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For many practical weakly nonlinear systems we have their approximated linear model. Its parameters are known or can be
determined by one of typical identification procedures. The model obtained using these methods well describes the main
features of the system’s dynamics. However, usually it has a low accuracy, which can be a result of the omission of many
secondary phenomena in its description. In this paper we propose a new approach to the modelling of weakly nonlinear
dynamic systems. In this approach we assume that the model of the weakly nonlinear system is composed of two parts: a
linear term and a separate nonlinear correction term. The elements of the correction term are described by fuzzy rules which
are designed in such a way as to minimize the inaccuracy resulting from the use of an approximate linear model. This gives
us very rich possibilities for exploring and interpreting the operation of the modelled system. An important advantage of
the proposed approach is a set of new interpretability criteria of the knowledge represented by fuzzy rules. Taking them into
account in the process of automatic model selection allows us to reach a compromise between the accuracy of modelling
and the readability of fuzzy rules.
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1. Introduction

The modelling of real systems and physical phenomena
is very important from a theoretical and a practical
point of view. It is used to develop control and failure
detection systems, communication, analysis of chemical
and biological processes, etc. (see, e.g., Boukezzoula
et al., 2007; Witkowska and Śmierzchalski, 2012; Xie
et al., 2006; Adjrad and Belouchrani, 2007; Huijberts
et al., 2000). It aims to ensure that the created model
was accurate and computationally undemanding. As a
result, it can work in real time (see, e.g., Bagarinao
et al., 2003; DeHaan and Guay, 2006; Fei et al., 2011). A
desirable feature of the model is also its transparency and
interpretability because they guarantee the possibility of
a better understanding of the analysed phenomenon (see,
e.g., Johansson et al., 2011; Gacto et al., 2011; Rüping,
2006).

It should be noted that real objects are nonlinear
in nature and, therefore, to build their models is not
a trivial task. It is much easier to build a model
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of a linear object. Such models are also much less
computationally demanding. The result is that very often
nonlinear objects are modelled by means of one or several
connected linear models (see, e.g., Murray-Smith and
Johansen, 1997; Banerjee et al., 1997). An important
advantage of this approach is an easier way to build a
model which is based on the theoretical description of
the known physical phenomena. The representation of the
model is interpretable, thereby these methods are referred
to as a white box (see, e.g., Nelles, 2001; Ikonen and
Najim, 2001; Roffel and Betlem, 2004). However, it
should be noted that, due of the need to adopt simplifying
assumptions, these methods are often not adequately
accurate.

One way of building models of nonlinear systems
is to observe the system response to a given input
signal and to attempt to reproduce this dependence in
the model (see, e.g., Ljung, 2010; Háber and Keviczky,
1999; Grabowski and Callier, 2001). Such methods
are oriented primarily toward achieving high accuracy
during reproduction of input-output dependencies, which
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is, however, accomplished at the expense of the lack of
interpretability of the obtained model. For this reason,
this approach is referred to as a black box. However,
in many application areas such an approach is suitable.
Examples of methods belonging to that group are neural
networks (see, e.g., Tadeusiewicz et al., 2014; Mrugalski,
2014; Tadeusiewicz and Figura, 2011; Salapa et al.,
2014; Horzyk and Tadeusiewicz, 2004; Tadeusiewicz,
2010; Puig et al., 2007). They are classified as the
so-called computational intelligence methods (see, e.g.,
Patton et al., 2005; Rutkowski, 2008; Wilamowski, 2005).
They are universal approximators, which makes them
useful tools for modelling complex, nonlinear dynamic
objects (see, e.g., Tan, 2004; Nelles, 2001; Pedro and
Dahunsi, 2011). Unfortunately, in neural networks all
information about the analysed phenomenon is stored
in the form of numerical weights, whose values are
determined while forming the model. The result is that
obtaining interpretable information about the modelled
phenomenon is difficult, if not impossible.

Between the methods belonging to the white box
group and those belonging to the black box one there are
approaches included in the so-called grey box category
(Bohlin, 2006; Kristensen et al., 2004). Their creators
try to combine the best features of the previously
mentioned methods. The resulting models are based
on physical laws describing the analysed phenomena,
while their parameters are determined by the analysis of
the system’s behaviour. Thus, a compromise between
accuracy of the model and its interpretability can be
reached. Examples of methods belonging to this group are
fuzzy systems and neuro-fuzzy systems, also included in
the methods of computational intelligence (Gacto et al.,
2011; Rutkowski, 2008; Cpałka, 2009b). As opposed to
neural networks, in fuzzy systems the information about
the internal structure of the model can be easily read
because knowledge is represented in a readable form,
e.g., as fuzzy rules (Gacto et al., 2011; Rutkowski, 2008;
Cpałka, 2009b). The key aspect of the design of a fuzzy
system is to determine its parameters, including fuzzy
sets present in fuzzy rules. In the literature we can
find many approaches that allow us to accomplish this
task, among others, gradient methods (Medasani et al.,
1998; Rutkowski and Cpałka, 2005), clustering methods
(Starczewski et al., 2010; Malchiodi and Pedrycz, 2013),
or population based algorithms (Cpałka, 2009a; 2009b;
Cpałka et al., 2014; 2013). The latter perform very
well in practice because in addition to the shape and the
position of the membership function, they also allow us
to determine the form of fuzzy rules and a convenient
implementation of interpretability criteria.

In this paper we propose a new approach to
modelling nonlinear systems, which can be placed
between methods from the white and grey boxes. The
proposed approach has been applied to weakly nonlinear

dynamic systems with linear inputs and nonlinear
dynamics (Caughey, 1963). They are important from a
practical point of view and are described in Section 2. The
main features of the proposed method can be summarized
as follows:

• It is based on the linear model and generates devia-
tions from this model. Direct use of the linear model
in the areas in which the system characteristics are
nonlinear may cause a sharp decline in modelling
accuracy. We assume that modelling the deviations
from the linear model, i.e., based on linear state
equations, significantly reduces or eliminates the
effect of the decrease in modelling accuracy. It
should be noted that our method is an interesting
combination of the classic approach to modelling and
the approach utilizing the potential of computational
intelligence. Similar solutions have not been
discussed in the literature.

• It utilizes neuro-fuzzy systems to generate values
of corrections to the existing linear model. In
neuro-fuzzy systems knowledge is stored in the form
of readable IF-THEN fuzzy rules. In addition,
the parameters of these rules can be automatically
determined by machine learning. This makes it
possible to extract the information in which areas and
how the linear model has been improved for greater
accuracy. Similar solutions have not been discussed
in the literature.

• It uses an evolutionary method for determining the
structure and parameters of the neuro-fuzzy sys-
tems used. Evolutionary methods are optimization
techniques inspired by nature which, owing to their
advantages (summarised at the beginning of Section
4), are being dynamically developed. The use
of evolutionary methods allowed, among others,
parallel optimization of the structure (the form of
rules) and parameters of neuro-fuzzy systems, taking
into account the adopted interpretability criteria.

• It takes into account new aspects of interpretability of
neuro-fuzzy systems during their automatic creation.
As mentioned earlier, the use of neuro-fuzzy systems
cannot directly guarantee obtaining models which
can be easily interpreted. Therefore, in the proposed
method we have taken into account constraints in the
design of neuro-fuzzy systems to get a model whose
knowledge can be easily interpreted.

This paper is organized as follows. Section 2
contains a description of the idea of the proposed method
for modelling nonlinear systems. Neuro-fuzzy systems
used in modelling nonlinear systems are presented in
Section 3. Section 4 describes the method of designing
such a system with evolutionary methods. The results
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of simulations are presented in Section 5. The paper is
summarized in Section 6.

2. Idea of the proposed approach

2.1. Modelling of weakly nonlinear dynamic systems.
In the dynamic system the response depends not only on
current input values but also on the values of the current
state of the system. In a general case the nonlinear system
dynamics are described by the following equation:

dx

dt
= f(x,v), (1)

where x is a vector of state variables, f (x,v) is
a nonlinear function that represents the changes in the
system state and v is the vector of input values. In this
paper we focus on the modelling of weakly nonlinear
dynamic systems. These are those whose trend of
operation is linear. Consequently, their way of operation
can be approximated by linear dependencies. For such
systems nonlinearities cause a deviation from the linear
approximation, which results, e.g., from slight changes in
the parameters of certain elements of the circuit, etc. An
example of a simple weakly nonlinear dynamic system
is an electrical circuit consisting of real (i.e., non-ideal)
elements like capacitors, resistors and inductors. In this
circuit in the coil with a ferromagnetic core the inductance
slightly changes in response to a change in the value of the
electric current. Similarly, the resistance, inductance and
capacitance change in response to temperature variations.
Another example is the kinetic friction coefficient, which
can slightly change due to changes in the relative speed
of two moving bodies. A practical example is also the
asymmetry in the magnetic field distribution in electric
motors, which is not included in the widely used analytical
models of such systems.

In the literature on the modelling of weakly nonlinear
dynamic systems we can often see the following way of
their approximation:

dx

dt
= f(x,v) ≈ Ax+Bv, (2)

where A is a system matrix (defining the system
dynamics, i.e., the impact of the state variable on the state
change) and B is an input matrix (defining the impact of
the system input on the state change). Equation (2) can
be applied when it is possible to determine the values of
matrices A and B and the resulting accuracy is sufficient.
However, because the obtained accuracy is often not
sufficient, new methods of approximation of nonlinear
dynamic objects are still being sought. This is realized
to simplify the analysis of the model in comparison
with, e.g., an analysis of the model that is based on a
theoretical description of the known physical phenomena.
The simplification is a result of, among other things,

the possibility of using well-known methods in the fields
of control theory that have been developed for linear
systems.

2.2. Modelling of weakly nonlinear systems with lin-
ear inputs and nonlinear dynamics. The modelling
of weakly nonlinear systems with nonlinear inputs and
nonlinear dynamics can be based on the equivalent
linearization technique (Caughey, 1963). In this method it
is assumed that the general formula describing the model
of the system (1) is expressed by the following state
equation:

dx

dt
= Ax+Bv + ηg (x,v) , (3)

where g (·) is a function which defines the nonlinearity
of the system and η determines the impact of function
g (·) on the entire object. Equation (3) can be
used for modelling any nonlinear system (not only
weakly nonlinear systems) because the function g (·)
can theoretically represent any nonlinearity. However,
determination of the function g (·) for the whole range
of operation for the modelled system is difficult, if not
possible. For this reason the range of modelling of
weakly nonlinear systems is usually limited only to the
surroundings of some typical operating point (xs,vs). In
some strictly defined range around this point the modelled
object behaves in a manner similar to the linear one.

Then the influence of the component ηg (x) in
Eqn. (3) is small, so the equation can be simplified to the
form represented by Eqn. (2). Such a class of systems, i.e.,
when η is “small in some sense”, may be treated as weakly
nonlinear system according to the explanation given by
Caughey (1963).

In the equivalent linearization technique, Eqn. (3)
can also be represented in alternative form as

dx

dt
= Aeqx+Beqv + e (x,v) , (4)

where matrices Aeq and Beq describe the model of the
system considered linear at the operating point (xs,vs)
and have the following form:

{
Aeq = A+PA,
Beq = B+PB.

(5)

In the case of systems with linear inputs and nonlinear
dynamics (Schröder, 2000) the matrix PB is zero. The
correction matrix PA is estimated for the operating point
considered in such a way that the error term e (·) of the
linear approximation is as small as possible. Finally,
the model of the weakly nonlinear dynamic system
considered in some strictly defined range around some
typical operating point (xs,vs) can be written as follows:

dx

dt
≈ (A+PA)x+Bv. (6)
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2.3. Modelling of weakly nonlinear dynamic systems
with linear inputs and nonlinear dynamics with in-
telligent correction of the linear model. The values
of coefficients of the matrix PA depend on the current
operating point. The correction matrix values depend on
the selected operating point, so they are changing when
moving away from this point. This can significantly affect
the modelling accuracy. It is the most important drawback
of such a modelling method.

Due to the inconvenience described earlier, in this
paper it is assumed that the values of the matrix PA

are not constant but they are functions that take into
account the current state x of the system being modelled,
so Aeq (x) = A + PA (x). Due to this, these values
may change with the change of the current operating
point (belonging to the set of predefined operating points).
Taking this fact into account, finally we can write

dx

dt
≈ (A+PA (x))x+Bv. (7)

In the remainder of this paper we consider only
linearisable dynamic models given by (1), which can be
described by (7).

Fig. 1. Idea of the proposed method for correction modelling
of weakly nonlinear dynamic systems with linear inputs
and nonlinear dynamics.

For generating values of the matrix PA (x) in
Eqn. (7) we suggest the use of selected methods of
artificial intelligence, i.e., fuzzy systems and population
based algorithms (see Fig. 1). Other features of the
proposed methods can be summarized as follows.

Hallmark 1. They are used to model weakly nonlinear
dynamic objects for which the general form of the
approximated linear model is known. This means that
the values of the matrices A and B are known and
they result from, e.g., the knowledge of the parameters
of the analytical model that approximately describes the
system dynamics. This knowledge may result from

information about physical properties of materials used
for the construction of the modelled system. These
properties arise from physical constants (like, e.g.,
permeability coefficient, heat capacity, etc.) and physical
characteristics (like, e.g., the number of turns of inductor,
physical size, etc.). The knowledge about parameters of
the analytical model may also result from a previously
conducted identification procedure using one of the many
well-known identification methods (see, e.g., Przybył
and Jelonkiewicz, 2003). However, the problem of
determining the coefficients of the matrices A and B
is a separate issue and is not within the scope of this
paper. When the proposed method has the general
form of an approximated linear model, it is able to
automatically select the values of the correction matrix
PA to improve the accuracy of the modelling, taking
into account individual characteristics of the modelled
real-world object. The correction matrix PA can change
with the change of the current operating point.

Hallmark 2. They concern the modelling of weakly
nonlinear dynamic systems, for which the matrices A and
B are known and the model which uses those matrices is
correct in terms of theoretical and practical assumptions.
This makes it possible to focus on practical aspects of the
operation and omit the need for a theoretical analysis of
some special situations which result from ambiguity or
discontinuities of the system being modelled. Such an
analysis would be necessary in the modelling of dynamic
systems in the general case. For this reason the ideas
presented in this paper are limited to weakly nonlinear
systems with linear inputs and nonlinear dynamics.

Hallmark 3. They use the possibilities of fuzzy sets and
system theory. In particular, a fuzzy system with multiple
inputs and multiple outputs. The current values of the
state vector are used as the input values of the system,
and on this basis the system generates values of the
correction matrix PA. The number of the system outputs
depends on the dimensions of the correction matrix
PA. This approach has a very important advantage—a
readable form of the fuzzy IF. . . THEN. . . rules allows
describing the source of nonlinearity (a deviation from
the approximated linear model) occurring in the modelled
system. It should be noted that in this method any
known architecture of the fuzzy system can be used (in
particular a typical Mamdani type architecture described
in Section 3). The type of fuzzy system applied is not a
novel element of this paper.

Hallmark 4. They use automatic selection of values of the
matrix PA realized using the capabilities of supervised
learning (see, e.g., Rutkowski, 2008). This is done in
a manner typical for computational intelligence systems,
such as artificial neural networks or neuro-fuzzy systems.
We assume that in order to train the system the data
from non-invasive identification of a modelled real world
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system are used. The method employed to train the
neuro-fuzzy system is described in detail in Section 4. It
should be noted that the method is known in the literature
and is not a novel element of this paper (an appropriate
description of mathematical analysis and rigorous design
methods for fuzzy control systems may be found in the
works of Kluska (2009; 2015)). However, a novel element
of this paper is the fact that the fuzzy rules describing
sources of nonlinearity are formed in a very flexible way
and the algorithm promotes readable rules. This makes
it possible, e.g., to detect that the first element of the
matrix PA is affected only by the last element of the state
vector x.

Hallmark 5. They take into account appropriately
formulated criteria for the clarity of fuzzy rules used
to model the correction matrix PA (described in
Section 3.1). It is worth noting that in many papers on
nonlinear modelling fuzzy systems are used directly for
modelling dependence f (x,v) in Eqn. (1). In some
applications this approach works well, but if the problem
is complex and then, in order to achieve reasonable
accuracy, multiple rules are needed. A large number of
rules makes them very difficult to analyse. In the proposed
approach deviations from the approximated linear model
can be described more easily by fuzzy rules than whole
nonlinear object. Moreover, in this paper some new
readability criteria of fuzzy rules are formulated and used
in the training process in order to increase the readability
of rule-based notation of the correctional matrix PA.

3. Neuro-fuzzy systems for modelling
nonlinear systems

In this section, a multiple-input multiple-output (MIMO)
fuzzy system is described. The parameters of this
system are chosen as a result of a population based
(supervised) algorithm which is presented in Section 4.
These parameters can also be set by a gradient algorithm
(analogously as, for example, weights in artificial neural
networks). For this reason, in the sequel the fuzzy system
considered will be called a neuro-fuzzy system. Such
a system is based on IF-THEN fuzzy rules, in which
the values of inputs and outputs linguistic variables are
characterized by fuzzy sets (see, e.g., Rutkowski and
Cpałka, 2005; Rutkowski, 2008).

3.1. Multiple input multiple output neuro-fuzzy sys-
tem. The utilized MIMO neuro-fuzzy system preforms
a mapping W → Z, where W ⊂ R

n, Z ⊂ R
m

(Rutkowski, 2008). Such a system is composed of several
cooperating functional blocks. The fuzzifier realizes a
mapping from a crisp input space W to the fuzzy sets
defined in W. The most commonly used fuzzifier is the
singleton one (see, e.g., Rutkowski, 2008), which maps

input values w = [w1, . . . , wn] ∈ W into a fuzzy set
A′ ⊆ W characterized by a membership function

μA′(w) =

{
1 if w = w,

0 if w �= w.
(8)

A collection Ai = {Ai,1, . . . , Ai,|Ai|} of fuzzy sets
is defined on Wi for each system input i = 1, . . . , n,
where |Ai| is the number of elements of collection Ai and
n is the number of system inputs. In turn, a collection
Bj = {Bj,1, . . . , Bj,|Bj|} of fuzzy sets is defined on Zj

for each system input j = 1, . . . ,m, where |Bj | is the
number of elements of collection Bj and m is the number
of system outputs. Each fuzzy set Ai,l is characterized by
membership function μAi,l

(wi), l = 1, . . . , |Ai|, and each
fuzzy set Bj,l is characterized by membership function
μBj,l

(zj), l = 1, . . . , |Bj |. Thus the fuzzy rule base can
be defined as a collection R = R1, . . . , R|R|, where |R|
is the number of elements of this collection. Each rule can
be written in the following form:

R(k) :

{
IF w1 IS Ak

1 AND . . . AND wn IS Ak
n

THEN z1 IS Bk
1 AND . . . AND zm IS Bk

m,

(9)
where W = [w1, . . . , wn] ∈ W, Z = [z1, . . . , zm] ∈ Z,
Ak

i ∈ Ai is a fuzzy set from collection Ai used in the k-th
rule and Bk

j ∈ Bj is a fuzzy set from collection Bj used
in the k-th rule.

Fuzzy inference determines a mapping from the
fuzzy set in input space W to the fuzzy sets in output

space Z. Each of the rules (9) generates fuzzy sets B
k

j ⊂
Z given by the compositional rule of inference:

B
k

j = A′ ◦ (Ak → Bk
j ), (10)

where Ak = Ak
1 × · · · ×Ak

n, and Ak → Bk
j means fuzzy

implication (Rutkowski, 2008; Rutkowski and Cpałka,
2005). The membership function characterizing set B̄k

j

can be defined by sup-star composition (denoted by “◦”)
and expressed as

μ
B

k
j
(zj)

= sup
w∈W

(
T
{
μA′(w), μAk→Bk

j
(w, zj)

})
, (11)

where t-norm T {·} is a generalization of the usual
two-valued logical conjunction (see, e.g., Rutkowski,
2008). It should be noted that for a singleton fuzzifier (8)
the formula (11) becomes

μ
B

k
j
(zj) = μAk→Bk

j
(w, zj)

= Ij(μAk(w), μBk
j
(zj)),

(12)
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where Ij (·) is an inference operator associated with
the j-th system output. It can be defined as a t-norm
(Mamdani type systems) or as a logical implication
(logical type systems). In this paper we consider Mamdani
type systems (see, e.g., Rutkowski, 2008), so we use
the t-norm as an inference operator (e.g., the algebraic
minimum). It should be noted that in our method we
assume that we can use a different inference operator for
each system output. This is realized in order to increase
the flexibility of modelling.

The last functional block of the neuro-fuzzy system
considered, i.e., the defuzzifier, performs a mapping from

the collection of fuzzy sets B
k

j to crisp points zj in Z ⊂
R

m. This is accomplished by determining the point zkj for
each fuzzy set Bk

j , where its membership function takes
the value of 1, that is, μBk

j
(zkj ) = 1, and also by using an

appropriate method of defuzzification, e.g., the centre of
average:

zj =

|R|∑
k=1

zkj ·μBk
j

(
zkj
)

|R|∑
k=1

μBk
j

(
zkj
) . (13)

It should be noted that in a neuro-fuzzy system of
the form (13) any membership function with a single
core value can be applied. In the simulations (see
Section 5) we use Gaussian membership functions (see,
e.g., Rutkowski, 2008) for input fuzzy sets and singleton
membership functions of the form (8) for output fuzzy
sets. Gaussian functions describe well the phenomena
occurring in nature and in real industrial processes.
Singleton membership functions simplify the structure of
the system used because the values zj are independent
of the type of the membership function of output fuzzy
sets. Their use also makes the Mamdani type fuzzy system
equivalent to a zero-order Takagi–Sugeno type fuzzy
system (see, e.g., Jang and Sun, 1995). If the use of a
multivalue core membership function (e.g., trapezoidal) is
necessary, the defuzzification method should be changed.

3.2. Interpretability of neuro-fuzzy systems.
Neuro-fuzzy systems are very often used to model various
physical phenomena (Babuska and Verbruggen, 2003;
Czekalski, 2006; Łęski, 2003; Li and Chiang, 2012; Quah
and Quek, 2006). As shown, e.g., by Gacto et al. (2011),
the resulting models can be classified into one of two
groups:

1. Precise fuzzy models developed in order to maximize
the accuracy of the representation of the modelled
phenomenon. Models of this group are often
characterized by a large number of fuzzy rules and
limited possibilities to assign linguistic labels to
fuzzy sets (this is difficult or even impossible).

2. Interpretable (linguistic) fuzzy models that reflect the
behaviour of a real system in a manner as simple as
possible to understand.

It should be noted that these goals are contradictory
and fulfilling both of them is not fully possible (Gacto
et al., 2011). Therefore, during the last few years many
researchers focused on obtaining a compromise between
accuracy and interpretability of fuzzy systems (see, e.g.,
Zhou and Gan, 2008; Casillas et al., 2003; Di Nuovo
and Ascia, 2013; Ishibashi and Lucio Nascimento, Jr.,
2013; Shukla and Tripathi, 2013; Juang and Chen, 2013;
Lughofer, 2013; Johansen et al., 2000).

In the literature, interpretability is considered to be
a complexity of fuzzy models and their semantics both
on fuzzy rule and fuzzy partition levels. Interpretability
of fuzzy models can be provided in many ways, but
restrictions on the learning process are imposed most
commonly (see, e.g., Lughofer, 2013; Cpałka et al.,
2014; Shukla and Tripathi, 2013; Ishibashi and Lucio
Nascimento, Jr., 2013).

The interpretability assumptions derived from the
literature and the proposed criteria resulting from them
and used in this paper are shown below.

Postulate 1. The number of inputs, rules as well as
their antecedents and consequents should be as small as
possible.

While designing a fuzzy system it may occur that some
of the available inputs, fuzzy sets and rules are redundant,
i.e., dropping them does not negatively affect the accuracy
of the resulting model. In such a case, when rejecting
these elements, we get a system with a lower complexity,
and therefore with a rule base easier to interpret. Thus
the first proposed interpretability criterion is defined as
the ratio of the number of elements of the fuzzy system
identified automatically by an algorithm and the greatest
possible number of its elements. The greatest number
of the system’s elements results from including all the
available inputs and the allowable number of rules. The
criterion considered can be written as follows:

I1 =

n+
|R|∑
i=1

|Ai|+ |R|

ñ+ ñ · |Ã|+ |R̃|
, (14)

where ñ is the number of all available system inputs, |Ã|
is the predetermined largest number of fuzzy sets specified
for each system’s input (assuming that this number is
the same for each input), |R̃| is the predetermined
largest number of rules from which the fuzzy system
can be composed, n is the number of inputs used in the
neuro-fuzzy system (where n ≤ ñ), |Ai| is the number of
fuzzy sets specified for the i-th input of the system (where
|Ai| ≤ |Ã|, i = 1, . . . , n), |R| is the number of rules used
in the system (where |R| ≤ |R̃|).
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Fig. 2. Examples of fuzzy partitions: fuzzy sets do not cover all the universe of the discourse—unfulfilled Postulate 2(a), fuzzy sets
are overlapping too much—unfulfilled Postulate 3(b), fuzzy set A1,1 is contained in set A1,2 in a too high degree—unfulfilled
Postulate 4(c), fuzzy partition that fulfills all the postulates (d).

Postulate 2. In the obtained fuzzy model, fuzzy sets
should cover the whole universe of discourse.

The purpose of the criterion is making the whole universe
of discourse Wi of each input covered by fuzzy sets, and
the membership of any pointw ∈ W of this universe, in at
least one fuzzy set, not lower than ζ ∈ [0, 1]. An example
of a fuzzy partition not meeting this criterion is presented
in Fig. 2(a). Assuming that the universe of discourse
Wi for each input is uniformly divided to |Wi| points
vi,z ∈ |Wi|, z = 1, . . . , |Wi|, the criterion considered
can be defined as an average number of points in which
the degree of membership in each fuzzy set generated for
the i-th input is not greater than ζ. This can be expressed
by the formula.

I2 =
1

n

n∑
i=1

|Wi|∑
z=1

⎧⎨
⎩
1 if max

l=1,...,|Ã|
(μAi,l

(vi,z)) < ζ

0 otherwise

|Wi|
.

(15)

Postulate 3. In the obtained fuzzy model, fuzzy sets
should not significantly overlap.

The purpose of this criterion is to reduce the overlapping
of neighbouring fuzzy sets, thus ensuring their
distinguishability (the possibility to give them appropriate
semantic meaning). An example of a fuzzy partition
not meeting this criterion is presented in Fig. 2(b).
The considered criterion can be defined as an average

deviation of the degree of membership specified at the
intersection point of subsequent membership functions
from interval [κ, κ] (κ ∈ [0, 1], κ̄ ∈ [0, 1], κ < κ̄), and
presented as follows:

I3 =
1

n

n∑
i=1

|Ai|−1∑
l=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μAi,l
(gi,l)− κ

if μAi,l
(gi,l) > κ

κ− μAi,l
(gi,l)

if μAi,l
(gi,l) < κ

0 otherwise

|Ai| − 1
, (16)

where [κ, κ] ⊆ [0, 1] is a predetermined interval to which
the degree of membership specified at the intersection
point of subsequent membership functions should belong,
gi,l ∈ Wi is the point from the domain of the i-th system
input, where the adjacent membership functionsμAi,l

(wi)
and μAi,l+1

(wi) intersect (i.e., achieve the same value:
μAi,l

(gi,l) = μAi,l+1
(gi,l)).

Postulate 4. In the obtained model, the value of any
membership function in the core of other membership
functions should be low.

This criterion is intended to ensure that the system which
has achieved full membership in to fuzzy set belongs at
most in degree γ ∈ [0, 1] to other fuzzy sets generated
for the i-th input. An example of a fuzzy partition
not meeting this criterion is presented in Fig. 2(c).
The considered criterion can be defined as an average
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difference between the threshold value γ and the value
of membership function μAi,l

determined at points xi,l′ ,
(l′ = 1, . . . , |Ai|, l′ �= l), where the other membership
functions reach the value of 1. This can be described by
the following formula:

I4 =
1

n

n∑
i=1

|Ai|∑
l=1

|Ai|∑
l′=1
l′ �=l

⎧⎨
⎩

μAi,l
(ci,l′)− γ
ifμAi,l

(xi,l′ ) > γ
0 otherwise

|Ai|
, (17)

where ci,l′ ∈ Wi is the point where membership function
μAi,l′ (w) reaches the value of 1, i.e., μAi,l′ (ci,l′) = 1,
γ is a predefined maximum value which the membership
function can reach at the core of other membership
functions generated for the i-th input.

It should be noted that proposed interpretability
postulates were adapted to the specifics of neuro-fuzzy
systems of the form (13) and described in Section 3.1.
They can also be easily adapted to a specific membership
function. However, we abandon the presentation of
specific equations for different types of membership
functions because their extensive notation impedes their
readability.

All the presented criteria were designed in such a
way that they can be used as an evaluation function of
solutions in the process of designing the neuro-fuzzy
system. Therefore, all of them take values from the
interval [0, 1]. At the same time the aim is to achieve
a solution for which the criteria would be as small as
possible. The interpretability of the rule base of such a
solution would then be as large as possible.

The usage of the described criteria in order to
enhance the interpretability of a fuzzy system (presented
in Section 2) will be shown in the next section.

4. Design of neuro-fuzzy systems for
nonlinear systems modelling using an
evolutionary strategy

In literature we can find many methods to design a
structure and select parameters of neuro-fuzzy systems
(see, e.g., Kim et al., 2006; Wang et al., 2005; Angelov
and Filev, 2004; Medasani et al., 1998; Rutkowski
and Cpałka, 2005; Starczewski et al., 2010; Malchiodi
and Pedrycz, 2013; Cpałka, 2009a; 2009b; Cpałka
et al., 2014; 2013). In this paper we used the
(λ + μ) evolutionary strategy, which belongs to the
group of population based algorithms. All population
based algorithms are methods for solving problems
(mostly optimization ones) inspired by natural evolution.
Population based algorithms differ from traditional
optimization methods, among other things, in that (a) they
do not directly process the task parameters but their
encoded form, (b) the searching of the solution space

does not start at one point but from their population,
(c) they use only an objective function rather than
its derivatives, (d) they use probabilistic rather than
deterministic selection rules. Consequently, they have an
advantage over other optimization techniques like, e.g.,
analytical, inspection and random methods (see, e.g.,
Forst and Hoffmann, 2010; Kroese et al., 2011).

Aspects of construction of neuro-fuzzy systems with
the use of population based algorithms are known in the
literature. Those algorithms were used, among other
things, for the following:

1. The tuning of knowledge bases, i.e., to adjust
the shape and parameters of membership functions
of inputs and output fuzzy sets. In this case
it is assumed that the rule base is predefined
and unchanged during the tuning process (Setnes
and Roubos, 2000; Gabryel and Rutkowski, 2006;
Cpałka, 2009a).

2. Rule base selection, i.e., to adjust the number and
the form of fuzzy rules (employed inputs and fuzzy
sets occurring in the antecedents and consequents of
the rules). In this case it is assumed that the shape
and parameters of fuzzy sets are predefined and
unchanged during the selection process (Ishibuchi
and Yamamoto, 2004; Cordón et al., 2001; Cpałka
et al., 2014).

3. Simultaneous tuning of the knowledge base and rule
base selection (Homaifar and McCormick, 1995; Wu
and Liu, 2000; Shill et al., 2011; Cordón, 2011).

In our proposed approach we assume that an
evolutionary strategy is used to select the components of
the rule base and to tune the parameters of membership
functions. It is worth noting that the selection of the
structure and parameters of neuro-fuzzy systems can be
also performed by another population algorithm (e.g., a
genetic algorithm). The training of the system can be
also performed by any gradient algorithm, e.g., the back
propagation algorithm (see, e.g., Rutkowski and Cpałka,
2005). However in this case only system parameters
can be set with the constant structure indicated by the
designer. So it is not a convenient solution.

The first step of the (λ + μ) evolutionary strategy
is to generate the initial population Pop that contains
μ individuals (Section 4.2). Next, the temporary
population Temp with λ individuals (where λ >
μ) is randomly created by using a reproduction
operator. Genetic operators like mutation are used
with individuals belonging to that temporary population
(ensuring exploitation and exploration of the search
space). As a result, a population Off is obtained with the
same number of individuals as the Temp population. A
new parental population Pop is created by a choice of μ
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best individuals from the combined populations Pop and
Temp. Thus, the individuals from the new population
Pop are not worse than those from the base population (in
terms of the evaluation function). More information about
the evolutionary strategy can be found in the literature
(see, e.g., Rutkowski, 2008; Eiben and Smith, 2008).

4.1. Chromosome structure. In order to encode
the information about the neuro-fuzzy system (13) in
a chromosome, we use the Pittsburgh approach (Wang
et al., 2005; Rutkowski, 2008; Cpałka, 2009b; Cordón
et al., 2001), in which a single chromosome contains
information about the entire system. In the structure of
a single chromosome Cch the following four groups of
genes can be isolated:

Cch =

⎧⎪⎪⎨
⎪⎪⎩

Cparams
ch : fuzzy system parameters

Csets
ch : fuzzy sets parameters

Crules
ch : structure of fuzzy rules

Cusage
ch : usage of rules and inputs

⎫⎪⎪⎬
⎪⎪⎭

,

(18)
where ch = 1, . . . , μ stands for the parental population
and ch = 1, . . . , λ for the temporal one.

Information about each of the specified groups of
genes present in the chromosome (18) can be summarized
as follows:

1. Genes encoding the type of operators C
params
ch store

integer values determining the kind of inference
operator used for each output of the neuro-fuzzy
system (13):

C
params
ch = (p1, . . . , pm̃) , (19)

where pj (j = 1, . . . , m̃) takes values from {1, 2, 3}
(1 means a minimum type inference operator, 2
means an algebraic type inference operator and 3
means a Łukasiewicz type inference operator), and
m̃ is the number of the available inputs of the fuzzy
system. Of course, the set of the operators considered
can be flexibly modified.

2. Part Csets
ch of the chromosome encodes information

about the parameters of fuzzy sets from collections
Ai and Bj defined on domains Wi and Zj ,
respectively. Its length depends on the chosen
shape of membership functions and the predefined
maximum number of elements of collections Ai and
Bj . When the Gaussian membership function is used
for inputs and the singleton membership function
is used for outputs of the system, part Csets

ch of
the chromosome can be described by the following
formula:

Csets
ch =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cA1,1, δ
A
1,1, . . . , c

A
1,|Ã|, δ

A
1,|Ã|, . . . ,

cAñ,1, δ
A
ñ,1, . . . , c

A
ñ,|Ã|, δ

A
ñ,|Ã|,

zB1,1, . . . , z
B
1,|B|, . . . ,

zBm̃,1, . . . , z
B
m̃,|B|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (20)

where cAi,l, δ
A
i,l are the centres and widths of the

Gaussian membership function (i = 1, . . . , ñ,
l = 1, . . . , |Ã|), respectively, and zBj,l describes the
position of the singleton membership function (j =
1, . . . , |B|) representing the output fuzzy set Bj,l.

3. Part Crules
ch of the chromosome encodes information

about the fuzzy rule base. We assume that each
rule Rk, k = 1, . . . , |R|, is composed of a
maximum available number of inputs ñ and outputs
m̃, which requires ñ + m̃ genes. Each of the genes
determines the number of the fuzzy set occurring in
the antecedents and consequents of the rule (l =
1, . . . , |Ã| or l = 1, . . . , |B|):

Crules
ch =

⎧⎨
⎩

ri11, . . . , ri
1
ñ, ro

1
1, . . . , ro

1
m̃,

. . .

riÑ1 , . . . , riÑñ , roÑ1 , . . . , roÑm̃

⎫⎬
⎭ , (21)

where riki ∈ {−1, 0, |Ã|} is the number of the
fuzzy set used in the k-th rule for the i-th input of
the system (the value −1 means that the premise
does not occur in the rule), rokj ∈ {0, |B|} is the
number of the fuzzy set used in the k-th rule for
the j-th output of the system (j = 1, . . . , m̃), |R̃|
is the predefined maximum number of rules. In
this paper we assume that only the premises can be
disabled, because disabling conclusions (in nonlinear
modelling) contributes, among other things, to a
significant reduction of rules readability.

4. The last part Cusage
ch of the chromosome is a binary

vector indicating which rules (out of |R̃|) are
considered in the system:

Cusage
ch =

{
is1, . . . , isñ, rs1, . . . , rs|R̃|

}
, (22)

where isi ∈ {0, 1} determines the use of a particular
input (when a gene takes on the value of 1, the
corresponding input of the fuzzy system becomes
active), while rsk ∈ {0, 1} determines the use of a
particular rule, i = 1, . . . , ñ, k = 1, . . . , |R̃| (when a
gene takes on the value of 1, the corresponding rule is
taken into account during the operation of the fuzzy
system).
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4.2. Chromosome initialization. As already
mentioned, the purpose of the initialization step is
to set the values of genes in the first population of the
evolutionary strategy. In the proposed method (and in
simulations) we work on the following assumptions about
this operation:

1. All inputs and rules are active, that is, Cusage
ch =

(1, 1, . . . , 1).

2. All rules are full, that is, there is no −1 value
in part Crules

ch of the chromosome. This can be
denoted with auxiliary notation: Crules

ch {riki } �= −1

and Crules
ch {rokj } �= −1 (k = 1, . . . , |R̃|, i =

1, . . . , ñ, j = 1, . . . , m̃), which will be used
hereafter. This notation allows reference to the part
of the chromosome given in curly brackets.

3. For each input and output, rules contain a random
combination of input fuzzy sets from collection Ã
and output fuzzy sets from collection B (generated
according to the uniform distribution).

4. For each input and output, fuzzy sets are uniformly
distributed on the universe of the discourse.
Therefore, the centres of input fuzzy sets can be
determined from

Csets
ch {cAi,l} = Wi + l

(Wi −Wi)

|Ã|
, (23)

and their widths can be computed with the following
formula:

Csets
ch {σA

i,l} =
Wi −Wi

2(|Ã| − 1)
, (24)

where Wi,Wi are respectively the lower and upper
limits for the i-th input of the system. The placement
of output fuzzy sets can be determined analogously:

Csets
ch {zBj,l} = Zi +

l(Zi − Zi

|B̃|
, (25)

where Zi, Zi are respectively the lower and upper
limits for the j-th output of the system.

4.3. Evolution of parameters of fuzzy sets. The
purpose of the evolutionary strategy used to tune the
parameters of membership functions is to make such
a selection of their values as to get a system with
the greatest possible accuracy while maintaining the
interpretability criteria described in Section 3.2. In this
process, self-adaptation of the mutation range operator has
been used (Fogel, 2006; Eiben and Smith, 2008; Cpałka,
2009b). For this purpose, for each gene of partCsets

ch of the

chromosome a mutation range value is introduced. This
value can be described by the following formula:

σsets
ch =

{
σsets
ch,1, . . . , σ

sets
ch,L

}
, (26)

where L = (m̃ + ñ) · |Ã| is the number of genes in
part Csets

ch of the chromosome, ch = 1, . . . , λ for the
temporary population. Taking into account the mutation
range σsets

ch , the mutation operation can be written as
follows:

σsets′
ch,g = σsets

ch,g exp (τ
′N(0, 1) + τNch,g(0, 1)) (27)

and
Csets′

ch,g = Csets
ch,g + σsets′

ch,gNch,g(0, 1), (28)

where σsets
ch,g, σ

sets′
ch,g are the current and the new value of

the mutation range for the ch-th chromosome and the
g-th gene, (g = 1, . . . , L), N(0, 1) is a random number
from the standard normal distribution, and Nch,g(0, 1) is
a random number from the standard normal distribution
generated for the ch-th chromosome and g-th gene, τ ′ =
1/

√
2L and τ = 1/

√
2
√
L mean predefined constants

chosen before the evolutionary process (Eiben and Smith,
2008). Since the mutation operator modifies the values
of all genes from part Csets

ch of the chromosome in each
iteration of the algorithm, we drop the use of the crossover
operator. The validity of such an approach is confirmed by
simulations and suggestions of other authors (Fogel and
Atmar, 1990).

4.4. Evolution of the structure of the fuzzy sys-
tem. The structure of the fuzzy system is encoded in
parts Crules

ch and Cusage
ch of chromosome Cch. Because

genes in Crules
ch and Cusage

ch take on binary and integer
values, respectively, it is possible to use a standard
mutation operator, which is employed in the classic
genetic algorithm (Sivanandam and Deepa, 2008; Eiben
and Smith, 2008). This type of mutation, in contrast to
the mutations described in Section 4.3, is not performed
for each gene. The strength of the mutation results
from the value of the parameter pm ∈ [0, 1], which
is called mutation probability (Sivanandam and Deepa,
2008; Eiben and Smith, 2008). The value of this
parameter has to be set before the evolution process
begins.

It should be noted that in our approach, during the
evolution process, the chromosomes that encode systems
useless from a practical point of view are removed. We
assume that a useless system is the one with no inputs, no
rules and/or no input fuzzy sets.

4.5. Chromosome evaluation. The evolutionary
strategy that is used in a neuro-fuzzy system design
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process aims at minimizing the following fitness function
for chromosome Cch:

Ff(Cch) = Acc(Cch) (1 + Int(Cch)) , (29)

where

• Acc(Cch) determines the accuracy of the
neuro-fuzzy system encoded in chromosome
Cch defined as a root mean square error (RMSE):

Acc(Cch) =

√√√√√
H∑

h=1

m∑
j=1

(yh,j − ŷh,j)
2

m (H − 1)
, (30)

where m is the number of output signals, H is the
number of samples, yh,j is a value of the j-th output
signal in the h-th sample determined by the model
(7) and yh,j is a reference value of the j-th output
signal in the h-th sample.

• The term Int(Cch) determines the degree of the
fulfilment of the chosen interpretability criteria by
the neuro-fuzzy system (13), encoded in the Cch

chromosome (18):

Int(Cch) =
1

4

4∑
s=1

Is, (31)

where Is is the value of interpretability criteria
defined by (14)–(17). The structure of Eqn. (29)
allows for promotion of chromosomes that have a
lower value of the component Int(Cch) (Int(Cch) ∈
[0, 1]), i.e., that are distinguished by a more readable
rule base. This is achieved by adding the value of 1
to the component Int(Cch).

5. Simulations results

During simulations we focused on two problems of
nonlinear modelling:

1. a harmonic oscillator with variable pulsation,

2. a nonlinear electrical circuit (Jordan, 2006).

The values of the characteristic parameters of the
evolutionary strategy common to all simulations are as
follows: (a) the number of chromosomes in the parental
population μ = 50, (b) the number of chromosomes in the
temporary population λ = 200, (c) constant ε0 = 0.001,
(d) mutation probability pm = 0.1. The characteristic
features and values of parameters of the neuro-fuzzy
systems common to all simulations can be summarized as
follows: (a) for input fuzzy sets we assumed the Gaussian
membership function and for output singleton functions,
(b) the maximum number of fuzzy sets for each input and

output of the system and the maximum number of rules
were set at |Ã| = |B| = |R̃| = 9. This number is taken
into account in the paper concerning interpretability issues
and it determines the maximum information which can be
distinguished by a human directly. It is exactly 7 ± 2 and
was established by Miller (1956). The threshold values of
the constant used in the interpretability criteria (15)–(17)
were set as follows: ζ = 0.1, [κ, κ] = [0.2, 0.6], γ = 0.1.

For both the problems, simulations were divided into
two groups:

1. In the first case we focused on the accuracy of
modelling. The purpose of the evolutionary strategy
was to the select the parameters of the membership
functions and the types of the inference operators
(t-norms). The interpretability component Int(Cch)
of the fitness function (29) was not considered. The
number of rules was set arbitrarily.

2. In the second case we focused on both the accuracy
of modelling and the interpretability of the created
neuro-fuzzy system. The purpose of the evolutionary
strategy was to select parameters of membership
functions, types of inference operators, and the
number and forms of fuzzy rules. In the evaluation of
chromosomes, the interpretability part of the fitness
function was considered.

5.1. Problem of a harmonic oscillator with variable
pulsation. The harmonic oscillator can be defined by
the following equation (Ogata, 2004):

d2x(t)

dt2
+ ω2x(t) = 0, (32)

where ω is an oscillator parameter. Taking x1(t) = ωx(t)
and x2(t) = dx(t)/dt as state variables, we obtain the
following matrix representation of Eqn. (32):⎡

⎢⎣
dx1(t)

dt
dx2(t)

dt

⎤
⎥⎦ =

[
0 ω
−ω 0

] [
x1(t)
x2(t)

]
. (33)

In order to introduce nonlinearity to Eqns. (32)–(33)
we assume that parameter ω varies with the value of x1(t)
according to the following equation:

ω(x1) = 2π − π

1 + |2x1|6
. (34)

Such a system reflects practical physical phenomena,
e.g., a real electric generator with one of the elements
(e.g., inductive) falling within the area of magnetic
saturation above a certain current value.

In the simulations of this problem it is assumed that
the system matrix A is given by the formula

A =

[
0 2π

−2π 0

]
, (35)
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Fig. 3. Graphical illustration of the reference signals (I–II) and the results of modelling the harmonic oscillator by the fuzzy system
(13) in the case of high accuracy (panels 1(a)–1(c)) and high interpretability (panels 2(a)–2(c)). Panels 1(a), 2(a) and 1(b), 2(b)
show the error obtained for signals x1 and x2, respectively, panels 1(c) and 2(c) show the dependence of parameter ω + p12 of
matrix Aeq on signal x1. Panel 1(c) contains two curves because of the periodicity of the analysed function and because of the
data set that was generated for T = 2 s. The lines do not overlap because of the error obtained for signal x1.

and the correction matrix is described as follows:

PA =

[
0 p12
p21 0

]
. (36)

The simulations of oscillator were conducted for time
interval T = 2 s with step dt = 0.001 s, so the training
data set contains 2001 samples.

In the first group of simulations, whose purpose was
to achieve the greatest accuracy of modelling, the best
results were obtained for a fuzzy system composed of
three rules and three fuzzy sets per each input and output
of the system. It was noted that increasing this number
does not have much effect on the value of the adjustment
error RMSE (30). As a result of the evolutionary strategy,
the obtained model can be summarized as follows:

• The accuracy of the model was RMSE = 0.0026.
The maximum absolute error for input x1 was εx1 =
0.0094 and for input x2 it was εx2 = 0.0076 (see
Fig. 3). It follows that the prepared model well
reproduces the actual signals.

• A detailed form of fuzzy rules of the the system
(13) selected using the evolutionary strategy can be
represented as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1 :

{
IF x1 IS A13 AND x2 IS A21

THEN p12 IS B12 AND p21 IS B22,

R2 :

{
IF x1 IS A12 AND x2 IS A22

THEN p12 IS B13 AND p21 IS B21,

R3 :

{
IF x1 IS A11 AND x2 IS A23

THEN p12 IS B11 AND p21 IS B23.
(37)

As explained in Section 2, the aim of the fuzzy
system described by rules of the form (37) is to
generate the values of coefficients of the matrix PA.
For this reason, in Eqn. (37) the system outputs are
indicated as p12 and p21. The obtained membership
functions are shown in Fig. 4(a) and the values of the
interpretability criteria in Table 1. As can be seen,
the obtained fuzzy sets overlap significantly. For this
reason, it is difficult to associate a linguistic label
with a clear interpretation, and the rules are difficult
to read despite their small number.

For the second simulation conducted for this
problem, aimed at gaining a system with the
greatest accuracy while observing the conditions of
interpretability, the obtained results can be summarized
as follows:

• The accuracy of the model was RMSE = 0.0090
and the maximum absolute error for input x1 was
x1 = 0.0246 and for input x2 it was x2 = 0.0155.
The obtained result is, as would be expected, worse
than for the system described in the first variant (the
system oriented on accuracy). However, it should be
noted that the maximum absolute error was lower
than 3% of the absolute value of the input signal,
which can be considered a satisfactory result (see
Fig. 3).

• A detailed form of fuzzy rules of the system (13)
selected using the evolutionary strategy can be
represented as follows:
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Fig. 4. Input and output fuzzy sets of the system used for modelling the harmonic oscillator in the case of high accuracy learning (a)
as well as high interpretability and accuracy learning (b).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1 :

{
IF x1 IS near(0.98)
THEN p12 IS high AND p21 IS low,

R2 :

{
IF x1 IS near(−0.83)
THEN p12 IS high AND p21 IS low,

R3 :

{
IF x1 IS near(0.01)
THEN p12 IS low AND p21 IS high.

(38)

As in the case of the first simulation, the system
was composed of three rules, but used only one
input x1. Additionally, the obtained membership
functions were uniformly divided in the value spaces
and overlapped each other to a much smaller degree,
increasing the possibility of their interpretation
(this is confirmed by the values obtained for each
interpretability criterion presented in Table 1). The
reduction of the complexity of the system and the
ability to assign easily distinguishable linguistic
labels made this system much easier to read than the
one obtained in the previous simulation.

Fig. 5. Nonlinear electrical circuit with a solar generator and a
DC drive system diagram.

5.2. Problem of a nonlinear electrical circuit. The
second analysed problem concerns a nonlinear electrical
circuit with a solar generator and a DC drive system
(Jordan, 2006). The circuit is presented in Fig. 5.

Table 1. Summary of the root mean square error (30) and the
interpretability criteria (14)–(17) for the problem of a
harmonic oscillator. The boldface indicates a better re-
sult for each of the criteria considered.

Simulation variant
high high

accuracy interpretability
RMSE 0.0026 0.0090

in
te

rp
re

ta
bi

li
ty

criterion 1 (14) 0.3330 0.2670

criterion 2 (15) 0.0000 0.0000

criterion 3 (16) 0.2096 0.0779

criterion 4 (17) 0.3509 0.0000

sum (31) 0.2233 0.0862

The nonlinear characteristics of the solar generator
can be approximated using the following formula:

Ip = I0 − Is(e
aVp − 1), (39)

where Vp is the solar generator voltage, I0 is the
photovoltaic current of the cell at Vp = 0 (dependent on
the light flux), Is is the saturation current defined by the
Shockley equation and a is the factor that characterizes
the solar generator. This circuit can be described by the
following system of nonlinear differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du(t)

dt
= −Is

C
eau(t) − 1

C
i(t) +

Is + I0
C

,

di(t)

dt
=

1

L
i(t)− Rm

L
u(t)− Kx

L
ω(t),

dω(t)

dt
=

Kx

L
u(t)− Kr

J
ω(t),

(40)

where u(t) is the generator voltage, i(t) is the rotor
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Fig. 6. Graphical illustration of the reference signals (I–III) and the results of modelling the nonlinear electrical circuit by the fuzzy
system (13) in the case of high accuracy (panels 1(a)–1(c)) and high interpretability (panels 2(a)–2(c)) Panels 1(a) and 2(a)
show the error obtained for signal u, 1(b) and 2(b) the error obtained for signal i, and 1(c) and 2(c) the error obtained for
signal ω.

current and ω(t) is the DC motor rotational speed.
The parameters of circuit were set as follows: Rm =
12.045Ω, C = 500μF, L = 0.1H, a = 0.54V−1,Kr =
0.1Vs2, I0 = 2A, J = 10−3Ws3, Is = 1.28 ·
10−5A, Vp = 22.15V,Kx = 0.5Vs. The values were
taken from the work of Jordan (2006). The values of
the system matrix were determined using Taylor’s series
expansion method at point x = [22.15, 0.00, 0.00]T and
are follows:

A =

⎡
⎣ −2163.86 2000.00 0.00

10.00 −120.45 −5.00
0.00 500.00 −100.00

⎤
⎦ . (41)

It should be noted that in the formulae (40) the
nonlinearity occurs in the first of the equations in the part
concerning the generator voltage. We assume that we
know where the nonlinearity occurs but we do not know
its characteristics, so the correction matrix is defined by
the following formula:

PA =

⎡
⎣ p11 0 0

0 0 0
0 0 0

⎤
⎦ . (42)

The results obtained in the first (focused on accuracy)
simulation can be summarized as follows:

• The accuracy of the model was RMSE = 0.0026.
For signals u, i and ω, the maximum absolute errors
were εu = 0.0122 V, εi = 0.0001 A and εω =
0.0002 rad/s, respectively (see Fig. 6). Thus, it can be
concluded that the prepared model well reproduces
the actual signals.

• A detailed form of fuzzy rules of the system
(13) selected by the evolutionary strategy can be
presented as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 :

{
IF u ISAu4 AND i ISAi1 AND ω ISAω1

THEN p11 IS B1,

R2 :

{
IF u ISAu3 AND i ISAi2 AND ω ISAω3

THEN p11 IS B3,

R3 :

{
IF u ISAu1 AND i ISAi3 AND ω ISAω2

THEN p11 IS B4,

R4 :

{
IF u ISAu2 AND i ISAi4 AND ω ISAω4

THEN p11 IS B2.
(43)

The shapes of membership functions are presented in
Fig. 7(a). As in the problem considered previously,
the obtained functions highly overlap, making it
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difficult to interpret and impossible to associate
clear linguistic labels with fuzzy sets. Thus, the
fuzzy rules (43) are difficult to read. The values
of each interpretability criterion given by (14)–(17)
are presented in Table 2. This justifies the need
to include these criteria in the fuzzy system design
process.

In the second group of simulations conducted for
the problem considered, the best obtained model can be
characterized by the following properties:

• The accuracy of the model was RMSE = 0.0083.
For signals u, i and ω, the maximum absolute
errors were εu = 0.0384 V, εi = 0.0013 A and
εω = 0.0039 rad/s, respectively (see Fig. 6). From
this it can be concluded that the error rate slightly
increased; however, the resulting accuracy is still at a
satisfactory level.

• A detailed form of fuzzy rules of the system
(13) selected by the evolutionary strategy can be
presented as

⎧⎪⎪⎨
⎪⎪⎩
R1 :

{
IF u IS near(19.00)AND i IS near(1.37)
THEN p11 IS high,

R2 :

{
IF u IS near(22.69)AND i IS near(0.00)
THEN p11 IS low.

(44)

The shapes of membership functions are presented
in Fig. 7(b). Those functions are characterized by
a high degree of interpretability (as confirmed by
the values obtained for the different criteria listed
in Table 2), allowing us to assign clear linguistic
labels to these functions. In addition, it should be
noted that during the evolutionary process the created
fuzzy system consisted only of two rules and used
two inputs. This resulted in a significant decrease in
the system complexity and a further increase in its
readability.

6. Conclusions

In this paper a new method of modelling a nonlinear
dynamic system was presented. It is based on combining
the state-space modelling approach with methods of
computational intelligence. In particular, it uses the
possibilities of neuro-fuzzy systems to generate the values
of the correction matrix, at each new operating point,
which are added to the system matrix. This solution
enables more accurate modelling of systems in those
areas where their characteristics are nonlinear. To
determine the system structure and the parameters of
membership functions, the (λ + μ) evolutionary strategy
was used. An important element of the proposed method
is taking into account different interpretability criteria

Table 2. Summary of the root mean square error (30) and the
interpretability criteria (14)–(17) for the problem of a
nonlinear electrical circuit. The bold type indicates a
better result for each of the criteria considered.

Simulation variant
high high

accuracy interpretability
RMSE 0.0026 0.0083

in
te

rp
re

ta
bi

li
ty

criterion 1 (14) 0.4440 0.1780

criterion 2 (15) 0.0000 0.0000

criterion 3 (16) 0.2099 0.0000

criterion 4 (17) 0.4693 0.0305

sum5 (31) 0.2808 0.0520

in the fuzzy system design process. This resulted in
systems with lower complexity, greater readability of
fuzzy rules included in the rule base, and operating with
acceptable accuracy. This also makes it possible to assign
specific linguistic labels to fuzzy sets. The effectiveness
of the proposed method was confirmed by the performed
simulations.
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A new method for designing neuro-fuzzy systems for
nonlinear modelling with interpretability aspects, Neuro-
computing 135: 203–217.

Cpałka, K., Rebrova, O., Nowicki, R. and Rutkowski, L.
(2013). On design of flexible neuro-fuzzy systems for
nonlinear modelling, International Journal of General Sys-
tems 42(6): 706–720.

Czekalski, P. (2006). Evolution-fuzzy rule based system with
parameterized consequences, International Journal of Ap-
plied Mathematics and Computer Science 16(3): 373–385.

DeHaan, D. and Guay, M. (2006). A new real-time perspective
on non-linear model predictive control, Journal of Process
Control 16(6): 615–624.

Di Nuovo, A. and Ascia, G. (2013). A fuzzy system index
to preserve interpretability in deep tuning of fuzzy rule
based classifiers, Journal of Intelligent and Fuzzy Systems
25(2): 493–504.

Eiben, A.E. and Smith, J. (2008). Introduction to Evolutionary
Computing, Springer, Berlin/Heidelberg.

Fei, X., Lu, C.-C. and Liu, K. (2011). A Bayesian dynamic
linear model approach for real-time short-term freeway
travel time prediction, Transportation Research C: Emerg-
ing Technologies 19(6): 1306–1318.

Fogel, D.B. (2006). Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence, Vol. 1, John Wiley &
Sons, Hoboken, NJ.

Fogel, D.B. and Atmar, J.W. (1990). Comparing genetic
operators with Gaussian mutations in simulated
evolutionary processes using linear systems, Biologi-
cal Cybernetics 63(2): 111–114.

Forst, W. and Hoffmann, D. (2010). Optimization Theory and
Practice, Springer, New York, NY.

Gabryel, M. and Rutkowski, L. (2006). Evolutionary learning
of Mamdani-type neuro-fuzzy systems, in L. Rutkowski
et al. (Eds.), Artificial Intelligence and Soft Computing,
Lecture Notes in Computer Science, Vol. 4029, Springer,
Berlin/Heidelberg, pp. 354–359.

Gacto, M., Alcala, R. and Herrera, F. (2011). Interpretability
of linguistic fuzzy rule-based systems: An overview of
interpretability measures, Information Sciences 181(20):
4340–4360.

Grabowski, P. and Callier, F.M. (2001). Circle criterion and
boundary control systems in factor form: Input-output
approach, Applied Mathematics and Computer Science
11(6): 1387–1403.



A new approach to nonlinear modelling of dynamic systems based on fuzzy rules 619

Háber, R. and Keviczky, L. (1999). Nonlinear Sys-
tem Identification—Input-Output Modeling Approach, Vol.
1: Nonlinear System Parameter Identification, Springer
Netherlands, Dordrecht.

Homaifar, A. and McCormick, E. (1995). Simultaneous design
of membership functions and rule sets for fuzzy controllers
using genetic algorithms, IEEE Transactions on Fuzzy Sys-
tems 3(2): 129–139.

Horzyk, A. and Tadeusiewicz, R. (2004). Self-optimizing
neural networks, Advances in Neural Networks, Springer,
Berlin/Heidelberg, pp. 150–155.

Huijberts, H., Nijmeijer, H. and Willems, R. (2000). System
identification in communication with chaotic systems,
IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications 47(6): 800–808.

Ikonen, E. and Najim, K. (2001). Advanced Process Identifica-
tion and Control, Vol. 9, CRC Press, New York, NY.

Ishibashi, R. and Lucio Nascimento, Jr., C. (2013).
GFRBS-PHM: A genetic fuzzy rule-based system for
PHM with improved interpretability, IEEE Conference on
Prognostics and Health Management, 2013, Gaithersburg,
MD, USA, pp. 1–7.

Ishibuchi, H. and Yamamoto, T. (2004). Fuzzy rule selection
by multi-objective genetic local search algorithms and rule
evaluation measures in data mining, Fuzzy Sets and Sys-
tems 141(1): 59–88.

Jang, I.-S. R. and Sun, C.-T. (1995). Neuro-fuzzy modeling and
control, Proceedings of the IEEE 83(3): 378–406.

Johansen, T.A., Shorten, R. and Murray-Smith, R. (2000).
On the interpretation and identification of dynamic
Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy
Systems 8(3): 297–313.

Johansson, U., Sönströd, C., Norinder, U. and Boström, H.
(2011). Trade-off between accuracy and interpretability for
predictive in silico modeling, Future Medicinal Chemistry
3(6): 647–663.

Jordan, A. (2006). Linearization of non-linear state equation,
Bulletin of the Polish Academy of Sciences: Technical Sci-
ences 54(1): 63–73.

Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval
type-2 neural fuzzy system with high learning accuracy
and improved model interpretability, IEEE Transactions on
Cybernetics 43(6): 1781–1795.

Kim, M.-S., Kim, C.-H. and Lee, J.-J. (2006). Evolving compact
and interpretable Takagi–Sugeno fuzzy models with a new
encoding scheme, IEEE Transactions on Systems, Man,
and Cybernetics B: Cybernetics 36(5): 1006–1023.

Kluska, J. (2009). Analytical Methods in Fuzzy Modeling and
Control, Springer, Berlin/Heidelberg.

Kluska, J. (2015). Selected applications of P1-TS fuzzy
rule-based systems, in L. Rutkowski et al. (Eds.), Arti-
ficial Intelligence and Soft Computing, Lecture Notes in
Computer Science, Vol. 9119, Springer, Berlin/Heidelberg,
pp. 195–206.

Kristensen, N.R., Madsen, H. and Jørgensen, S.B. (2004).
A method for systematic improvement of stochastic
grey-box models, Computers & Chemical Engineering
28(8): 1431–1449.

Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook
of Monte Carlo Methods, Vol. 706, John Wiley & Sons,
Hoboken, NJ.

Li, C. and Chiang, T.-W. (2012). Intelligent financial time
series forecasting: A complex neuro-fuzzy approach with
multi-swarm intelligence, International Journal of Applied
Mathematics and Computer Science 22(4): 787–800, DOI:
10.2478/v10006-012-0058-x.

Ljung, L. (2010). Approaches to identification of nonlinear
systems, 9th Chinese Control Conference, Beijing, China,
pp. 1–5.
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