

the case of x1, which has to be stabilized at zero (upright
position, unstable equilibrium point); x2 being the angular
velocity of the robot, x3 meaning the rotation angle of the
reaction wheel (partially related to energy consumption in
a steady-state) that also represents the gyroscopic drift and
its velocity x4, small values of the corresponding indices
represent a smooth response to initial conditions.

8.3. Results. In Fig. 6, a series of plots is presented,
derived from a set of 90 LQR experiments, whereas in
Fig. 7 the results for 90 LQI experiments are depicted.
As can be seen, the implemented controllers allow
stabilization of the nonlinear plant, i.e., an unmanned
bicycle robot, in an unstable equilibrium point. It must
be noticed that for the LQR controller the mean value of
the control signal after t > 2 s is nonzero, which causes
both energy consumption and forces the reaction wheel
to rotate slowly to compensate the gyroscopic drift seen
in the plot of x3. The larger the value of δ, the greater
the uncertainty information passed to the control system,
which causes the control signal to change rapidly (there
is a 25 times increase in the mean variance of a set of 5
experiments between δ = 0 and δ = 0.8, both for t > 2 s),
and corresponds to the action of the controller to conform
to the upper boundary (20). On the contrary, in the case of
the LQI controller, this increase is 4 times only.

For the LQI controller, by integrating x3 and using
this information in the control law, it is assured that the
mean value of the control signal in the time horizon
as above is virtually zero, which results, for longer
observation, in no angular change in the rotation of the
reaction wheel. For a shorter period of time, swaying
between the integral of x3 and x1 visible. Nevertheless,
especially in the case of the gyroscopic drift or its initial
offset, states x1 and x2 drift away from zero in longer
time horizons in the LQR case (see Fig. 8), causing x3

to increase also; this is not the case for the LQI strategy,
where no drift in x3 can be observed.

Mean performance indices for LQR and LQI
controllers are presented in Fig. 9. The initial values,
i.e. for δ = 0, related to plain LQR or LQI, are given
in Table 1 and reflect the assumption that the linearized
model (7), (8) is true. In comparison of these values
with plots depicted in Fig. 9, it becomes obvious that by
incorporating robustness against actuator failure, which
can be treated as a discrepancy between the expected
behavior of the robot with respect to its linearized model
and its true response to the control signal, the performance
indices are decreased in a certain span of δ. It is noticeable
that for approximately. δ = 0.1 the decrease in Jx1 is
nearly 10% of the value for plain LQR, whereas in the
case of energy consumption it is reduced by over 30%.
The same phenomenon has been observed in simulations
of the robot model in a sampled-data control system
with the same sampling period, as reported by Horla and
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Fig. 6. Data set derived from a set of 90 LQR experiments.
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Fig. 7. Data set derived from a set of 90 LQI experiments.
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Fig. 8. Gyroscopic drift in the case of its initial offset and LQR control.
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Owczarkowski (2015), with a similar increase in other
performance indices in the case of LQI with respect to
LQR control.

From the plot of Ju it can be observed that there is
a range of values of δ for which the performance index
is small with respect to its value for δ = 0, whereas for
large values of δ it increases and causes abrupt changes in
signals as reported above, resulting in an increase in other
performance indices. This is related to the inability of the
control law to encompass such a degree of uncertainty
which is ‘fed’ to the control law. The rapid changes
in signals for large δs are a result of an increase in
components of k, as in the last plot in Fig. 9.

Table 1. Values of performance indices for δ = 0.
control law Jx1 Jx2 Jx3 Jx4 Ju

LQR 0.1418 5.4680 3047 2944 5998
LQI 0.1341 5.6187 2926 3716 6648

9. Conclusions

By introduction of an actuator failure model into LQR
and LQI control laws it is possible to reduce performance
indices, especially energy consumption. This reduction
is mainly due to using a linearized robot model in a
sampled-data controller and by using the notion of the
actuator failure. Since it might be treated as a means to
mimic modeling imperfections, as well as the presence
of nonlinearities in the control system, by increasing
the robustness of the control system we obtain slower
transients and the bicycle robot stabilizes at an unstable
equilibrium point. In addition, by introducing an integral
term to LQR control, the gyroscopic drift is eliminated,
causing again smaller energy consumption in a longer
time horizon of the experiment.

In further research, it should be verified if a similar
approach enables us to improve LQR controller results
in the case of a 4DOF robot, enabling us to modify the
steering wheel angular change, as well as the linear speed
of the robot.

The presented approach is computationally simple
and requires only necessary calculations of k off-line and
storing them for future use, which makes it applicable to
real-time control systems.
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