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A real matrix A is said to becompletely positive(CP) if it can be decomposed asA = BBT , where the real matrixB
has exclusively non-negative entries. Letk be the rank ofA and Φk the least possible number of columns of the matrix
B, the so-called completely positive rank (cp-rank) of A. The present work is devoted to a study of a general upper bound
for the cp-rank of an arbitrary completely positive matrixA and its dependence on the ordinaryrank k. This general upper
bound of the cp-rank has been proved to be at mostk(k + 1)/2. In a recent pioneering work of Barioli and Berman it was
slightly reduced by one, which means thatΦk ≤ k(k + 1)/2− 1 holds for k ≥ 2. An alternative constructive proof of the
same result is given in the present paper based on the properties of the simplex algorithm known from linear programming.
Our proof illuminates complete positivity from a different point of view. Discussions concerning dual cones are not needed
here. In addition to that, the proof is of constructive nature, i.e. starting from an arbitrary decompositionA = B1B

T
1

(B1 ≥ 0) a new decompositionA = B2B
T
2 (B2 ≥ 0) can be generated in a constructive manner, where the number

of column vectors ofB2 does not exceedk(k + 1)/2− 1. This algorithm is based mainly on the well-known techniques
stemming from linear programming, where the pivot step of the simplex algorithm plays a key role.

Keywords: completely positive matrices, cp-rank, linear programming, simplex algorithm, basic feasible solution, pivot
process

1. Introduction

An n × n real symmetric matrixA is calledcompletely
positive(belonging to the set CP of completely positive
matrices) if an entry-wise non-negativen × m matrix
B exists with A = BBT . The productA = BBT

can alternatively be written in its rank 1 representation
as A =

∑m
i=1 bib

T
i , in which eachbi ∈ Rn

+ denotes
the i-th non-negative column of the matrixB. The min-
imum number of columnsm, for which such a factoriza-
tion A = BBT exists, is called the cp-rank ofA, and
denoted byΦk in relation to the ordinaryrank k of A.
It is to be pointed out that all vectors throughout this pa-
per are column vectors, unless explicitly defined to be row
vectors.

The non-negative decomposition of completely pos-
itive matrices is of interest in various applications includ-

ing, e.g., the study of block designs arising in combinato-
rial analysis (Hall, 1967), problems in statistics, the the-
ory of inequalities, energy conservation (Gray and Wilson,
1980) and models of DNA evolution (Kelly, 1994).

No definitive test is known yet to determine whether
a given real symmetric matrixA is completely posi-
tive. Many studies on this problem have been performed
(Berman and Plemmons, 1979; Berman and Shaked-
Monderer, 2003). One sufficient condition for a non-
negative symmetric matrix to be completely positive given
in (Drew et al., 1994) says that the comparison matrix
of A is an M-matrix. A special case of this sufficient
condition is that the matrixA is diagonally dominant
(Kaykobad, 1988). A qualitative characterization of com-
pletely positive matrices using graphs is that the graph of
a cp matrix contains no odd cycle of length 5 or more
(Berman, 1993; Kogan and Berman, 1993).
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The question of a general upper bound for the cp-
rank which works for any completely positive matrix of
dimensionn×n was asked by Hall and Newman (1963),
with the conclusion thatΦk < 2n. The definition of the
cp-rank as above implies thatΦk is obviously greater than
or equal to the ordinaryrank k of A. Hannah and Laffey
(1983) derived the inequalityΦk ≤ n(n + 1)/2 (which is
independent ofk, with k ≤ n). Recently, the sharpened
upper boundk(k + 1)/2 for Φk was reduced by Barioli
and Berman (2003) tok(k + 1)/2−1 if k ≥ 2. In (Drew
et al., 1994) it was conjectured thatΦk < n2/4. How-
ever, this conjecture was proved only for matrices with
special graphs, which are bipartite with the two parts as
balanced as possible, or for graphs which contain no odd
cycle of length 5 or more (Drew and Johnson, 1996), or
for all graphs on 5 vertices which are not a complete graph
(Berman, 1993). In the present paper we give a construc-
tive proof alternative to Barioli and Berman’s result that

Φk ≤
k(k + 1)

2
− 1, k ≥ 2.

The technique of the proof presented here involves
the properties of the simplex algorithm known from linear
programming and illuminates the problem from a differ-
ent point of view. Above all, discussions concerning dual
cones are not required. Linear programming is the process
of minimizing (or maximizing) a linear real-valued objec-
tive function subject to a finite number of linear equality
and inequality constraints. Linear programming problems
are encountered in many branches of technology, science,
and economics. In this work, the problem of determin-
ing an upper bound for the cp-rank of completely posi-
tive matrices is reduced to the problem of determining the
maximal number of non-zero elements in the basic feasi-
ble solutions of a linear programming problem. By means
of appropriate matrix operations and based on the prop-
erties of the simplex algorithm, the desired result will be
achieved. Furthermore, according to the described con-
structive procedure, such a decomposition which satisfies
the claimed bound constraint can be generated step by step
from a known decomposition of an arbitrary size.

2. First Reduction Step

We start with a knownrank 1 representationA =∑m
i=1 bib

T
i of a given n × n completely positive ma-

trix, wherem is an arbitrary large, however finite, integer.
From now on, we assume that no columnbi of B is zero,
since otherwise such a column could have been removed
from B. After the application of the vec-operator (stack-
ing the columns of a matrix to form a column vector) to

both the sides, the following expression can be obtained:

vec(A) = vec
( m∑

i=1

bib
T
i

)
=

m∑
i=1

vec(bib
T
i )

=
m∑

i=1

bi ⊗ bi, (1)

where ‘⊗’ denotes the Kronecker product. Consequently,
we may define ann2 ×m matrix

C =
[
b1 ⊗ b1, b2 ⊗ b2, . . . , bm ⊗ bm

]
(2)

with ci = bi ⊗ bi, i = 1, . . . ,m, so that (1) can be
represented as

vec(A) = C
[
1, 1, . . . , 1

]T
. (3)

It is evident that the non-negative linear system of
equationsvec(A) = Cλ with λi ≥ 0 has at least
one valid solution, namely the column vectorλ0 =
[1, 1, . . . , 1 ]T . In fact, from now on we may look upon
Cλ = vec(A) with λi ≥ 0 as the linear constraints
for an arbitrary linear objective function, which is a linear
programming problem in a standard form with all vari-
ables ofλ non-negatively constrained.

First of all, it is important to indicate that the feasible
polyhedron of this linear programming problem is on the
one hand non-empty due to the existence of the feasible
solution λ0 and, on the other hand, bounded due to the
non-negativity ofC, vec(A) and λ, and the fact that no
column in B, and thus no column inC, is zero. Thus, the
feasible region represents a polytope. Consequently, the
available feasible solutions which satisfy these linear con-
straints can be expressed as convex combinations of the
so-called basic feasible solutions, i.e. the extreme points
(or vertices) of the polytope.

According to the properties of linear programming
problems, in the basic feasible solutions ofCλ =
vec(A) with λi ≥ 0, only the elementsλi which cor-
respond to a maximal set of linear independent columns
of C may be non-zero. Therefore, all of the basic fea-
sible solutions possess at mostrank(C) strictly pos-
itive elements. Because of the existence of the so-
lution λ0 = [1, 1, . . . , 1 ]T , it can be concluded
that at least one basic feasible solution with at most
rank(C) strictly positive elements forCλ = vec(A)
with λi ≥ 0 exists. Writing rank(C) = r, and, if
necessary, permuting the columns ofB, we may as-
sume that there is a basic feasible solution of the form
λB = [λ1, λ2, . . . , λr, 0, . . . , 0 ]T with λi ≥ 0 for
1 ≤ i ≤ r. It is obvious that

vec(A) = CλB =
r∑

i=1

ciλi =
r∑

i=1

(√
λibi)⊗ (

√
λibi

)
,

(4)
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which is equivalent to

A =
r∑

i=1

(√
λibi

)(√
λibi

)T

. (5)

Defining B̃ = [
√

λ1b1,
√

λ2b2, . . . ,
√

λrbr ], we
have established an alternative non-negative factorization
of A, namely

A = B̃B̃
T

=
[√

λ1b1, . . . ,
√

λrbr

]
·
[√

λ1b1, . . . ,
√

λrbr

]T
. (6)

It should be noted that a basic feasible solution
can always be generated constructively by using linear
programming techniques (Glashoff and Gustafson, 1983;
Karloff, 1991).

3. Upper Bounds on the CP-Rank

In this section we first clarify that the cp-rank ofA, Φk,
is bounded by the rank of the matrixC, which is in
turn limited by k(k + 1)/2 again, wherek = rank(A).
The proof of the sharpened upper bound ofΦk, namely
k(k + 1)/2− 1, will be provided afterwards.

Lemma 1. The cp-rankΦk of A ∈ CP is bounded by
the rank of the matrixC, i.e. we have

Φk ≤ r = rank(C). (7)

Proof. Based on the non-negative factorization ofA
achieved in (6), which can always be realized construc-
tively from an arbitrary non-negative decomposition of
A, and the definition ofΦk as the least number of non-
zero columns in any decomposition, it is obvious that
Φk ≤ r = rank(C).

Our final goal is to prove thatΦk is bounded by
k(k + 1)/2− 1. In order to keep the proof clear and pro-
gressive, we will first prove thatrank(C) ≤ k(k + 1)/2.

Theorem 1. The ordinary rank of matrixC as defined
in (2) is bounded by

rank(C) ≤ k(k + 1)
2

. (8)

Proof. Since A = BBT with rank(A) = k, it fol-
lows immediately thatrank(B) = k. With respect to
a geometric interpretation, this means that the dimen-
sion of the vector space generated by thebi’s is k, i.e.
dim(span(bi | 1 ≤ i ≤ m)) = k. As a consequence,
there must be an isometry available which mapsbi ∈ Rn

+

onto Rk, i = 1, . . . ,m. In matrix terms, this means
that we may find an orthonormal matrixV (V V T = I,
where I is the identity matrix), so thatV B = (FFF

000 ), the
dimension ofF being k ×m. Computationally,V and
F can be obtained from the standard QR-decomposition
of B, see (Golub and Van Loan, 1989). The following
equality results from this isometry:

(V ⊗ V )C = (V ⊗ V )
[
b1 ⊗ b1, . . . , bm ⊗ bm

]
=
[
(V b1)⊗ (V b1) ,. . . ,(V bm)⊗ (V bm)

]
=

[(
f1

0

)
⊗

(
f1

0

)
, . . . ,

(
fm

0

)
⊗

(
fm

0

)]
, (9)

where f i = V bi is the i-th column vector of matrix
F . Since there are at mostk(k + 1)/2 distinct non-zero
row vectors in the matrix(V ⊗ V )C and V ⊗ V is
orthonormal and thus non-singular, we have

r = rank(C) = rank((V ⊗ V )C) ≤ k(k + 1)
2

.

Corollary 1. In view of (7) and Theorem 1, we can con-
clude thatΦk is at least bounded by

Φk ≤
k(k + 1)

2
. (10)

Let us note that the above proofs are constructive:
Given A = BBT , we have shown how to obtaiñB in

A = B̃B̃
T

by computing a basic feasible solution of a
certain polytope.

The next step we want to take is proving the sharp-
ened boundΦk ≤ k(k + 1)/2 − 1 for k ≥ 2. The
corresponding proof can be divided into distinct steps.
If for a given matrix A the associated matrixC has a
rank less thank(k + 1)/2, we can stop, otherwise we
have rank(C) = k(k + 1)/2 and the reduction proce-
dure must be continued. The outline of this algorithm is as
follows: After extension ofC by a column vector, which
is the Kronecker product of an adequately selected col-
umn of A with itself, we will show that the rank of the
extended matrixC is identical to its original rank. Then
a pivot step known from simplex techniques will be used,
so that a new non-negative decompositionA = GGT

could be created, whereby the column number ofG does
not exceed that ofB̃. Relying on some requirements re-
garding G, the column number ofG can be further re-
duced by 1 after some straightforward computations. By
this last step the proof will be completed.

Theorem 2. For k ≥ 2 the cp-rank of any completely
positive matrixA with its ordinary rank equal tok is
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bounded by

cp-rank (A) = Φk ≤
k(k + 1)

2
− 1. (11)

Proof. From Theorem 1 and Corollary 1 we know
that Φk ≤ rank(C) ≤ k(k + 1)/2. If rank(C) <
k(k + 1)/2, nothing has to be proven, so that from now
on we assume thatr = rank(C) = k(k + 1)/2.

Before the actual proof, we would like to point
out a useful property of the matrixB̃ (cf. (6)) at

first. From the decompositionA = B̃B̃
T

in (6) with
B̃ = [

√
λ1b1,

√
λ2b2, . . . ,

√
λrbr ], the fact that2 ≤

rank(B̃) = k ≤ n and the assumptionr = k(k + 1)/2,
it can be concluded that at least one of the rows of the
non-negative matrixB̃ has more than one non-zero entry.
Otherwise, if each row of the non-negative matrix̃B had
at most one non-zero element, all columns ofB̃ (which
does not have zero columns) would be linearly indepen-
dent, sok = r and thusΦk = r = k ≤ k(k + 1)/2− 1
for k ≥ 2 and we have a contradiction to the assumption
r = k(k + 1)/2. So, for the rest of the proof we may
therefore assume that at least one row ofB̃ contains at
least two non-zero entries.

Now we extendvec(A) = CλB in (4), which is as-
sociated withA = [a1, a2, . . . , an ] and rank(C) =
r = k(k + 1)/2, to

vec(A) =
[
C, aj ⊗ aj

]
λE, (12)

with λE = [λλλB
000

], where, in view of the above discussion,
the integerj, 1 ≤ j ≤ n, can be chosen in such a way that
the j-th row of non-negativeB̃ has at least two non-zero
entries. The rank of the extended matrix[C, aj ⊗ aj ]
in (12) is unmodified compared with that of the matrixC,
i.e.

rank
([

C, aj ⊗ aj

])
= rank(C) = r =

k(k + 1)
2

,

(13)

as we show now. The orthonormal matrixV from the
proof of Theorem 1 will be reused. FromA = BBT

and V B = (FFF
000 ) it follows that V A = V BBT =

(FFF
000 )BT = (EEE

000 ) and, accordingly,V aj = ( eeej

000 ) with
ej as thej-th column of E, whereby the dimension of
E is k × n, so that

(V ⊗ V )
[
C, aj ⊗ aj

]
= (V ⊗ V )

[
b1 ⊗ b1, . . . , bm ⊗ bm ,aj ⊗ aj

]

=
[
(V b1)⊗ (V b1) , . . . , (V bm)⊗ (V bm) ,

(V aj)⊗ (V aj)
]

=

[(
f1

0

)
⊗

(
f1

0

)
, . . . ,

(
fm

0

)
⊗

(
fm

0

)
,

(
ej

0

)
⊗

(
ej

0

)]
. (14)

As in the proof of Theorem 1, we have
rank([C, aj ⊗ aj ]) ≤ k(k + 1)/2. Since rank(C)
was assumed to be equal tok(k + 1)/2 and for the
reason thatrank(C) ≤ rank([C, aj ⊗ aj ]), we get

rank([C, aj ⊗ aj ]) = rank(C) = k(k + 1)/2.

Because all entries of the extended linear constraints
system (12) are also non-negative, and there exists a fea-
sible solutionλE = [λλλB

000
], the feasible region is bounded

and non-empty, i.e. it is again a polytope. Consequently,
basic feasible solutions of the linear programming prob-
lem (12) exist and have at mostr = k(k + 1)/2 non-
negative variables.

Furthermore,λE is a basic solution where the basis
is represented exactly by the variablesλ1, . . . , λr. To be
more specific, sincerank([C, aj ⊗ aj ]) = rank(C),
any basis of the old linear system is also a basis of the
extended system. (This would not be true if the rank of
the extended system were increased by one when com-
pared with that of the old system.) Suppose that the sim-
plex tableau associated with the extended linear system is
given for the basisλ1, . . . , λr, i.e. λm+1, the variable as-
sociated with columnaj ⊗ aj of the extended system is
a non-basic variable yet.

Next, the simplex algorithmwill be considered,
which has been the method of choice used to solve linear
programming problems for decades. Due to the fact that
the basic feasible solutions are nothing else than extreme
points of the polytope, and the optimal point of the ob-
jective function subject to the polytope is always among
these vertices, the simplex algorithm can be regarded as
an ordered way of scanning through such vertices. The
simplex algorithm starts from an arbitrary vertex of the
feasible polytope and tries to find a cheaper adjacent ver-
tex, till ideally no neighbouring vertex with a cheaper cost
is found.

The process of changing the basis to move to an adja-
cent vertex is called thepivot step. Basically, a pivot step
takes one basic variable out of the basis and, at the same
time, it shifts another, originally non-basic, variable into
the basis. Hence, during a pivot step carried out on the
simplex tableau defined above, the last variable ofλE,
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namely λm+1, can be deliberately forced to enter the ba-
sis, for which one of the formerly basic variables, sayλs,
leaves the basis.

It is worth noticing that through the exchange of
the basic variable and the corresponding modification of
the basis, the maximal number of non-zero elements in
the new basic feasible solution,r = k(k + 1)/2, is un-
changed, and all of the elements are still non-negative.
Denoting by d1, . . . , dr the new non-negative basic
variable values, we have

vec(A)

=
[
b1 ⊗ b1, . . . , bs−1 ⊗ bs−1, aj ⊗ aj ,

bs+1 ⊗ bs+1, . . . , br ⊗ br

]
· [d1, . . . , ds, . . . , dr]

T
. (15)

Following the same procedure as above, a new non-
negative factorization ofA of the form

A =
[√

d1b1, . . . ,
√

ds−1bs−1,
√

dsaj ,√
ds+1bs+1, . . . ,

√
drbr

]
·
[√

d1b1, . . . ,
√

ds−1bs−1,
√

dsaj ,

√
ds+1bs+1, . . . ,

√
drbr

]T
(16)

is obtained. If at least one of the non-negative num-
bers dl, l = 1, . . . , r, is zero, thencp-rank (A) ≤
r − 1 = k(k + 1)/2 − 1, so that the desired re-
sult is obtained. Otherwise we proceed as fol-
lows: After a reordering of the columns of the matrix
[
√

d1b1, . . . ,
√

ds−1bs−1,
√

dsaj ,
√

ds+1bs+1, . . . ,√
drbr] in such a way that the column

√
dsaj enters the

last position, we have the decomposition

A = GGT =
[
g1, . . . , gr−1,

√
dsaj

]
·
[
g1, . . . , gr−1,

√
dsaj

]T
(17)

with gl =
[
g1l, . . . , gnl

]T
≥ 0, l = 1, . . . , r − 1,

where thegl’s denote the newly arranged non-negative
columns. Based on these results, we finally can construct
the non-negative decomposition

A = G̃G̃
T
, (18)

with

G̃ =
[
g1, . . . , gr−1

]
+ αaj [gj1, . . . , gj,r−1] ,

α =

√√√√√√
(

(1− dsajj)
r−1∑
l=1

g2
jl

)2

+
ds

r−1∑
l=1

g2
jl

− (1− dsajj)
r−1∑
l=1

g2
jl

.

(19)

Since ds > 0, the scalarα is also strictly positive,
i.e. α > 0, which shows thatG̃ is non-negative. Further-
more, α always exists since

∑r−1
l=1 g2

jl 6= 0, which is true

since
∑r−1

l=1 g2
jl =

∑r
l=1,l 6=s dlb

2
jl, and we have chosenj

in such a manner that at least two values from amongbjl,
l = 1, . . . , r are non-zero. The validity of the decom-
position in (18) can be simply checked by inserting (19)
into (18) and using[
g1, . . . , gr−1

]
[gj1, . . . , gj,r−1]

T = (1− dsajj)aj ,
(20)

which follows from

aj =
[
g1, . . . , gr−1,

√
dsaj

]
·
[
gj1, . . . , gj,r−1,

√
dsajj

]T
, (21)

see (17). In view of (18) and (19), the number of columns
in G̃ equalsk(k + 1)/2− 1. Hence we have proved that

cp-rank (A) = Φk ≤ r − 1 ≤ k(k + 1)
2

− 1. (22)

In order to have all reduction steps in a condensed
form without being interrupted by proofs, we summarize
them in the form of the sequential algorithm, shown in
Fig. 1.

4. Illustrative Example

In this section the constructive algorithm is demonstrated
by applying it to an illustrative example. Consider a3×3
completely positive matrix

A =

4 3 4
3 7 7
4 7 12

 ,

whose rank also equals three. There exists a non-negative
decompositionA = BBT with

B =

1 0 0 1 0 1 1
0 1 0 1 1 0 2
0 0 1 0 1 1 3

 .
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start, given a cp-matrixA(n × n) with rank(A) = k, let

B(n×m) be any known solution toA = BBT , B ≥ 0

if column number ofB, m, is less thank(k + 1)/2

we have done, exit

otherwise

generate the linear systemvec(A) = Cλ,

λ ≥ 0 with C defined by

C =

[
b1 ⊗ b1, b2 ⊗ b2, . . . , bm ⊗ bm

]
compute a basic feasible solutionλB by a known linear

programming method

generateB̃ by means of the non-zero elements ofλB

if column number ofB̃, r, is less thank(k + 1)/2

A = B̃B̃
T

is already the desired factorisation, done

and exit

otherwise

λE =

[
λT

B 0

]T

extendC by aj ⊗ aj , with 1 ≤ j ≤ n

generate the new linear system

vec(A) =

[
C, aj ⊗ aj

]
· λE

apply one pivot step to bring non-basic variableλm+1 into

the basis, which leads to a new basic feasible solutiond

generateG by means of the non-zero elements ofd

if column number ofG is less thank(k + 1)/2

A = GGT is already the desired factorisation, done

and exit

otherwise

computeG̃ according to (19), herewith we have

A = G̃G̃
T

and the column number of

G̃ is at mostk(k + 1)/2− 1

end

Fig. 1. Summary of all algorithmic steps.

The linear systemvec(A) = Cλ is given by

4
3
4
3
7
7
4
7
12


=



1 0 0 1 0 1 1
0 0 0 1 0 0 2
0 0 0 0 0 1 3
0 0 0 1 0 0 2
0 1 0 1 1 0 4
0 0 0 0 1 0 6
0 0 0 0 0 1 3
0 0 0 0 1 0 6
0 0 1 0 1 1 9





λ1

λ2

λ3

λ4

λ5

λ6

λ7


.

By means of standard techniques, the basic solution

λB = [5/3 5/3 1 2/3 0 1/2 7/6 ]T

can be generated . From (6) we have a new non-negative

factorization, namelyA = B̃B̃
T

, whereB̃ has only six
columns,

B̃ =


√

5/3 0 0
√

2/3
√

1/2
√

7/6

0
√

5/3 0
√

2/3 0
√

14/3

0 0 1 0
√

1/2
√

21/2

 .

Our next step is to construct a new linear system by
extending the matrixC by a3 ⊗ a3, which leads to

4
3
4
3
7
7
4
7
12


=



1 0 0 1 0 1 1
0 0 0 1 0 0 2
0 0 0 0 0 1 3
0 0 0 1 0 0 2
0 1 0 1 1 0 4
0 0 0 0 1 0 6
0 0 0 0 0 1 3
0 0 0 0 1 0 6
0 0 1 0 1 1 9

16
28
48
28
49
84
48
84
144





λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


.

The Kronecker producta3 ⊗a3 is used here, which
fulfils the requirement that the third row of̃B has at least
two strictly positive entries. It can be verified that the rank
of the new extended system matrix is the same as that of
C, namelyr = 6. Starting from the already available ba-
sic solutionλE = [5/3 5/3 1 2/3 0 1/2 7/6 0 ]T ,
we can includeλ8 into the basis by applying only one
pivot step, which leads to the new basic solutionλE =
[0 0.15 0.4 1.6 2.8 1.6 0 0.05 ]T . From this a newly

arranged non-negative factorizationA = GGT results
in

G =


0 0

√
8/5 0

√
8/5

√
4/5√

3/20 0
√

8/5
√

14/5
√

8/5
√

49/20

0
√

2/5 0
√

14/5 0
√

36/5

 .

Since the matrixG has still six columns, we have
to apply (19) in order to reduce the number of columns.
In our example the scalarα has a positive value of√

5/288 − 1/12, which leads to the final decomposition

A = G̃G̃
T

with

G̃ =

 0 0.1225 1.2649 0.3241 1.5099
0.3873 0.2144 1.2649 2.2406 0.4288

0 1 0 2.6458 2

 .
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As has been expected, the non-negative factorisationA =

G̃G̃
T

has at mostk(k + 1)/2 − 1 = 5 columns. By

equatingG̃G̃
T

to A the correctness of this factorisation
can be easily verified. It has thus been demonstrated that
given any known decomposition of a cp-matrixA a de-
composition with at mostk(k + 1)/2 − 1 columns can
be generated in a constructive manner. Obviously, in most
cases the cp-rank is smaller than this general bound. For
our example, decompositions with three columns exist.

5. Conclusions

Following the arguments used in our proof, a non-negative

decompositionA = G̃G̃
T

of any given completely pos-
itive matrix A can be generated successively in a con-
structive manner starting from an arbitrary known non-
negative decompositionA = BBT , so that G̃ has at
most k(k + 1)/2 − 1 columns. The number of columns
can be reduced step by step using the simplex algorithm
and appropriate matrix operations for

• finding a basic solutionλB of Cλ = vec(A),

• reducing the number of columns by one, i.e.
generatingG̃.
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