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A new, state space, non-integer order model for the heat transfer process is presented. The proposed model is based on a
Feller semigroup one, the derivative with respect to time is expressed by the non-integer order Caputo operator, and the
derivative with respect to length is described by the non-integer order Riesz operator. Elementary properties of the state
operator are proven and a formula for the step response of the system is also given. The proposed model is applied to the
modeling of temperature distribution in a one dimensional plant. Results of experiments show that the proposed model is
more accurate than the analogical integer order model in the sense of the MSE cost function.
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1. Introduction

Mathematical models of distributed parameter systems
obtained on the basis of partial differential equations can
be described in an infinite dimensional state space, usually
in a Hilbert space, but a Sobolev space can also be applied.
This problem has been analyzed by many authors.
Fundamentals were given, for example, by Pazy (1983) or
Mitkowski (1991), and an analysis of a hyperbolic system
in Hilbert spaces was presented by Bartecki (2013). This
paper presents also a comprehensive overview of the
literature.

The modeling of processes and phenomena hard to
describe with the use of other tools is one of the main areas
of application of non-integer order calculus. Non-integer
models for many physical phenomena were presented
by many authors, for example, by Podlubny (1999),
Dzielinski et al. (2010), Caponetto et al. (2010), Das
(2010), Obraczka (2014), Sierociuk et al. (2015), or Gal
and Warma (2016). Analysis of the anomalous diffusion
problem with the use of a fractional order approach
and semigroup theory was presented, for example, by
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Popescu (2010). An observability problem for fractional
order systems was presented, among others, by N’Doye
et al. (2013) or Kaczorek (2016), and controllability was
investigated, for instance, by Balachandran (2012; 2014).

It is well known that heat transfer processes can
also be modeled with the use of a non-integer order
approach. This problem was investigated, for example,
by Baeumer et al. (2005), Kochubei (2011), Almeida
and Torres (2011), Mitkowski (2011), Obraczka (2014)
or Dlugosz and Skruch (2015).

It is important to note that all known models have
the form of a transfer function or a partial differential
equation. A non-integer order, state space model for the
heat transfer process has not been presented yet. This
paper gives a proposal of a new, state-space model for the
heat transfer process in a one dimensional plant. The idea
of this model is based directly on a semigroup model for
one-dimensional heat transfer problem.

The paper is organized as follows. First, elementary
ideas and definitions are given. Next, the investigated,
experimental, infinite order plant and its integer order,
semigroup model are presented. Furthermore, the
proposal of a non-integer order model and its elementary
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properties are discussed. Finally, the proposed model is
verified with the use of experimental results.

2. Preliminaries

We will start the set of elementary ideas with recalling the
idea of the gamma Euler function (see, e.g., Kaczorek and
Rogowski, 2014).

Definition 1. The gamma function is given by

Γ(x) =

∞∫

0

tx−1e−t dt. (1)

The idea of the Mittag-Leffler function should be
given next. It is a non-integer order generalization
of exponential function eλt and plays a crucial role in
solution of the fractional order (FO) state equation. The
Mittag-Leffler functions are defined below.

Definition 2. The one parameter Mittag-Leffler function
is given by

Eα(x) =

∞∑
k=0

xk

Γ(kα+ 1)
. (2)

Definition 3. The two parameter Mittag-Leffler function
is given by

Eα,β(x) =
∞∑
k=0

xk

Γ(kα+ β)
. (3)

For β = 1, the two parameter function (3) turns into the
one parameter function (2).

The fractional-order, integro-differential operator
can be described by different definitions, given by
Grünvald and Letnikov (GL), Riemann and Liouville
(RL), and Caputo (C). All these definitions are given
below. With respect to particular additional assumptions,
these definitions are equivalent.

Definition 4. The Grünvald–Letnikov definition of the FO
operator (Caponetto et al., 2010; Ostalczyk, 2012) is as
follows:

GL
0 Dα

t f(t) = lim
h→0

h−α

[ t
h ]∑

j=0

(−1)j
(
α

j

)
f(t− jh). (4)

In (4),
(
α
j

)
is a generalization of the Newton symbol

into real numbers:

(
α

j

)
=

⎧⎪⎪⎨
⎪⎪⎩

1, j = 0,

α(α − 1) . . . (α− j + 1)

j!
, j > 0,

(5)

where α ∈ R and j ∈ Z, j ≥ 0.

Definition 5. The Riemann–Liouville definition of the FO
operator is given by

RL
0 Dα

t f(t) =
1

Γ(N − α)

dN

dtN

∞∫

0

(t− τ)N−α−1f(τ) dτ,

(6)
where

N − 1 < α < N

denotes the non-integer order of this operation.

Definition 6. (Kaczorek, 2016) The Caputo definition of
the FO operator is as follows:

C
0 D

α
t f(t) =

1

Γ(N − α)

∞∫

0

f (N)(τ)

(t− τ)α+1−N
dτ. (7)

where N − 1 < α < N denotes the non-integer order of
this operation.

The non-integer order spatial derivative was given by
Riesz and has the following form (see, e.g., Yang et al.,
2010).

Definition 7. The Riesz definition of the FO spatial
derivative is given by

∂γΘ(x, t)

∂xγ
= −dγ (0D

γ
x +x Dγ

1 )Θ(x, t), (8)

where

dγ =
1

2 cos(πγ2 )
. (9)

In (8), 0D
γ
x and xDγ

1 denote left- and right-hand
Riemann–Liouville derivatives, defined as

0D
γ
x =

1

Γ(2− α)

∂

∂x

∫ x

0

Θ(ξ, t)

(x− ξ)γ−1
dξ, (10)

xD
γ
1 =

1

Γ(2− α)

∂

∂x

∫ 1

x

Θ(ξ, t)

(ξ − x)γ−1
dξ. (11)

For the RL or C operators, the Laplace transform can
be defined as follows (see, e.g., Kaczorek, 2011).

Definition 8. The Laplace transform for the Riemann–
Liouville operator is given by

L(RL
0 Dα

t f(t)) = sαF (s), α < 0,

L(RL
0 Dα

t f(t)) = sαF (s)−
n−1∑
k=0

sk0D
α−k−1
t f(0),

α > 0, n− 1 < α ≤ n ∈ N.

(12)
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Definition 9. The Laplace transform for the Caputo oper-
ator is given by

L(C0 Dα
t f(t)) = sαF (s), α < 0,

L(C0 Dα
t f(t)) = sαF (s)−

n−1∑
k=0

sα−k−1
0D

k
t f(0),

α > 0, n− 1 < α ≤ n ∈ N.

(13)

Consequently, the inverse Laplace transform for a
non-integer order function is expressed as follows (see,
e.g., Kaczorek and Rogowski, 2014):

L−1[sαF (s)] =0 Dα
t f(t) +

n−1∑
k=0

tk−1

Γ(k − α+ 1)
f (k)(0+),

n− 1 < α < n, n ∈ Z.

(14)

3. Plant considered and its integer order
model

A simplified scheme of the heat plant considered is shown
in Fig. 1. It has the form of a thin copper rod heated with
an electric heater of lengthΔxu localized at one end of the
rod. An output temperature is measured with the use of
four RTD sensors, Δx long, located at points 0.3, 0.5, 0.7
and 0.9 of the rod length. The construction of the whole
experimental system is presented in detail in Section
5. A fundamental mathematical model describing heat

heater

�x�xu

RTD RTDRTDRTD

�x �x �x

u(t) y2(t) y3(t) y4(t)y1(t)

Fig. 1. Simplified scheme of the experimental system.

conduction in the plant is a partial differential equation of
the parabolic type with homogeneous Neumann boundary
conditions at the ends, the homogeneous initial condition,
heat exchange along the length of the rod, and distributed
control and observation. This equation was considered,
for example, by Oprzedkiewicz (2003; 2005):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q(x, t)

∂t
= a

∂2Q(x, t)

∂x2
−RaQ(x, t) + b(x)u(t),

∂Q(0, t)

∂x
= 0, t ≥ 0,

∂Q(1, t)

∂x
= 0, t ≥ 0,

Q(x, 0) = 0, 0 ≤ x ≤ 1,

y(t) = y0
∫ 1

0 Q(x, t)c(x) dx,
(15)

where Q(x, t) denotes the temperature at time instant t
and point x, Ra and a denote respectively the coefficients
of heat conduction and heat exchange, b(x) denotes the
heater function (Curtain and Zwart, 1995), u(t) is an input
signal, c(x) is an observation function and y0 denotes the
steady-state gain of the system.

The heat equation (15) can be shown as an equivalent
abstract initial problem in Hilbert space X = L2(0, 1)
with the standard scalar product. This issue was
discussed, for example, by Mitkowski (1991). In our case
the abstract form of the heat equation (15) is

⎧⎪⎨
⎪⎩
Q̇(t) = AQ(t) +Bu(t),

Q(0) = 0,

y(t) = y0CQ(t),

(16)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

AQ = aQ′′ −RaQ,

D(A) =
{
Q ∈ H2(0, 1) : Q′(0) = 0, Q′(1) = 0

}
,

a, Ra > 0,

H2(0, 1) =
{
w ∈ L2(0, 1) : w′, w′′ ∈ L2(0, 1)

}
,

CQ(t) = 〈c,Q(t)〉, Bu(t) = bu(t),

〈w, v〉 = ∫ 1

0
w(x)v(x) dx.

(17)
The following set of eigenvectors for the state

operator A forms an orthonormal basis of the state space:

hi(x) =

{
1, i = 0,√
2 cos(iπx), i = 1, 2, . . .

(18)

The discrete spectrum of the state operator for the integer
order model A is a set of single, real eigenvalues, which
are expressed as follows:

λi = −aπ2i2 −Ra, i = 0, 1, 2, . . . (19)

In the state space basis defined by the set of eigenvectors
(18), the operators A, B and C have the following matrix
representation:

A = diag {λ0, λ1, λ2, . . . } , (20)

B = [b0, b1, b2, . . . ]
T , (21)

where bi = 〈b, hi〉, b(x) denotes the heater function:

b(x) =

{
1, x ∈ [0, x0],

0, x �∈ [0, x0].
(22)

The output operator is written as

C =

⎡
⎢⎢⎣

Cs1

Cs2

Cs3

Cs4

⎤
⎥⎥⎦ . (23)
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The rows of the output operator C are expressed as
follows:

Csj = [csj,0, csj,1, csj,2, . . . ] , j = 1, 2, 3, 4, (24)

where csj,i = 〈c, hi〉, c(x) denotes the output sensor
function

c(x) =

{
1, x ∈ [x1, x2],

0, x �∈ [x1, x2].
(25)

Coordinates x1 and x2 depend on the sensor location on
the rod and they are equal to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = 0.3 : x1 = 15
52 , x2 = 17

52 ,

x = 0.5 : x1 = 25
52 , x2 = 27

52 ,

x = 0.7 : x1 = 36
52 , x2 = 38

52 ,

x = 0.9 : x1 = 46
52 , x2 = 48

52 .

From (22) and (25), it turns out that the heater
function b(x) and the sensor function c(x) are interval
constant functions. Assume that the control function
u(t) = 1(t). Then the solution to (16) has the form
similar to solution for a single output plant presented, for
example, by Oprzedkiewicz (2003):

yIOj
(t) = y0j

∞∑
i=1

(
eλit − 1

λi

)
〈b, hi〉〈c, hi〉,

j = 1, 2, 3, 4.

(26)

The basic features of the discussed parabolic IO
system have been analyzed. It can be proved that
the state operator A for the considered system is
negative, self-adjoint and has a compact inverse operator.
For known coefficients a and Ra, Eqns. (16)–(25)
provide a good description of the real experimental heat
object considered. By “truncating" further elements of
infinite-dimensional operators A, B and C, we obtain
its finite-dimensional approximation, which is a useful
tool for numerical modeling of the discussed plant. In
this case, the operators A, B and C can be interpreted
as matrices. If these parameters are not exactly known,
then an interval model can be applied. This problem was
presented by Oprzedkiewicz (2003; 2004; 2005).

It is important to note that the approach using
semigroup theory presented above can be extended to
non-integer order systems. This problem was discussed,
for example, by Popescu (2010) or Szekeres and Izsak
(2014), and this approach will be applied also to the
non-integer order case proposed in the next section.

4. Non-integer order model of the system

The proposed non-integer order model with respect to
both time and space coordinates is obtained by replacing
the first order time difference and the second order spatial

difference by suitable non-integer order differences. This
is motivated by the fact that the dynamics of the spatial
heat distribution along the heater and the rod and along the
rod and the sensor are not exactly described by Eqn. (15).
The non-integer order differentiation is expected to better
describe these processes. Similar issues were studied by
Baeumer et al. (2005), Kochubei (2011) or Almeida and
Torres (2011).

Assume that the non-integer order difference with
respect to time is described by the Caputo definition (7)
and non-integer order difference with respect to length
is described by the Riesz definition (8). Then the heat
transfer equation turns to the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
t Q(x, t) = a

∂βQ(x, t)

∂xβ
−RaQ(x, t) + b(x)u(t),

∂Q(0, t)

∂x
= 0, t ≥ 0,

∂Q(1, t)

∂x
= 0, t ≥ 0,

Q(x, 0) = 0, 0 ≤ x ≤ 1,

y(t) = y0
∫ 1

0 Q(x, t)c(x) dx.
(27)

where α, β > 0 denote non-integer orders of the system
and the other parameters are the same as in the IO model
(16). An abstract interpretation of the system (27) was
presented by Popescu (2010). Now Eqn. (27) needs to
be expressed as a state equation in the Hilbert space
analogically to (16). It has the following form:

⎧⎪⎨
⎪⎩

CDα
t Q(t) = AQ(t) +Bu(t),

Q(0) = 0,

y(t) = y0CQ(t),

(28)

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AQ = a
∂βQ(x)

∂xβ
−RaQ,

D(A) =
{
Q ∈ Hβ(0, 1) : Q′(0) = 0, Q′(1) = 0

}
,

a, Ra > 0,

CQ(t) = 〈c,Q(t)〉, Bu(t) = bu(t).
(29)

The eigenvalues of the state operator are expressed
as (see Yang et al., 2010)

λβi = −aπβiβ −Ra, i = 0, 1, 2, . . . (30)

The defined operator A has a discrete spectrum
consisting of single eigenvalues λβi , which are associated
with the orthonormal eigenvectors (18) forming a basis in
L2(0, 1).

Next, a spectrum decomposition of the system (29)
can be considered. It is presented below:

CDα
t Q(t) = AQ(t) +Bu(t),
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Ahi = λihi,

〈hi, hk〉 =
{
1, i = k,

0, i �= k,

CDα
t Q = a

∂βQ

∂xβ
−RaQ+Bu,

CDα
t

∞∑
i=0

cihi = a
∂β

∑∞
i=0 cihi

∂xβ
−Ra

∞∑
i=0

cihi +
Bu

hi
,

CDα
t ci = a

∂βci
∂xβ

−Raci + biu. (31)

The form of Eqn. (31) implies the decomposition of
the system (29) into subsystems related to the different
eigenvalues λi, i = 0, 1, 2, 3, . . . .

Next, Feller semigroups can be applied (Pazy, 1983;
Evans and Jacob, 2007; Popescu, 2010). The semigroup
is defined as follows.

Definition 10. A semigroup is a set S coupled with a
binary operation T (T : S × S → S) which is associative.
That is, ∀x, y, z ∈ S, T (T (x, y), z) = T (x, T (y, z)).

The uniqueness of the solution reveals the semigroup
property, which is given by

T (t+ s) = T (t)T (s), t, s > 0. (32)

The semigroup property (32) of the family of
functions, {T (t) : t ≥ 0}, is a composition. Notice
that T (0) is the identity operator (Id). A strongly
continuous positive contraction semigroup on C∞(S) is
called a Feller semigroup on S. We have a differential
representation of the operators which have the form of a
Feller semigroup. From the results presented by Popescu
(2010), we can conclude that the non-integer order system

CDα
t Q(t) = AQ(t) +Bu(t), Q(0) = 0,

where 0 < α < 1, t ≥ 0 and A is the generator of
the bounded continuous Feller semigroup T (t)t≥0 in the
Hilbert space Hβ(0, 1).

Elementary properties of the parabolic IO system
have been analyzed and it can be proved that the state
operator A for an integer order system described by
(20) is negative, self-adjoint and has the compact inverse
operator.

The corresponding theorem for β = 2 is also true.
A similar theorem, for β ∈ R, is true under certain initial
conditions. This has been considered, e.g., by Gal and
Warma (2016).

The solution of the state equation (28) can be
calculated with the use of the Laplace transform for the C
operator defined by (13) on the assumption that the initial
condition is equal to zero: Q(x, 0) = 0, 0 ≤ x ≤ 1 and
the state and control operators are described by (20)–(22).

If we assume that the control signal has the form of the
Heaviside function u(t) = 1(t) and apply (14), then we
obtain the solution of the state equation (28) in the form

yNIOj(t) = y0j

∞∑
i=1

(Eα(λβit
α)− 1(t))

λβi

〈b, hi〉〈c, hi〉,

j = 1, 2, 3, 4.

(33)

Notice that the proposed non-integer order model
described by (27)–(33) for orders α = 1 and β =
2 turns into the integer order model (15)–(26). Next,
the non-integer order model described by (28)–(33) is
an infinite dimensional model. Its practical application
requires from us the use of its finite dimensional
approximation. This can be obtained by dropping further
nodes in state equation (28) and consequently calculating
the solution (33) as a finite sum expressed by (34).
Consequently, operators A, B and C are interpreted as
matrices,

yNIOF j(t) = y0j

N∑
i=1

(Eα(λβit
α)− 1(t))

λβi

〈b, hi〉〈c, hi〉,

j = 1, 2, 3, 4.

(34)

In (34), N denotes the dimension of the finite dimensional
approximation. In a real situation, it can be estimated with
the use of simulations. This will be discussed in the next
section.

5. Experimental results

Experiments were done with the use of an experimental
heat plant shown in Fig. 1. A detailed construction of the
whole system is shown in Fig. 2. The length of the rod
is equal to 260 [mm]. The control signal in the system
is the standard current signal 0–20 [mA] given from the
analog output of a PLC. This signal is amplified to the
range of 0–1.5 [A], and it is the input signal for the heater.
The temperature distribution along the length of the rod
is measured with the use of RTD sensors. Signals from
the sensors are transformed to the standard voltage signal
0–10 [V] with the use of transducers. These signals are
next read by analog inputs of the PLC. Data from the
PLC are read and stored with the use of SCADA. The
whole system is connected via the PROFINET industrial
network. The temperature distribution with respect to time
and length is shown in Fig. 3.

Experiments were performed with the use of the
experimental system shown in Fig. 2. The step response
of the model was tested in the time range from 0 to
Tf = 300 [s] with sampling time 1 [s], and parameters
were calculated with the use of the least squares method
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Fig. 2. Structure of the experimental system.
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Fig. 3. Spatiotemporal temperature distribution in the plant.

to optimize the MSE (medium square error) cost function
(35) for each tested dimension N separately. The
proposed model was compared to the integer order model
expressed by (15)–(26). Results are given in Table 1. The
cost function (35) as a function of N for both discussed
models is shown in Fig. 4, and optimal parameters for the
integer order model are given in Table 2, whereas optimal
parameters for the non-integer order model are given in
Table 3. The error of the model as a function of time
and the length of the rod is shown in Figs. 7 and 8,
the space-time distribution of the temperature calculated
with the use of both the considered models is presented in
Figs. 5 and 6. We define

IMSE =

4∑
j=1

Tf∫

0

(yj(t)− yej(t))
2 dt, (35)

where yej(t) stands for data from the real plant.
From Table 1 and Fig. 4 we can conclude that the

proposed non-integer order model is more accurate in the
sense of the MSE cost function (35) for each discussed
dimension of approximant N . Next, good accuracy is
reached for the approximation order N = 15, which gives
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Fig. 4. Cost function (35) as a function of N .

Table 1. Cost function (35) for both models considered and dif-
ferent N .

N integer order model non-integer order model

5 0.0189 0.0092
10 0.0083 0.0042
15 0.0020 0.0016
20 0.0021 0.0020
25 0.0025 0.0012

Table 2. Optimal parameters of the integer order model for dif-
ferent N .

N aw Ra

5 0.0017 0.0224
10 0.0012 0.0253
15 0.0009 0.0317
20 0.0009 0.0312
25 0.0009 0.0308

Table 3. Optimal parameters of the non-integer order model for
different N .
N α β aw Ra

5 1.0571 2.1643 0.0012 0.0173
10 1.0328 2.0526 0.0010 0.0224
15 0.9896 1.9930 0.0009 0.0343
20 0.9982 2.0018 0.0009 0.0316
25 0.9744 1.9864 0.0007 0.0423

a resonable model size during its application.

6. Final conclusions

Finally, we can conclude that the proposed non-integer
order, state space model for the one dimensional heat
plant can be built via generalization of an integer order,
abstract model in the Hilbert space with the use of Feller
semigroups. Furthermore, the accuracy of the proposed
model in the sense of the MSE cost function is better
than that of the analogical integer order model for each
dimension of its finite dimensional approximation. The
parameters of the proposed model can be estimated with
the use of experimental results.
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Fig. 5. Spatiotemporal temperature distribution for the integer
order model and N = 15.
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Fig. 6. Spatiotemporal temperature distribution for the non-
integer order model and N = 15.

Further investigations of the presented problems
will cover generalization of the results to cover the
uncertainty in parameters as well as formulating and
solving spectrum decomposition conditions for the given
class of infinite-dimensional, non-integer order systems.
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