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The impatience mechanism diversifies the population and facilitates escaping from a local optima trap by modifying fitness
values of poorly adapted individuals. In this paper, two versions of the impatience mechanism coupled with a phenotypic
model of evolution are studied. A population subordinated to a basic version of the impatience mechanism polarizes
itself and evolves as a dipole centered around an averaged individual. In the modified version, the impatience mechanism
is supplied with extra knowledge about a currently found optimum. In this case, the behavior of a population is quite
different than previously—considerable diversification is also observed, but the population is not polarized and evolves as
a single cluster. The impatience mechanism allows crossing saddles relatively fast in different configurations of bimodal
and multimodal fitness functions. Actions of impatience mechanisms are shown and compared with evolution without the
impatience and with a fitness sharing. The efficiency of crossing saddles is experimentally examined for different fitness
functions. Results presented in the paper confirm good properties of the impatience mechanism in diversity maintaining
and saddle crossing.
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1. Introduction

Although evolutionary computation based methods are
widely successful in solving complex optimization
problems, they still encounter some difficulties limiting
their efficiency and applications. One of the most
important among these is premature convergence to
a local optimum. A population trapped at the optimum
usually has limited diversity and limited ability to find
another, possibly better, optimum. Many strategies
of regaining population diversity have been proposed:
crowding (DeJong, 1975; Mengshoel and Goldberg, 2008;
Kowalczuk and Białaszewski, 2006), fitness sharing
(Goldberg and Richardson, 1987; Sareni and Krähenbühl,
1998) and spatially structured populations (Tomassini,
2005; Dick and Whigham, 2006) are the most popular.
In order to preserve diversity, hybrid methods combine
different optimization strategies at various stages of the
search process (Grosan and Abraham, 2007; Barabasz
et al., 2014).

In many practical applications, it is more important
to quickly find a better solution than the current best

one, rather than to maintain multiple solutions in a
long-lasting process. We can name this task a “local
global optimization”. While solving the task, crossing
saddles between optima by a population actually being
in a state of a quasi-equilibrium around a local optimum
becomes a key problem. Softening a selective pressure,
taking a population of a small size or application of special
operators may help escaping from the current optimum.

Selections with a low selective pressure allow the
survival of worse adapted individuals. Thus a mean
population fitness decreases and the chance of saddle
crossing increases (Galar, 1989; Goldberg and Deb, 1991;
Chorazyczewski and Galar, 1998; Chen et al., 2010).
Smaller populations are more mobile than bigger ones
and they are also susceptible to a genetic drift that makes
saddle crossing easier (Rogers and Prügel-Bennett, 1999;
Karcz-Duleba, 2004; 2006). Mutations with heavy tails
increase the probability of having a distant offspring that
may cause some individuals to jump over the saddle
(Obuchowicz and Prętki, 2004). Other ideas proposed
to facilitate saddle crossing are based on modification
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of either a fitness function or individual fitness values.
Penalty methods discussed by Torn and Zilinskas (1989)
or the erosion procedure proposed by Obuchowicz (1997)
transformed a fitness function. Methods based on fitness
sharing (Goldberg and Richardson, 1987) or exploiting
the mechanism of impatience (Galar and Kopciuch, 1999;
Karcz-Duleba, 2014) can be classified to the latter group.

The method of fitness sharing is based on the concept
of finite resources and penalizes similar individuals
by lowering their fitness to encourage the population
to explore different regions of a search space. The
impatience mechanism modifies the fitness of individuals
of a population trapped at a local optimum and promotes
worse adapted individuals. After spending some time
wandering around a local optimum, a population becomes
“impatient” and changes its preferences by rewarding
individuals located on the periphery of a population cloud
by increasing their fitness. If the impatience operator is
referred to a population mean individual, a population
is polarized and evolves as a dipole centered at the
mean. If the operator is referred to an already found
local optimum (a population has knowledge about the
optimum), a population is not polarized and evolves as
a whole but its diversity is still high.

Both versions of the impatience mechanism will
be studied in detail in this paper from the viewpoint
of maintaining population diversity and crossing saddles
between optima. The paper is organized as follows. In
Section 2 the impatience operators coupled with a simple
model of a phenotypic evolution are depicted. Fitness
functions used for analyzing properties and effectiveness
of the mechanism are also presented in this section.
The dynamics of populations evolving with impatience
mechanisms and the population polarization phenomenon
are described in Section 3. In this section the properties
of both versions of impatience as well as their similarities
and differences are discussed. In Section 4, comparison of
an evolution with and without impatience and impatience
with a fitness sharing method is provided. Results
of simulation studies of crossing saddles for different
bimodal and multimodal fitness functions are presented in
Section 5. Section 6 concludes the paper.

2. Mechanism of impatience

2.1. Model of evolution with impatience. Galar and
Kopciuch (1999) introduced an impatience mechanism
into a model of simple phenotypic generational asexual
evolution (Galar, 1989). A population of m-elements
P = {x1,x2, . . . ,xm} is evolving in an n-dimensional
unbounded real search space R

n. Each member of the
population is characterized by its position x• ∈ R

n and
a fitness value q(x•). An evolutionary process takes
place by means of fitness-proportionate selection and
a Gaussian mutation with a standard deviation σ. An

operator of impatience modifies the original fitness of
an individual q(x). The modification is based on the
individuals’ distance from the mean individual within a
population and is given by

qa(xi) =
( di
dA

+ c
)
q(xi), (1)

where q(xi) is a fitness of the i-th individual, di and dA
are, respectively, the distance of the i-th individual and
an average distance of all individuals from the mean x,

x =
1

m

m∑
i=1

xi, di = ‖xi − x‖, dA =
1

m

m∑
i=1

di,

where ‖ · ‖ denotes the Euclidean metric and c is a
constant parameter taken from the interval [0, 1]. The
value of parameter c will be set to c = 1 later on, as
our earlier studies revealed its negligible influence on the
performance of the impatience mechanism.

2.2. Impatience with knowledge. The mechanism
of impatience is switched on when a population “is
impatient” remaining for a long time in the attraction
basin of a local optimum without any further
progress. A modification of the operator was proposed
by Karcz-Duleba (2014) to include extra knowledge
about a currently found optimum. Thus the mechanism
of impatience with knowledge may start to act when
a position of a local optimum is either known or can
be reliably estimated. In the discussed version of the
impatience mechanism, the operator (1) is changed by
replacing the distances from the population mean with the
distances from the (estimated) optimum. Consequently, a
modified fitness of the i-th individual located at distance
dio from the local optimum is described by

qK(xi) =
( dio
dAo

+ c
)
q(xi), (2)

where dAo denotes the average distance to the optimum
for the whole population,

dAo =
1

m

m∑
i=1

‖xi − x∗‖ =
1

m

m∑
i=1

dio,

and x∗ is the position of a local (possibly estimated)
optimum.

2.3. Fitness landscapes. As the main purpose
of introducing the impatience mechanism was to
maintain population diversity and to facilitate crossing
saddles, the impact of the operator on the evolution
process was studied in an adaptive landscape of an
n-dimensional bimodal fitness function. The sum of two
Gaussian functions with a local and a global optimum of
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different heights forming a distinct saddle between peaks
were chosen for tests,

q(x) = exp(−a1x
T x)

+ h exp
(−a2(x − xg)

TC−1(x− xg)
)
,

(3)

where xg is the location of the global optimum and h
denotes its height (h > 1), parameters a1, a2 influence
slopes of both hills, and C is a covariance matrix. A
local optimum with a height equal to one is located at
xl = (0, 0, . . . , 0).

A majority of the previous research (Galar and
Kopciuch, 1999; Karcz-Duleba, 2014) was carried out
with a simplified version of the function (3),

q1(x) = exp

(
−a1

n∑
k=1

x2
k

)

+ 2 exp

(
−a2(x− 1)2 + a2

n∑
k=2

x2
k

)
,

(4)

presented in Fig. 1(a) for n = 2. The global optimum with
the height h = 2 is shifted in the first coordinate xg =
(1, 0, . . . , 0). In this paper, the values of the slopes of the
local and global hills, resp. a1 and a2, were assumed to be
constant and set to a1 = a2 = 5. In this case, the saddle
is not very deep (its minimum height is about hs = 0.76)
and its width (defined as the shortest distance between the
top of the local hill and a point at the global hill with the
same value as at the local optimum) is Δs = 0.57. The
effect of a different saddle shape and thus the influence of
a2 on the efficiency of crossing the saddle were examined
by Karcz-Duleba (2014).

As both the optima of the fitness function q1 (4)
are located along the ridge which stretches along the
x-axis, the case is not very difficult for the analyzed
evolutionary procedure, which is a path following
process (Galar and Chorazyczewski, 2001). Later on,
we will study impatience mechanisms also for more
complex landscapes where the location of the second
hill is shifted from the x-axis and/or the hill itself
is transformed (squeezed, stretched, rotated). Three
examples of a two-dimensional (n = 2) transformed
global hill, depicted in Fig. 1(b)–(d) and called q2, q3, q4
respectively, will be examined later on.

Finally, the efficiency of impatience operators
will be verified in landscapes of fitness functions with
more than two optima. In the paper, three multimodal
two-dimensional benchmark functions were exploited (in
the maximization version):

• Rastrigin,

qR(x) = 44.5−
[
10n+

n∑
i=1

(
x2
i − 10 cos(2πxi)

)]
, (5)
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Fig. 1. Maps of the two-dimensional fitness functions q (2)
with different locations and shapes of the global opti-
mum. q1 (4): xg = [1; 0], C = [1, 0; 0, 1] (a), q2:
xg = [0.7; 0.7], C = [1,−1.5;−2, 4] (b), q3: xg =
[0.7; 0.7], C = [0.25, 0.3; 0.3, 1] (c), q4: xg = [1; 0],
C = [0.2, 0; 0, 2] (d).

−1.5 ≤ xi ≤ 1.5;

• Schwefel,

qS(x) = 840 +

n∑
i=1

(
xi · sin(xi)

√
|xi|
)
, (6)

−500 ≤ xi ≤ 500;

• Ackley,

qA(x) =20 · exp
⎛
⎝−0.2 ·

√√√√1

2

n∑
i=1

x2
i

⎞
⎠

+ exp

(
1

2

n∑
i=1

cos(2π · xi)

)
+ e,

(7)

−3 ≤ xi ≤ 3, where e signifies the base of the natural
logarithm (e = exp(1)).

The functions have optima of different heights and
locations, thus the mechanism of crossing saddles and
searching for global optima can be shown differently.

In the following sections, all presented computations
and simulations were performed using the author’s
personal code written in the Matlab software and run on
a PC computer (Intel Core 2, 2.66 GHz).

3. Dynamics of evolution with impatience

3.1. Impatience: Polarization of population. The
operator of impatience decreases the quality of individuals
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close to the population mean and increases the quality
of those located at peripheries of the population. As the
mechanism is applied when a population is located in the
neighborhood of a local optimum, its influence on fitness
is analyzed for a local component of the function (4) only.
Sample transformations of one- and two-dimensional
local optimum functions by the impatience operator (1)
are presented in Fig. 2. Fitness values of individuals
located far away from the population mean increase
significantly and, which is more interesting, the function is
not symmetrical: the farther the population mean from the
optimum, the greater the values of the transformed fitness
(see the plot of qa for dA = 0.5 in Fig. 2(a)).
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Fig. 2. Transformations of the local optimum component of the
fitness q (4) by the operator of impatience (1): one-
dimensional function for three population mean loca-
tions dA = 0.05, 0.1, 0.5 (q is marked with a dotted
line) (a), two-dimensional function for population mean
location dA = 0.1 (b).

In Fig. 3 the effect of the operator of impatience on
evolution of a 32-element population in the landscape of
the two-dimensional function q1 (4) is illustrated. (Note
that the fitness contour plots in Figs. 3, 5 and 7 correspond
to original (unmodified) functions.) The simulation was
started with an initial population of clones of locally
optimal individuals. The operator of impatience was
turned on after five generations, to allow preliminary
diversification of clones. Such a population imitates
the state of quasi-stability around the local optimum.

The distant (from the mean) individuals reproduce
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Fig. 3. Stages of saddle crossing by a population under the ac-

tion of the impatience operator (1) in a landscape of the
two-dimensional function q1 (4): after generation no. 30
(a), after generation no. 40 (b), after generation no. 60
(c); m = 32, σ = 0.025. Polarization of population is
clearly visible.

more intensively and the population diversity increases.
A too large dispersion of a population is counteracted
by a decrease in the fitness of far-away-from-optimum
individuals subjected to selection. Consequently,
a population is distributed on some kind of orbit around
the population mean, where both the trends are balanced
and the orbit acts as an attractor for a population
fluctuating around an optimum. Additionally, some
locations on the orbit are favored (two optima in Fig. 2(a)).
As a result, the population polarizes and spontaneously
breaks into two clustered sub-populations spawning a kind
of dipole (Fig. 3(a)). The dipole fluctuates along an
orbit. The number of individuals that belong to each
sub-population changes dynamically.
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When a local hill is separated from another optimum
by a saddle, a dipole may be attracted by the saddle where
an adaptation is slightly higher than on other parts of the
orbit, and directed its axis along the saddle (Fig. 3(b)).
In result, the saddle can be crossed faster by this part of
the dipole situated closer to a saddle. Saddle crossing is
done by one of the sub-populations, whereas the other
remains somewhere around a local hill. Keeping one
of sub-populations at a local optimum can be explained
when looking at Fig. 2(a) and the function reflecting the
population mean dA = 0.5 (the saddle in Fig. 3 is about
Δs � 0.6 wide). The transformed fitness of individuals
on a local hill is very high compared with individuals
just crossing saddles, so they stay at a local optimum
(Fig. 3(c)). This sub-population slowly becomes extinct as
individuals on the global hill reproduce themselves more
often and as the impatience operator is switched off after
crossing is done.

3.2. Impatience with knowledge. A modification
of an individual fitness by the impatience mechanism
with knowledge (2) is presented in Fig. 4 for n =
1 and n = 2. Similarly to Fig. 2, only the first
(local) component of Eqn. (4) and, as the transformation
Eqn. (2) is symmetrical, only the positive half-plane for
the one-dimensional case were visualized. The operator of
impatience with knowledge decreases the quality of near
optimal individuals and increases that of those located at
some distance from the optimum. When a population is
closer to a local optimum (i.e., the average distance dAo

is getting small), the transformed quality of some distant
individuals highly increases (more than twice). (Note
that for impatience without knowledge such an increase
is much greater—about five times.) When the population
is more dispersed, dAo is relatively large, the transformed
quality of an individual is smaller but still exceeds the
local hill quality.

In Fig. 5, the stages of saddle crossing by a
population influenced by the operator of impatience with
knowledge are presented. The main difference between
the operator of impatience with and without knowledge
is clearly visible: the population for which the operator
of impatience is calculated according to Eqn. (2) is
widely diversified but not polarized (cf. Fig. 3). The
difference can be explained as follows. Populations
that evolved without knowledge (1) have no information
about the fitness function configuration. Their knowledge
is restricted to information about the actual population
position. When the operator with knowledge (2) is active,
a population is located on an orbit around the local
optimum. All locations on the orbit are equally likely
(cf. Fig. 4). Additionally, in evolving populations there
is a tendency to concentrate individuals (Karcz-Duleba,
2006), thus a population is not polarized and evolves as a
cluster.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

q(x)

d
Ao

=0.1

d
Ao

=0.2

x

fit
ne

ss

(a)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

x
1

x
2

fit
ne

ss

(b)
Fig. 4. Transformations of the local optimum component of the

fitness q (4) by the operator of impatience with knowl-
edge (2): one-dimensional fitness for two average dis-
tances dAo = 0.1, 0.2 (q is marked with a dotted line)
(a), two-dimensional fitness for average distance dAo =
0.1 (b).

In order to understand better the actions of both
operators, distances from the local optimum for both
the operators were calculated for the mean individual
and averaged for all population individuals. Results
are presented in Fig. 6. The mean individual of
a population evolved with the operator of impatience
without knowledge is located close to the optimum until
the population crosses a saddle. This means that while
sub-populations wander around the local optimum, the
center of the dipole is located very close to the optimum.
Thus, although a population is diversified, information
about the optimum is still present in the population,
though not implicitly. When a populations already crossed
a saddle, the distance to the local optimum increases
and the center of the dipole moves towards the global
optimum (after the 50th generation in Fig. 6). The
average distance of individuals from the local optimum
increases slowly as the population is diffused and one
sub-population has crossed a saddle. For the operator of
impatience with knowledge, both the distances are very
similar as the population is not polarized and evolves as
a whole. Thus, a mean individual does not stick to the
local optimum but wanders with all individuals within a
population.
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Fig. 5. Stages of saddle crossing by a population subjected to

the operator of impatience with knowledge in a land-
scape of the two-dimensional function q1 (4): generation
no. 30 (a), generation no. 60 (b), generation no. 120 (c);
m = 32, n = 2, σ = 0.025.

4. Evolution with impatience:
A comparative study

4.1. Impatience vs. evolution without impatience.
The comparison of a phenotypic evolution with fitness
proportionate selection and the Gaussian mutation with
and without impatience mechanisms is presented in Fig. 7
for sample runs of 80 generations. Polarized populations
evolved with the impatience mechanism are widely
distributed. Furthermore, they crossed a saddle before
a population without impatience and with impatience and
knowledge. Populations with impatience and knowledge
are diversified more than the population without the
operator but less than the version without knowledge as
a later population is polarized.

In Fig. 8, plots of an average fitness and
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Fig. 6. Average distance of population individuals and the dis-
tance of the population mean from the local optimum of
the function q1 (4). Evolution with the operator of impa-
tience: without knowledge (a), with knowledge (b); 60
generations, m = 32, n = 2, σ = 0.025.

diversification for populations from Fig. 7 are presented.
The diversification of a population was defined as the
average distance from the mean individual. In all figures,
the operator of impatience and knowledge is marked
as ‘wK’ (with knowledge). The average fitness of a
population evolving without impatience mechanisms is
changed slightly and remains on a similar level during
the entire process, whereas the average fitness of the
population with impatience is more reduced (which may
help in faster saddle crossing) (Fig. 8(a)). Although
the population evolving without knowledge is polarized,
its average fitness is only slightly smaller than for the
impatience with knowledge version.

In general, diversification of populations evolving
with impatience operators is higher than for the population
without it (Fig. 8(b)). The average distance of population
individuals from the population mean for the operator of
impatience without knowledge grows during the presented
evolution runs and achieves quite high values. The
knowledge incorporated in the impatience operator does
not influence diversity as much as polarization. The
diversity is higher than in the non-impatience case but
less than the without-knowledge case at the beginning of
evolution and decreases in later generations, reaching a
level of the version without knowledge.

Results presented so far confirm that impatience
operators may be classified into diversification preserving



The impatience mechanism as a diversity maintaining and saddle crossing strategy 911

x
1

x 2

−1 0 1 2
−1

−0.5

0

0.5

1

(a)

x
1

x 2

−1 0 1 2
−1

−0.5

0

0.5

1

(b)

x
1

x 2

−1 0 1 2
−1

−0.5

0

0.5

1

(c)

Fig. 7. Evolution without and with operators of impatience in a
landscape of the two-dimensional function q1 (4): with-
out impatience (a), with impatience (b), with impatience
and knowledge (c). Generations from no. 1 till the 80th
are presented; m = 32, n = 2, σ = 0.025.

methods, particularly the version without knowledge
about the location of a local optimum. As Figs. 7
and 8 presented only sample results of evolution with
fitness proportionate selection and Gaussian mutation, we
performed more statistically sound studies of population
diversification. The average distance from the mean
individual for populations evolving with both versions of
the impatience mechanism were computed and compared
with the version without impatience for two-, four- and
eight-dimensional functions q1 (4). Simulations were
carried out by 100 generations or, if a population had
already crossed a saddle, were stopped just after crossing
a saddle by the population mean. Runs were repeated 100
times and averaged, and results are presented in Fig. 9. As
some simulations could last less than 100 generations, this
fact was taken into account when calculating the means.
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Fig. 8. Average fitness (a) and diversity of populations (b) of
evolving populations from Fig. 7.

Populations evolved with the operator of impatience
are polarized, so they are much more dispersed than
those with impatience and knowledge and populations
without impatience (Fig. 9). Although populations in
higher dimensions (n = 4, 8) are more dispersed, the
impatience mechanism still maintained and enhanced the
diversity (Fig. 9(b)–(c)). For the impatience operator with
knowledge, the average distance remains on a similar level
during evolution on a local hill and slightly surpasses
diversity of populations without impatience.

So far, studies of the impatience mechanism have
been conducted for fitness proportionate selection. As
impatience is a universal operator, it may be also
applied to other selection methods. In the paper we
chose tournament selection as the one frequently used.
Diversification of a population evolving with two-element
(binary) tournament selection and the Gaussian mutation
is given in Fig. 10. Results are very similar to those
obtained for fitness proportionate selection: the biggest
diversity is exhibited by the population evolving with the
impatience without knowledge operator (as the population
is polarized), the smallest one by the population evolving
without impatience.

In Table 1, average generations of saddle crossing
for 32-element populations evolving with impatience
operators and without impatience in the landscape of the
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Fig. 9. Diversification of population for populations evolving
without and with the operators of impatience (average
for 100 runs). Fitness proportionate selection: n = 2
(a), n = 4 (b), n = 8 (c); m = 32, σ = 0.025.

fitness function q1 (4) are presented for proportionate (see
also Fig. 13(a)) and tournament selection. Simulations
were performed for σ = 0.025, 0.05 and 0.1, and averaged
over 1000 runs. In the case of tournament selection
and σ = 0.025, 0.05, runs were terminated after 10000
generations without a crossing saddle. For σ = 0.1, the
saddle is about six σ wide (Δs � 0.6) and crossing saddle
is fast without any accelerating method, even though the
impatience may yet speed it up. For smaller σ, the width
of a saddle is about 11σ and 23σ, respectively, and the
dominance of impatience operators in crossing the saddle
is unquestionable. Populations evolving with tournament
selection and without impatience crossed the saddle with
some difficulty. Some runs do not escape from local
optima even in 10000 generations (numbers in brackets).
Note that fitness proportionate selection crosses such wide
saddles much easier. Thus, acceleration caused by the
impatience mechanism is significant. The efficiency in
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Fig. 10. Diversification of population for populations evolving
without and with the operators of impatience (average
for 100 runs). Tournament selection (of size two): n =
2, m = 32, σ = 0.025.

Table 1. Average number of generations to cross a saddle for
populations evolving with and without impatience in a
landscape of the fitness function q1 (4). Fitness propor-
tionate and tournament selections, averaged from 1000
runs; m = 32, n = 2 (in brackets the number of un-
successful runs).

fitness proportionate selection
without impatience impat. wK

σ mean std mean std mean std

0.025 364 324 87 41 81 55
0.05 113 76 40 22 32 18
0.1 28 19 17 7 17 9

tournament selection
without impatience impat. wK

σ mean std mean std mean std

0.025 4448 (44) 3322 54 17 35 12
0.05 3357 (8) 3082 29 9 22 6
0.1 63 48 19 7 16 5

crossing saddles of both impatience versions with both
selection methods is very similar.

4.2. Impatience vs. fitness sharing. In order
to compare impatience operators with other diversity
preserving methods, fitness sharing was added into the
population evolving with fitness proportionate selection
and the Gaussian mutation. We use the most popular
version of fitness sharing (Sareni and Krähenbühl, 1998),
with parameter α = 1 and different niche radius ρ. The
niche radius was chosen relative to mutation range σ:
ρ = (1, 5, 10) · σ.

In Fig. 11, the average diversity and fitness of
populations evolving in the landscape of the function
q1 (4) are shown, averaged over 100 runs (only impatience
without knowledge was regarded). The fitness sharing
method increases population diversity by increasing a
niche radius—for small ρ, diversity is much smaller
than for a population with impatience. The diversity of
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population for both the methods achieved the same level
for the largest ρ. The average fitnesses have similar values
for both the methods, the highest values are obtained for
fitness sharing with the smallest ρ = σ as the population
is more compact.
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Fig. 11. Average fitness (a) and diversity (b) of populations
evolving with impatience and with fitness sharing for
different niche radii ρ = (1, 5, 10) · σ in the landscape
of the function q1 (4); m = 32, n = 2, σ = 0.025.

Although fitness sharing may increase diversity,
it is not very useful for the main purpose we are
interested in—searching for a global optimum by saddle
crossing. The impatience operator greatly accelerates
saddle crossing whereas fitness sharing, in some cases,
even disturbs crossing saddles (for small ρ). In Table 2,
the average numbers of generations to cross saddles for
populations evolving with fitness sharing are collected
for different niche radii ρ. As mechanisms supporting
saddle crossing are needed when a population is trapped
at a local optimum, only small values of mutation range
σ = 0.025, 0.05 were taken into account. Fitness sharing
accelerates crossing saddles mainly for larger value of ρ.

The main idea of fitness sharing consists in
modifying the search landscape by reducing the payoff
in densely populated regions. In contrast to the

Table 2. Average number of generations to cross a saddle for
populations evolving with fitness sharing. Results av-
eraged over 1000 runs; m = 32, n = 2 (in brackets
the number of unsuccessful runs).

σ

0.025 0.05
ρ mean std mean std

σ 440 (377) 265 78 48
5σ 140 72 37 12
10σ 111 42 38 11

impatience operator, sharing decreases the fitness of
similar individuals within the population. Sample
fitness values of a randomly generated population in a
landscape of the one-dimensional local optimum of the
function q1 (4) and under impatience and fitness sharing
(with different ρ) mechanisms are presented in Fig. 12,
together with the average fitness levels of the whole
populations. According to the sharing idea, the niche
radius ρ should have a rather small value compared
with the whole population diameter, which is usually
about several σ (Karcz-Duleba, 2006). In Fig. 12, when
applying fitness sharing with ρ = 0.025, only a few
(most crowded) individuals changed their fitness and the
average population fitness is only slightly smaller than
the average fitness of the original population. If ρ takes
larger values, almost all population individuals may be
regarded as similar and their fitness is greatly reduced.
Fitness reduction may help in crossing saddles (which,
in this case, have the minimum height of about 0.7),
and this is confirmed by results presented in Table 2
for bigger ρ. Thus, fitness sharing may be comparable
with an impatient operator (see Table 1) only when the
values of parameter ρ are selected properly (whereas the
impatience mechanism is parameter-less), and then saddle
crossing occurs rather as a side effect of the average fitness
decrease.

5. Efficiency of crossing saddles

5.1. Crossing saddles in bimodal fitness functions
landscapes. The efficiency of crossing a saddle by
a population subjected to the operator of impatience
with and without knowledge was studied by Galar and
Kopciuch (1999) as well as Karcz-Duleba (2014) for
the bimodal fitness function q1 (4). The influence
of the following parameters were tested: population
size m, search space dimension n, saddle width
and depth (depending on a slope, a2, of the global
optimum). Results were related to evolution with fitness
proportionate selection and the Gaussian mutation without
the impatience operator (see also Section 4.1).

An evolution exploiting the impatience operator
outperformed its impatience-free version in a wide range
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Fig. 12. Comparison of the fitness of individuals under impa-
tience vs. fitness sharing mechanisms in a landscape
of the one-dimensional local optimum of the function
q1 (4). Population of 32 individuals, randomly gener-
ated in [−1, 1], marked as dots. Population under oper-
ators: impatience (+), fitness sharing with ρ = 0.025
(∗), ρ = 0.05 (◦), ρ = 0.1 (x). Levels of the average
fitness of a population: pointed line—original popu-
lation, dot-point line—with impatience, dotted lines—
with fitness sharing.

of parameters of the fitness function and the evolution
model. The extra knowledge concerning the location
of the local optimum accelerated saddle crossing only
slightly. A bigger benefit was obtained for large
populations (m = 32–128). Interestingly, an enlargement
of a population size does not increase significantly the
number of fitness function calculations needed to cross a
saddle.

The efficiency of the three evolution models (without
impatience, with impatience and with impatience and
knowledge) in saddle crossing was similar for small
search space dimensionalities (from n = 2 to 8), although
the model without impatience is slightly worse. As the
dimensionallity n grows, the efficiency of model with
impatience and knowledge decreases and tends toward
the one without impatience. The best performance is
displayed by the model with impatience. Populations
evolving with the impatience operator crossed effectively
large and deep saddles.

Since a rotated global optimum of a bimodal fitness
function usually poses some problems for evolution, the
impact of the impatience mechanism on crossing more
troublesome saddles will be studied now. Saddle crossing
was analyzed for the two-dimensional functions q2–q4 and
compared with the function q1 (4). Different parameters
were considered: population size m = 8, 16, 32, 64 and
standard deviation of mutation σ = 0.025, 0.05, 0.1.
Simulations were stopped after crossing the saddle by the
average individuals (i.e., when the fitness of the average
individual exceeds the value of the local optimum) or
after 20000 generations without success. The numbers of
fitness function evaluation Ev, averaged over 100 runs,
are presented in Fig. 13. Let us note the logarithmic scale

on the y-axis.
The functions q2–q4 are indeed more difficult for

optimization by evolution than q1 (see different ranges of
y-axis in Fig. 13(a) and others). The most troublesome
are the functions q2 and q4 because their global optima
are located crosswise to the local ones, saddles are deep
and optima are not joined by a ridge, which generates an
impediment to a path dependent search. In the case of the
function q4, larger populations evolved with small σ and
without impatience operators crossed the saddle in a few
trials over 100 runs only (in 20000 generations).

In all presented results evolution with impatience
mechanisms surpasses evolution without it and
populations crossed the saddle even in the most
troublesome cases. The efficiency of both impatience
mechanisms seems to be comparable for functions
q1 and q3. Impatience with a knowledge operator is
significantly better than without knowledge version for
both troublesome functions q2 and q4, according to
Student’s t-test with the level of significance α = 0.05.
For the function q3, impatience with knowledge is
significantly better for bigger values of the standard
deviation of mutation and larger populations (m ≥ 16
and σ ≥ 0.05). Thus, the presented results confirmed that
impatience operators actually accelerate crossing for both
easy and difficult saddle configurations. It is worth noting
that small populations (m = 8) are the most effective.

5.2. Multioptima fitness functions. The aforemen-
tioned examples of fitness functions exemplified two
optima separated by distinct saddles. The efficiency of
the impatient mechanism was also evaluated for fitness
functions with more than two optima. In the work
of Karcz-Duleba (2014) optimization of the multimodal
Ursem 03 test function was presented. The results were
promising; only about 0.07% of 100 runs failed to find
a global optimum in 5000 generations. The impatience
operator without knowledge was a bit more efficient than
that with knowledge.

In this paper, multimodal two-dimensional
Rastrigin (5), Schwefel (6) and Ackley (7) functions
were selected to analyze the efficiency of impatience
mechanisms. Operators of impatience were turned on
when a population, evolving with fitness proportionate
or tournament selection and Gaussian mutation, did
not show any improvement in 10 or 15 (depending
on the function) consecutive generations. This was
regarded as an indicator that a population got stuck at
a local optimum. The operators were turned off when a
population found a better solution than the currently best.
For the impatience with knowledge operator, local search
procedures were not used for finding the exact value of
the local optimum but the current best fitness was treated
as the estimate of it.

Simulations were started with initial populations
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Table 3. Average number of generations to find the global optimum for the Rastrigin function (5). Fitness proportionate and tournament
selections; σ = 0.06 (in brackets the number of unsuccessful runs).

fitness proportionate selection
without impatience impatience wK

m mean std mean std mean std

8 638 699 384 395 581 603
16 630 563 343 397 793 1233
32 1625 (10) 2002 1326 (8) 2057 1841 (7) 2212

tournament selection
without impatience impatience wK

m mean std mean std mean std

8 1855 1702 826 721 2502 (19) 2625
16 4583 (54) 2704 710 768 1358 (32) 2059
32 3235 (97) 3613 852 (14) 1584 1307(41) 2017

Table 4. Average number of generations to find the global optimum for the Schwefel function (6). Fitness proportionate and tournament
selections; σ = 20 (in brackets the number of unsuccessful runs).

fitness proportionate selection
without impatience impatience wK

m mean std mean std mean std

8 724 614 481 382 1005 (4) 909
16 881 678 443 224 826 (3) 904
32 2073 (2) 1454 552 (4) 1029 989 (7) 1210

tournament selection
without impatience impatience wK

m mean std mean std mean std

8 1464 1238 442 279 1079 (1) 1372
16 2884 (1) 1861 476 316 1249 (1) 1655
32 5140 (90) 2951 547 (1) 627 1977 (19) 2454

located on the selected local optima far away from the
global one ((−1,−1) for Rastrigin, (−300,−300) for
Schwefel and (−2,−2) for Ackley functions). Initial
populations were normally distributed (with a small
standard deviation) on the local hills so as to simulate
a selection-mutation dynamic equilibrium around the
local optimum. Computations were stopped when any
individual found a global optimum (with the accuracy
about 2–5%) or after 10000 generations without any
success and repeated 100 times. The value of the standard
deviation of mutation σ was related to the function ranges
as 1/50 of their values. Although the Ackley function
was included into very troublesome benchmark functions
according to CEC05 outcomes (Hansen, 2005), the results
obtained showed that it is not difficult for populations
evolving with proportionate or tournament selection and
the Gaussian mutation. In the case of tournament selection
and the standard deviation of mutation equal to 1/50
of the function range (σ = 0.12), populations found
the global optimum very fast, so there was no need for
additional operators. Thus, as to check the effectiveness
of impatience mechanisms, a more difficult case with
a smaller standard deviation of mutation σ = 0.06

(1/100 of the function range) was considered. Results
of a global optima search with and without impatience
operators are presented in Tables 3–5. Only successful
runs were averaged. The number of unsuccessful runs is
given in brackets in the tables.

The presented results confirm very good properties
of the impatience without knowledge operator in crossing
saddles and finding the global optimum of multimodal
functions. The mechanism accelerates the search
significantly in almost all the cases studied. For Rastrigin
and Schwefel functions, impatience gives the best results,
with the efficiency decreasing as the population size
increases. For Ackley function, which is, as we mention
below, easy for the tested methods, the impatience
operator can still accelerate the search. A considerable
improvement is obtained in the case of tournament
selection and a small standard deviation of mutation σ =
0.06 (for m = 16, impatience with knowledge gave the
best results but it managed to obtain the global optimum
only in 16% of runs). The efficiency of the operator
of impatience with knowledge strongly depends on the
shape of an optimized function. In most cases, it is more
effective than evolution without impatience but worse than
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Fig. 13. Efficiency of crossing a saddle. Averaged over 100
runs, the number of fitness function evaluation Ev for
the two-dimensional (n = 2) functions q1–q4 (see
Fig. 1) and evolution with and without impatience; with
regard to the population size of m = 8, 16, 32, 64 and
the standard deviation of mutation: σ = 0.025 (solid
line), σ = 0.05 (dashed line), σ = 0.1 (dotted lines).

the impatience version without knowledge.

For the Rastrigin function, the with-knowledge
version works better than evolution without impatience

for a small population size (m = 8) when evolving with
fitness proportionate selection and for larger populations
(m = 16, 32) when evolving with tournament selection.
For the Schwefel function, the with-knowledge version
is worse than that without impatience only for a small
population size (m = 8) and fitness proportionate
selection. For the Ackley function and tournament
selection, the operator is effective when populations are
larger. The results may confirm our earlier observations
that the impatience and knowledge mechanism behaves
better for unsymmetrical functions, but it is less effective
for separable ones, with small differences in optima values
and/or quite deep saddles (as Rastrigin or Ackley). In
all simulations, the standard deviations are high, so the
results are spread out: some runs are very quick and
some very slow. In general, small populations evolving
with proportionate selection are the most effective. The
larger the population, the more likely it is to get stuck
in a local optimum, and 10000 generations would not
be enough to find the global one. Tournament selection
is less effective than fitness proportionate selection for
Rastrigin and Schwefel functions and very efective for
Ackley function.

6. Conclusions

Results presented in this paper confirmed very good
properties of the impatience mechanism as a strategy
of maintaining diversity and facilitating saddle crossing.
The mechanism supports an effective search for global
optima of both bimodal (of different topologies) and
multimodal fitness functions. Impatience without
knowledge significantly increases the diversity of a
population by its polarization and accelerates finding
global optima of multimodal functions. Impatience with
knowledge about a local optimum shows good properties
in landscapes of bimodal fitness functions with a difficult
configuration of a global optimum, but it is less effective
for some multimodal functions. Thus the latter version
may be effective in demanding landscapes having a few
optima not symmetrically and sparse in the search space.

A big advantage of the impatience mechanism is
the lack of user defined parameters. The operator
requires only slightly more additional computations and
may supplement different optimization algorithms. In
the reported research, the impatience mechanism supports
simple evolutionary models (fitness proportionate or
tournament selection and the Gaussian mutation).
Preliminary attempts of applying the mechanism to
other evolutionary procedures (differential evolution)
are promising. Additionally, as the mechanism deals
with a fitness function only (not interfering with an
optimization algorithm itself), it can be useful when
integrating the mechanism with existing optimization
software supporting different algorithms (only a minor
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Table 5. Average number of generations to find the global optimum for the Ackley function (7). Fitness proportionate and tournament
selections (in brackets the number of unsuccessful runs).

fitness proportionate selection, σ = 0.12

without impatience impatience wK
m mean std mean std mean std

8 229 193 225 199 1126 1436
16 127 85 137 84 612 793
32 94 43 87 37 456 657

tournament selection, σ = 0.06

without impatience impatience wK
m mean std mean std mean std

8 528 299 315 277 2399 (72) 2461
16 1383 891 784 1242 713 (84) 1301
32 4748 (11) 2524 417 (19) 1102 2057 (69) 3188

modification of the fitness is required). The results
confirmed also our earlier observations about the high
efficiency of small populations in global optimization
(Karcz-Duleba, 2006).
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