
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 3, 733–748
DOI: 10.2478/v10006-012-0055-0

HEURISTIC ALGORITHMS FOR OPTIMIZATION OF TASK ALLOCATION
AND RESULT DISTRIBUTION IN PEER–TO–PEER

COMPUTING SYSTEMS

GRZEGORZ CHMAJ, KRZYSZTOF WALKOWIAK, MICHAŁ TARNAWSKI, MICHAŁ KUCHARZAK

Department of Systems and Computer Networks, Faculty of Electronics
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: grzegorz@chmaj.net, krzysztof.walkowiak@pwr.wroc.pl,
mgtarnawski@gmail.com, michal.kucharzak@pwr.wroc.pl

Recently, distributed computing system have been gaining much attention due to a growing demand for various kinds of
effective computations in both industry and academia. In this paper, we focus on Peer-to-Peer (P2P) computing systems,
also called public-resource computing systems or global computing systems. P2P computing systems, contrary to grids, use
personal computers and other relatively simple electronic equipment (e.g., the PlayStation console) to process sophisticated
computational projects. A significant example of the P2P computing idea is the BOINC (Berkeley Open Infrastructure for
Network Computing) project. To improve the performance of the computing system, we propose to use the P2P approach to
distribute results of computational projects, i.e., results are transmitted in the system like in P2P file sharing systems (e.g.,
BitTorrent). In this work, we concentrate on offline optimization of the P2P computing system including two elements:
scheduling of computations and data distribution. The objective is to minimize the system OPEX cost related to data
processing and data transmission. We formulate an Integer Linear Problem (ILP) to model the system and apply this
formulation to obtain optimal results using the CPLEX solver. Next, we propose two heuristic algorithms that provide
results very close to an optimum and can be used for larger problem instances than those solvable by CPLEX or other ILP
solvers.

Keywords: P2P computing system, distributed computing, optimization, heuristics, evolutionary algorithms.

1. Introduction

The Peer-to-Peer (P2P) paradigm appears to be an effi-
cient alternative to the client-server approach in emerg-
ing and future Internet applications. Moreover, numerous
recent publications prove that the P2P concept has been
gaining much attention (e.g., Christakidis et al., 2011;
Couto da Silva et al., 2011; Kim et al., 2009; Ramzan
et al., 2011; Suri et al., 2010; Terzo et al., 2011; Zhou
et al., 2011). This follows mainly from the fact that
in many cases the conventional client–server architecture
faces various problems and limitations, including scala-
bility (i.e., a growing number of users), diversity of new
network applications, cooperation between many domains
using various physical technologies, etc. On the other
hand, virtualization including P2P systems provides con-
siderable network functionalities (e.g., diversity, flexibil-
ity, manageability) in a relatively simple way and regard-
less of the physical and logical structure of the under-

lying networks. Accordingly, various distributed appli-
cations employ the P2P and other network virtualization
concepts (e.g., Christakidis et al., 2011; Couto da Silva
et al., 2011; Kim et al., 2009; Ramzan et al., 2011; Suri
et al., 2010; Shen et al., 2009; Zhou et al., 2011).

Another important trend that can be noticed in the
current Internet is the growing demand for various kinds
of effective computations, as both business and academia
require huge computation power. In this work, we study
issues related to peer-to-peer computing systems, also
called public-resource computing systems or global com-
puting systems.

1.1. Motivations. The chief motivation behind our
work is the growing need to provide large computational
systems that are able to process huge amounts of data.
This fact follows mainly from the development of vari-
ous computer systems applied in many areas of human

grzegorz@chmaj.net
krzysztof.walkowiak@pwr.wroc.pl
mgtarnawski@gmail.com
michal.kucharzak@pwr.wroc.pl

734 G. Chmaj et al.

activity. Secondly, most of the existing distributed com-
puting systems use a centralized approach to distribute
results (Anderson, 2004; Krauter et al., 2002; Milojicic
et al., 2002; Nabrzyski et al., 2004; Shen et al., 2009;
Travostino et al., 2006). Usually, the produced data are
sent to a central server, which then uploads the data to
requesting users. However, if a large number of users are
interested in results (e.g., a collaborative research project),
the server storing requested data can become overloaded
or even blocked (denial of service). Therefore, in our re-
cent work (Chmaj and Walkowiak, 2010a) we proposed an
architecture of a highly collaborative P2P computing sys-
tem that can efficiently distribute the results of computa-
tions. The proposed system is able to perform the compu-
tation and result distribution at the same time and assumes
that the final result is combined at each node using partial
results. Several types of network flows can be applied for
effective data distribution. In this work, we focus mostly
on P2P flows, which, according to many previous works
(Shen et al., 2009; Tarkoma, 2010), provide the best ef-
ficiency. The final motivation for this work is to provide
effective static optimization methods that can be applied
to improve performance of the P2P computing systems,
since, to the best of our knowledge and literature research,
there are no many papers focusing on optimization of such
systems. As the performance metric, we apply the OPEX
cost of the system containing two elements: processing
costs and transfer costs.

1.2. Our contributions. In this work, we address
several issues related to P2P computing systems with a
special focus on static optimization. Our contributions
include the following. First, we precisely describe the
main ideas and assumptions of the proposed P2P comput-
ing system. Next, we formulate an ILP (Integer Linear
Programming) optimization model that can be optimally
solved by exact algorithms (e.g., branch and cut) included
in solvers like CPLEX (ILOG, 2009). Since the prob-
lem considered is NP-hard, only relatively small prob-
lem instances can be solved by exact methods. There-
fore, to solve larger problem instances we develop two
heuristic algorithms: a greedy method and an evolution-
ary approach. The next significant contribution of this pa-
per refers to extensive, numerical experiments that were
conducted to compare all three optimization methods and
to evaluate the computing system performance regarding
various parameters describing the system.

1.3. Paper overview. The remainder of the paper is
organized as follows. Section 2 describes the architecture
of the proposed P2P computing system. In Section 3, we
formulate an ILP model of the system. Sections 4 and 5
include two heuristic algorithms (greedy and evolution-
ary). In Section 6, we present comprehensive numeri-

cal results showing the performance of the proposed opti-
mization methods. In Section 7, we report related works.
Finally, concluding remarks are provided in Section 8.

2. System architecture

In this section, we will briefly present the architecture of
the distributed computing system addressed in this work.
The idea of the system was introduced in our recent pa-
per (Chmaj and Walkowiak, 2010a). We assume that the
distributed system considered is a P2P computing sys-
tem. Note that, contrary to grids, P2P computing sys-
tems are focused on the application of personal comput-
ers and other relatively simple electronic equipment (e.g.,
the PlayStation console) instead of supercomputers and
clusters. The idea of P2P computing systems is applied
for instance in the BOINC (Berkeley Open Infrastructure
for Network Computing) architecture (Anderson, 2004).
BOINC is an open-source software computing platform
using volunteered resources (BOINC, 2011).

The distributed system is composed of many comput-
ing nodes (e.g., personal computers) connected into one
logical structure by means of the Internet. Thus, the sys-
tem works in an overlay mode (Tarkoma, 2010). The un-
derlying transport network (e.g., the Internet) provides di-
rect connectivity between overlay nodes with the required
quality of service parameters. Each node participating in
the computing system is attached to the overlay network
by an access link with specified download and upload ca-
pacity expressed in bps. The computational project, which
is to be processed in the system is divided into small parts
called tasks or blocks (Samanta et al., 2001; Stutzbach
et al., 2004; Nabrzyski et al., 2004; Munidger and We-
ber, 2004). Each task requires the same computational
power. Different tasks can be calculated on different
nodes.

In most existing systems the distribution of computa-
tional results is done by a central node (Anderson, 2004;
Krauter et al., 2002; Milojicic et al., 2002; Nabrzyski
et al., 2004; Shen et al., 2009; Travostino et al., 2006). Af-
ter the processing of the task, the computing node sends
back the final result to the central node, which then dis-
tributes the results to other nodes. In highly cooperative
environments in which many participants of the system
request to receive all results (e.g., scientific projects) the
central node can become a bottleneck of the result de-
livery process. Therefore, in our architecture we use a
distributed scheme for result delivery and apply the P2P
approach effectively employed in file sharing systems,
e.g., BitTorrent (Cohen, 2003). Partial results (individ-
ual blocks) are not sent back to the central node, but they
are delivered between participating nodes directly. Sim-
ilarly to the BitTorrent protocol (Cohen, 2003), our sys-
tem applies a special node called the tracker. The goal of
the tracker is twofold. Primary, the tracker is responsi-

Heuristic algorithms for optimization of task allocation and result distribution . . . 735

Fig. 1. Example of a distributed computing system.

ble for scheduling, i.e., it assigns individual task to com-
puting nodes according to received requests. Next, the
tracker maintains and provisions a database providing up-
dated information related to the current state of the sys-
tem, e.g., the location of calculated results. We do not use
a fully decentralized P2P architecture (e.g., DHT), since
in our opinion the BitTorrent approach with some cen-
tral elements (i.e., trackers) is sufficient for our purposes.
However, the system can be easily modified to apply fully
decentralized P2P architectures to provide delivery of re-
sults. Note that, in contrast to our system, the BOINC
architecture assumes that the result block is sent back to
the central node, which collects all results for further pro-
cessing and analysis. For more information on P2P sys-
tems, refer to the works of Shen et al. (2009) and Tarkoma
(2010).

The workflow of the system is as follows. The in-
put computational project is composed of uniform blocks
called source blocks. Each source block is forwarded to a
node in order to be processed (computed) according to a
selected scheduling procedure, which is the goal of opti-
mization addressed in this work. When the processing is
completed, a node informs the tracker that the result block
is available to other nodes. Next, each node requesting the
result block tries to download the result block. The distri-
bution of result blocks is based on the P2P idea, i.e., each
node can act both as a client (downloading) or a server
(uploading). Consequently, each node that obtains a result
block informs the tracker about this fact and the location
database is updated adequately.

We assume that the distributed system is highly col-
laborative, e.g., like a scientific project including several
universities and laboratories working on a similar topic.
Therefore, we make two important assumptions related to
the system. First, each participant (computing node) is in-
terested to obtain all results. Consequently, every result
block must be delivered to each node. Second, each par-

ticipant must be involved in the project and compute (pro-
cess) at least one source block. The second assumption
is partially motivated by the problem of selfish users en-
countered in P2P systems. Many P2P systems introduce
special incentive mechanisms to overcome this problem,
e.g., the “tit for tat” rule in BitTorrent (Cohen, 2003; Shen
et al., 2009; Tarkoma, 2010). The most famous distributed
processing framework, BOINC (and all systems based on
it), provides the functionality to compute the complex but
dividable task, so the overall goal is similar to that of
our system. A key difference is that the proposed dis-
tributed system guarantees result delivery to all system
participants and uses a decentralized architecture, whereas
BOINC is a fully centralized system where only the man-
aging node receives the full result. BOINC resembles uni-
cast flow and, as we will show later in that paper, proposed
P2P flow provides better results for a distributed compu-
tation system.

Figure 1 shows a simple example illustrating the
main idea of the system. The system considered contains
four nodes and five blocks. To make it clear, we do not
show the tracker node in the figure. Notice that source
block b = 1 is allocated to node 1, source block b = 2
is allocated to node 2, source blocks b = 3 and b = 5
are assigned to node 3 and finally source block b = 5 is
processed on node 4. Moreover, we show in the figure the
delivery scheme of each result block. For instance, block
b = 1 is sent from node 1 to node 3, which uploads the
block to nodes 2 and 4.

In the following sections, we show how to optimize
the performance of the presented distributed system. As
the performance metric we propose to use the operating
cost (OPEX) of the system including two elements: pro-
cessing (computation) cost of each source block and trans-
fer cost related to the requirement to deliver each result
block to requesting nodes. The processing cost consists of
expenditures related to various aspects of the IT infras-

736 G. Chmaj et al.

tructure (e.g., energy, maintenance, hardware amortiza-
tion, etc.). The reader interested in more information re-
lated to the economics of distributed computing systems
is referred to the work of Nabrzyski et al. (2004). The
second part of the OPEX cost is the delivery cost related
to data (blocks) transfer in the network. This element in-
corporates all network expenditures (e.g., lease cost of the
access link, energy, maintenance, hardware amortization,
etc.). Various aspects of network costs are addressed by
Kasprzak (2001) as well as Pioro and Medhi (2004).

As mentioned above, the proposed architecture is
dedicated to a highly collaborative environment, where
all participants are interested in receiving results of com-
putations. In consequence, the delivery of final results
can generate high network traffic. Therefore, we propose
a distributed dissemination of final results. It should be
noted that many other architectures of distributed systems
have been proposed in recent years. For instance, in 2004
Google introduced a map-reduce framework (González-
Vélez and Kontagora, 2011). The inspiration comes from
the map and reduce functions commonly applied in func-
tional programming. In the map operation, the master
node partitions original computing problems into smaller
sub-problems and distributes them to worker nodes. After
processing, each worker node passes the answer (results)
back to the master node. Then, the reduce step is applied,
i.e., the master node collects the answers to combine the
solution of the original problem. The main difference be-
tween our architecture and the map-reduce framework is
the final results delivery process. In order to reduce costs
of network flows, computation results are sent directly
to requesting nodes, which combine the final results by
themselves, while in the map-reduce architecture master
nodes are responsible to combine final results. However,
if we assume that each network node is a master node,
both architectures provide similar operations.

3. Integer linear programming modeling

In this section, we formulate an ILP model of the dis-
tributed computing system described in the previous sec-
tion. Note that ILP modeling is a research approach
widely applied in many areas to evaluate and optimize var-
ious kinds of systems, e.g., computer networks (Kasprzak,
2001; Pioro and Medhi, 2004).

3.1. Assumptions. The system considered includes V
nodes (computing elements) indexed by v = 1, 2, . . . , V .
The tracker node is assumed to be overprovisioned, i.e.,
its processing and network resources are large enough
to eliminate any bottlenecks and congestions. Moreover,
the signaling traffic to/from the tracker node is relatively
small compared with the transfer of result blocks. Con-
sequently, to reduce the complexity of the ILP model, the
tracker node is not included in the model. There are B

computational tasks (blocks) indexed by b = 1, 2, . . . , B.
We use the same index to refer to both source and result
blocks. All blocks are of uniform size and the same pro-
cessing requirement. The greatest challenge in the model
is the dynamic time scale of the system. Since we use the
P2P approach for data delivery, the system changes with
the elapsing time as new result blocks are downloaded by
subsequent nodes. Most of the previous research on net-
work optimization assumes a constant rate of transported
data (e.g., Kasprzak, 2001; Pioro and Medhi, 2004). In
our model, we assume that the time scale is divided into
T time slots (iterations), of the same size indexed by t =
1, 2, . . . , T . In each iteration nodes may transfer blocks
but the information on new location of result blocks is up-
dated at the end of the iteration. This means that block b
may be downloaded in iteration t only from nodes which
possess that block at the start of iteration t. The trans-
fer of all blocks must be completed within T time slots.
The same approach to modeling the time scale of P2P sys-
tems was applied in many papers (e.g., Arthur and Pani-
grahy, 2006; Ganesan and Seshadri, 2005; Munidger and
Weber, 2004; Miller and Wolisz, 2011; Yang and de Ve-
ciana, 2004).

According to our assumptions, each node v has lim-
ited processing power pv as well as limited upload and
download capacity uv and dv, respectively. To simplify
the model, we assume that pv is expressed in blocks per
time slot. Similarly, upload and download limits uv and
dv are given in blocks per time slot.

The objective function denoting the OPEX cost com-
promises two kinds of costs: processing and transfer. To
model the former element, for each node we are given
constant cv that denotes the processing cost of one source
block in node v. In the context of the transfer costs, for
each pair of nodes w and v, constant kwv denotes the cost
of one result block transfer between these nodes.

To reduce the complexity of the model, we assume
that in time slot t = 0 all source blocks are computed and
in the next iteration t = 1 the transfer of result blocks is
initiated. Thus, the delivery of source blocks to comput-
ing nodes is not included in the time scale of the system.
However, costs related to the transfer of source blocks to
computing nodes are incorporated in the processing cost
cv .

The model contains two kinds of decision variables.
The first binary variable xbv denotes allocation of source
blocks to computing nodes and is 1 if source block b is
assigned to node v. The second binary variable ybwvt de-
notes P2P transfers in the network: ybwvt is 1 if result
block b is transferred from node w to node v in iteration t.

3.2. Model.
Indices
b = 1, 2, . . . , B, blocks (source and result)

Heuristic algorithms for optimization of task allocation and result distribution . . . 737

t = 1, 2, . . . , T , time slots (iterations)

v, w, s = 1, 2, . . . , V , node (peer)

Constants
cv cost of processing of one source block in node v

kwv cost of result block transfer from node w to node
v

pv maximum processing rate of node v
dv maximum download rate of node v
uv maximum upload rate of node v
M large number

Variables
xbv =1, if source block b is processed (calculated) in

node v; 0, otherwise (binary)
ybwvt =1, if result block b is transferred from node w

to node v in iteration t; 0, otherwise (binary)

Objective
It is to find the allocation of source blocks to processing
nodes and configuration of P2P transfer of result blocks
to all peers minimizing the OPEX cost of the system and
satisfying all constraints:

min F =
∑

b

∑

v

xbvcv+
∑

b

∑

w

∑

v

∑

t

ybwvtkwv. (1)

Constraints

(a) Since the system is collaborative and due to the fair-
ness requirement, each peer must process at least one
source block:

∑

b

xbv ≥ 1, v = 1, 2, . . . , V. (2)

(b) Each source block must be assigned for processing to
exactly one node:

∑

v

xbv = 1, b = 1, 2, . . . , B. (3)

(c) Each node has a processing limit pv , therefore the
number of source blocks assigned to each node can-
not exceed this limit:

∑

b

xbv ≤ pv, v = 1, 2, . . . , V. (4)

(d) Each result block must be delivered to each peer:

xbv +
∑

w

∑

t

ybwvt = 1, b = 1, 2, . . . , B,

v = 1, 2, . . . , V. (5)

Notice that this constraint is satisfied in one of two
possible situations. First, the source block b is as-
signed to the node v for processing (i.e., xbv = 1).

Thus after processing, there is no need to transfer
the result block b to the node v. Otherwise, the re-
sult block b must be delivered to the node v using the
P2P approach. Therefore, the result block b must be
downloaded by the node v from any other node w in
one of iterations t (i.e.,

∑
w

∑
t ybwvt = 1).

(e) Upload capacity constraint:

∑

b

∑

v

ybwvt ≤ uw, w = 1, 2, . . . , V,

t = 1, 2, . . . , T. (6)

(f) Download capacity constraint: no node can down-
load in one time slot more blocks than its download
limit:

∑

b

∑

w

ybwvt ≤ dv, v = 1, 2, . . . , V,

t = 1, 2, . . . , T. (7)

(g) P2P flow constraint, i.e., the result block b, can be
sent from a node w to a node v only if the node w
keeps the source block b in the time slot t, which is
equivalent to the fact that the node w either processed
source block b or downloaded the result block in any
iteration i < t:

∑

v

ybwvt ≤ M(xbw +
∑

i<t

∑

s

ybswi),

b = 1, 2, . . . , B, w = 1, 2, . . . , V,

t = 1, 2, . . . , T. (8)

The ILP model (1)–(8) is an NP-complete problem
since it can be reduced to an MBT (Minimum Broad-
cast Time) problem, which is proved to be NP-complete
(Jansen and Muller, 1994). The presented model can be
easily extended with new elements, e.g., various sizes of
result blocks, an asymmetric cost of transfer between two
nodes, node join/disconnection during a system run, re-
quirements allowing computation of some source blocks
only on nodes having particular computing resources,
other objective functions, e.g., throughput, processing
time.

4. Greedy algorithm

In this section, we present a heuristic greedy algorithm
developed to solve the optimization problem defined by
(1)–(8). Note that the presented method is an im-
proved version of an algorithm described by Chmaj and
Walkowiak (2009), i.e., due to extensive simulations we
modified the selection of the algorithm’s parameters. The
algorithm contains two methods: the first one (called PH1)
yields the allocation of blocks (variables xbv), the second

738 G. Chmaj et al.

one (named PH2) is used to find the configuration of block
transfer (variables ybwvt).

The main idea of the algorithm PH1 is as follows.
Detailed analysis of the model (1)–(8) shows that the
model is feasible only if each node v = 1, 2, . . . , V is
assigned with at least max(1, B − dvT) source blocks.
Therefore, initially we assign to each node av source
blocks to guarantee that the problem has a feasible solu-
tion,

av =

{
B − dvT when dvT < B,

1 otherwise.
(9)

Moreover, notice that, according to the model (1)–
(8), the number of all blocks in the system must be at least∑

v av. If some blocks are still not assigned to computing
nodes (i.e.,

∑
v av < B), we continue the procedure in a

loop. First, for each node we create the following scoring
metric:

ev = mcv +
∑

w

kvw, (10)

which defines the cost of a node v combining the pro-
cessing cost (cv) and the transfer cost to other nodes
(
∑

w kvw). Note that m is a tuning parameter to find the
tradeoff between processing and transfer costs. In next
steps, we normalize the value of the metric ev and calcu-
late the parameter gv,

gv =

⎧
⎨

⎩
0 when pv = av,
emax − ev

ev
otherwise.

(11)

Finally, we allocate the remaining blocks to subse-
quent nodes sorted according to decreasing values of gv.
Following the condition ((4)), each node is allocated with
pv − av source blocks. Note that the last processed block
can receive less than pv − av blocks.

The second algorithm, PH2, yields the configuration
of block transfer (variables ybwvt). The algorithm has one
input parameter q that denotes the maximum number of
block transfers in a single time slot. The idea behind the
algorithm PH2 is as follows. In each time slot t < T we
make at most q transfers. All remaining transfers are tried
to be made in the last iteration. Since the objective is to
minimize the transfer cost, we attempt to make as many
transfers as possible between nodes with low values of the
transfer cost kwv. Therefore, we sort all node pairs (w, v)
in the ascending order of the kwv metric. Next, one by
one, we allocate to each analyzed node pair possibly many
transfers in both directions, since the cost kwv is assumed
to be symmetric. All necessary constraints of the problem
are checked (e.g., node capacity). In the last iteration, all
remaining transfers are arranged. The input parameter q
is used to find the tradeoff between the objective of the
optimization (transfer cost) and problem constraints (the

transfer must be completed in a particular number of iter-
ations and every node is limited by download and upload
capacity limits).

Below we present the algorithm PHA that combines
two heuristics described above to solve the problem (1)–
(8).

Algorithm PHA

The algorithm uses the following input parameters: jm is
the number of algorithm’s iterations, jm < 30.
Step 1. Set

q =
⌈

B(V − 1)
T

⌉
.

Step 2. For the following values of the parameter m:
m = 1, m = �B/V � , m = �B/2� run PH1 (passing
subsequent parameters m) and PH2 (passing the parame-
ter q). If for all tested values of parameter m no feasible
solution was obtained, stop the algorithm. Otherwise, let
m∗ denote the value of the parameter m, for which the
best feasible solution was found. Let C0 denote the best
value of the cost function.
Step 3. Calculate qs according to the following formula:

gs =
⌈

30 − jm

29
(q − 1) + 1

⌉
. (12)

Set j = 1 and q = q + qs.
Step 4. Run PH1 (passing the parameter m∗) and PH2
(passing the parameter q). If a feasible solution is found,
let Cj denote the obtained cost. Otherwise, if there is no
feasible solution set Cj = ∞.
Step 5. Set j = j + 1 and q = q + qs. If q ≤ ∑

v uv and
j ≤ jm, then go to Step 4. Otherwise, go to Step 6.
Step 6. Stop the algorithm. The result of PHA is

C = min
i=0,1,2,...,j−1

(Ci).

In the first phase of the algorithm (Steps 1 and 2) we
examine three values of the parameter m and select for
further tests a value that provides the lowest value of the
objective function. In the second phase (Steps 4 and 5) we
focus on the parameter q. In each iteration, we increase
the value of q by qs defined in (12). We continue this pro-
cess until the iteration count j does exceed the iteration
limit jm. The second stopping condition is related to the
parameter q, i.e., if q >

∑
v uv, the algorithm stops, since

according to the construct of algorithm PH2 in such a case
there is no chance to improve the result. Finally, the Al-
gorithm returns the best found value of the cost function.

5. Evolutionary algorithm

In this section, we introduce a new algorithm named the
Peer-to-peer Evolutionary Algorithm (PEA) proposed to

Heuristic algorithms for optimization of task allocation and result distribution . . . 739

Fig. 2. Chromosome coding.

solve the optimization problem given by (1)–(8). The
main idea of the PEA algorithm follows from evolu-
tionary methods (Michalewicz, 1996). Various optimiza-
tion problems have been successfully attacked by hy-
brid intelligence including evolutionary methods (e.g.,
Pioro and Medhi, 2004; Przewozniczek et al., 2011; Woz-
niak, 2009).

5.1. Chromosome coding. We assume that a single
individual represents a vector of B (number of blocks)
trees—each tree includes V nodes and denotes the transfer
of each block. The root node v of the tree associated with
a block b defines the node selected to process the block b,
i.e., xbv = 1. Thus, using the proposed representation we
can easily obtain the values of decision variables xbv and
ybwvt. The representation guarantees that the constraint
(3) is satisfied, i.e., each source block is assigned for pro-
cessing to exactly one node (the root node of the tree).
Moreover, the condition (5) is also assured—each tree in-
cludes all nodes, and thus each result block is delivered
to each peer. To address the constraint (2) guaranteeing
that each peer must process at least one source block, the
individual is divided into two parts: V trees (basic part)
and (V − B) trees (extension part). The remaining con-
straints of the problem (i.e., the constraints (4) and (6)–
(8)) are satisfied by the algorithm’s operators (crossover
and mutation). Figure 2 the shows a simple example of a
chromosome coding for a network with V = 4 nodes and
B = 5 blocks (the same example as in Fig. 1). The basic
part contains four genes, the extension part includes the
remaining block b = 5.

5.2. Algorithm overview. Figure 3 presents the block
diagram of the algorithm PEA. Now we will describe the
most important elements of the algorithm.

The start population is generated according to the
following heuristic. It is easy to notice that some nodes
are better for allocation than others. Factors that promote
block allocation on a particular node v include a low pro-
cessing cost (constant cv), a low mean transfer cost to all
other nodes (kv =

∑
w kvw/(V − 1)) and a high upload

limit of the node (constant uv). According to these obser-
vations, we define below a new constant snv that denotes

a heuristic score of node v:

snv =
uv

cvkv
. (13)

The start population is generated with the use of the
roulette method—blocks are allocated on nodes with a
probability proportional to the value of snv (13). Ac-
cording to our preliminary experiments, such a genera-
tion method provides significant improvements of the al-
gorithm performance.

To generate subsequent populations, the PEA algo-
rithm applies the tournament selection. The size of the
mating pool (i.e., the number of individuals selected to
perform the crossover expressed as a percentage of the
population size) is given by an input tuning parameter
called the size of the mating pool. Since the value of the
size of the mating pool parameter is below 100%, the re-
maining part of the next population is simply copied from
the current population (using random selection). More-
over, a kind of elite promotion is applied, i.e., the best
individual of the current population is also copied to the
subsequent population. The algorithm is run for a given
number of iterations, which is one of input parameters.
The individual fitness function is calculated as the recip-
rocal of the individual cost given by (1).

Since it was very hard to create a single crossover op-
erator providing reasonable performance, we decided to
apply multiple evolutionary operators. All of those opera-
tors are used randomly with probability given as the algo-
rithm’s input parameters. Two crossover operators were
created: tree exchange and path exchange. The tree ex-
change operator involves two parents (primary and sec-
ondary) and results in two children. Some of B trees are
exchanged between two individuals—the number of ex-
changed trees is determined by the tree exchange prob-
ability given as a parameter. Only a tree that does not
violate problem constraints is considered a candidate tree.
Additionally, for the basic part of the individual, only trees
with the same root node as the primary tree are considered.
In the tree election process we use the roulette method—
each gene representing a tree of block b and rooted at node
v is assigned with the following score:

stb =
snv

ctb
. (14)

We assume that ctb denotes the cost of a tree
associated with block b, i.e., ctb =

∑
v xbvcv +∑

v

∑
w

∑
t ybwvtkwv, where xbv and ybwvt denote the

solution given by the tree. To generate the second child,
we swap the primary and the secondary parent and apply
the same procedure.

The path exchange operator also works on particular
trees of individuals and its goal is to improve the qual-
ity of individual trees. The path exchange operator ex-
changes some of B trees between two parents. All trees

740 G. Chmaj et al.

Fig. 3. Block diagram of the PEA algorithm.

of the primary parent (representing blocks) are processed
using the path exchange operator probability (parameter
path exchange probability), i.e., either the tree is left un-
changed (simply the tree is copied to the child) or the tree
considered is combined with a randomly selected tree of
the secondary parent. In the second case, the following
procedure is applied. A random node (different from the
root node of the primary and the root node of the sec-
ondary tree) of the secondary tree is selected. Starting
from this node, the longest possible path is selected. The
selected path, denoted as pathsecondary, must have at least
two nodes and cannot contain the root node of the primary
tree. Next, starting from the root node of the primary tree
considered, subsequent nodes and connections are dupli-
cated to the offspring tree. However, all nodes of the pri-
mary tree included in pathsecondary and all descendants of
these nodes (included in the primary tree) are not copied
to the child tree. After that, pathsecondary is connected
to the offspring tree using the roulette method. The node
to connect the path is selected by the roulette method us-
ing a probability that is inversely proportional to the trans-
fer cost cwv between the node of the offspring tree (node
w) and the first node of pathsecondary (node v). Finally,
all previously unprocessed nodes are randomly connected
to the offspring tree to assure that the tree includes all
nodes. Again, to create the second offspring, we exchange
the primary and the secondary parent and repeat the algo-
rithm.

In the mutation process, performed according to the
mutation probability, we use three operators: subtree relo-
cation (selects one of individual trees and performs relo-
cation of a random subtree within this tree), node swap
(chooses one of individual trees and performs swap of
two, random, non-root nodes), and root swap (selects one
of individual trees and performs swap of a random node
with the tree root). The parameters percentage of reloca-
tion mutation, percentage of swap mutation, percentage

of root swap mutation are used to select a particular mu-
tation operator in a given iteration of the algorithm. Note
that these three parameters must sum up to 1.

6. Results

The goal of numerical experiments was twofold: compar-
ison of the proposed heuristics against optimal results and
evaluation of the computing system performance regard-
ing various parameters including the upload and download
node capacities, the node processing limit, the number of
blocks, the number of time slots and the number of nodes.

6.1. Evaluation of heuristics. PHA and PEA heuris-
tic algorithms were implemented in C++. To find opti-
mal results of the model (1)–(8), we applied CPLEX 11.0
(ILOG, 2009) with solver settings left at their defaults.
The execution time of the CPLEX solver was limited to 1
hour. Consequently, CPLEX yielded three kinds of out-
put: an optimal result (execution time was lower than 1
hour), feasible results (within 1 hour CPLEX found a so-
lution without optimality guarantees) and no result (within
1 hour CPLEX was not able to find any result). All experi-
ments were conducted on an HP XW9400 computer. Both
optimal (CPLEX) solutions and the proposed algorithms’
results are expressed as the unit cost values. The key fac-
tors of the solution quality are the distance from the op-
timal solution and the time the result was produced. The
unit values of computing and networking costs are less
important in terms of solution quality and can be omit-
ted. Thus, all results were represented as comparisons
with the optimal solution in order to emphasize how far
they are from the best possible result. We tested 300 net-
works that were generated at random, since there are no
existing benchmark examples.

Value ranges for each parameter were set to reflect
real systems, e.g., the download capacity range was set to

Heuristic algorithms for optimization of task allocation and result distribution . . . 741

Table 1. Parameters of tested networks.
Type of network Number of networks CPLEX solution within 1 hour Parameter Values

Small 53 Optimal
Number of nodes V 3–7

Number of time slots T 3–5
Number of blocks B 4–55

Medium 150 Feasible
Number of nodes V 5–28

Number of time slots T 3–18
Number of blocks B 6–72

Large 97 No solution
Number of nodes V 13–29

Number of time slots T 8–19
Number of blocks B 16–78

obtain larger values than upload capacity and thus mod-
els the most commonly used asymmetric link. Thus, the
randomly obtained network structures are similar to those
met in real systems, as each parameter was separately an-
alyzed and its randomization process was tailored to fit its
specific character. Random values generation was done
using C++ libraries, which are believed to provide uni-
formly distributed random values. The main parameters
(i.e., number of nodes, number of iterations and number
of blocks) of the networks are described in Table 1. It
should be underlined that the presented results show some
characteristic features obtained for these randomly gen-
erated systems. However, the relatively large number of
tested systems and a wide range of systems’ main param-
eters may suggest that also for other systems the major
conclusions should be true. According to the performance
of CPLEX, we divided the networks into three sets: small
(CPLEX yields optimal results within 1 hour), medium
(CPLEX provides feasible results within 1 hour) and large
(CPLEX cannot find feasible results within 1 hour).

In order to compare the heuristic PHA and PEA al-
gorithms against optimal results given by CPLEX, we first
performed the tuning of the algorithms. To perform tun-
ing of PHA, we selected 10 of 300 tested networks and
ran the algorithm changing the parameter jm from 1 to
30. All obtained results show that the average reduction
of the OPEX cost between the case of jm = 1 and the
case of jm = 30 is 17%. However, the time execution
growth comparing these two cases is about 320%. But,
since the execution time of PHA is relatively low (in most
cases below 10 seconds), in our opinion the OPEX cost
reduction is a more significant aspect. Therefore, in fur-
ther experiments of the PHA algorithm we decided to set
jm = 30.

Tuning parameters of PEA are presented in Table 2.
Values of these parameters were selected according to var-
ious preliminary experiments and our experience in the
field of evolutionary algorithms as well as the characteris-
tics of the problem considered.

The next goal of experiments was to compare re-
sults of heuristics against optimal results (50 small net-
works). For each network, we run once the determinis-

Table 2. Tuning of the PEA algorithm.
Parameter name Value

Number of iterations 100–2000
Population size 100–2000
Size of mating pool (percentage of popula-
tion individuals selected in the tournament
selection for crossover)

50%

Percentage of path exchange crossover 70%
Percentage of tree exchange crossover 30%
Path exchange probability 0.3
Tree exchange probability 0.3
Mutation probability 0.05
Percentage of relocation mutation 40%
Percentage of swap mutation 50%
Percentage of root swap mutation 10%

tic PHA algorithm and five times the stochastic PEA al-
gorithm. In Table 3, we report the average results tak-
ing into account all 50 networks. In the case of the PEA
method, we present the mean value (fourth column), the
median value (fifth column) and the minimum obtained
value (sixth column). The table includes two kinds of gap
to optimal results: the mean value (second row) and the
maximum obtained value (third row). Moreover, we show
the number of networks for which a given algorithm yields
the same result as the optimal one (fourth row). Finally,
we provide in the last row the average execution time of
each method. Both heuristics provide results very close
to optimal results yielded by CPLEX—PHA is on aver-
age 1.90% worse than optimal, the corresponding gap for
the best result of PEA is only 0.40%. However, when we
look at the execution time, PHA significantly outperforms
other methods, since the average running time is only 20
ms. A comparison between PHA and PEA shows that the
PEA algorithm is on average 1.42% better than PHA.

In the next experiment, we compared optimization
methods in the context of medium networks (Table 4). In
this case, CPLEX does not provide optimal results, since
the execution time is limited to 1 hour. Therefore, PHA
and PEA may yield better results than CPLEX. As re-
ported in the table, PEA in the best case provides results

742 G. Chmaj et al.

Table 3. Comparison of algorithms for small networks—average distance to CPLEX results.
CPLEX PHA PEA mean PEA median PEA min

Mean gap to optimal 0.00% 1.90% 0.65% 0.57% 0.40%
Maximum gap to optimal 0.00% 8.08% 3.76% 3.52% 1.51%
Number of optimal results 0.00% 15 18 21 29
Average execution time [s] 202.99 0.02 9.16 9.16 9.16

Table 4. Comparison of algorithms for medium networks—average distance to CPLEX results.
CPLEX PHA PEA mean PEA median PEA min

Mean gap to CPLEX 0.00% -11.59% -12.15% -12.31% -13.17%
Maximum gap to CPLEX 0.00% 7.43% 3.51% 4.23% 1.52%
Minimum gap to CPLEX 0.00% -56.55% -55.58% -55.58% -56.02%

Average execution time [s] 3600.00 0.30 906.32 906.32 906.32

13.17% better (lower) than CPLEX. The corresponding
value for PHA is 11.59%. The average gap between PEA
and PHA is 1.40%. However, again PHA requires signifi-
cantly less execution time than PEA.

Finally, we tested the PHA and PEA algorithms for
large networks—in this case the CPLEX cannot find any
feasible result within 1 hour. Thus, in Table 5 only the
PHA and PEA algorithms are compared. Due to large ex-
action time of PEA, for each network we ran the algorithm
only once. The size of the tested networks and conse-
quently the size of the solution space turns out to be too
large for the PEA algorithm. On average, PEA yields cost
about three times larger than the value obtained for PHA,
while the execution time of PEA is about five times larger
to PHA. However, simulations demonstrated that the PEA
algorithm generally works properly and improves the so-
lution with successive iterations. Thus, we can suppose
that, if the running time is increased enough, the PEA al-
gorithm should converge to a better solution.

Concluding the comparison of algorithms, we want
to underline that both of the proposed heuristics (PHA
and PEA) give solutions very close to optimal. For
small and medium networks, PEA slightly outperforms
PHA, although more computational time is required. For
large networks, the evolutionary approach cannot cope
with huge solution space, and PHA is much more ef-
ficient. Note that in our previous work (Chmaj and
Walkowiak, 2010b) we examined random heuristic algo-
rithms to solve the problem (1)–(8). However, since the
performance of these algorithms is much worse than that
of PHA and PEA, we do not present these results in the
present paper.

6.2. P2P computing system performance. In the last
part of experiments, we focused on evaluation of the P2P
computing system considered regarding various parame-
ters of the network. We conducted a wide range of simu-
lations using 20 large networks (number of nodes in the
range 50–107, number of blocks in the range 75–161,

Table 5. Comparison of algorithms for medium networks.
PHA PEA

Mean gap to PHA 0.00% 196.63%
Maximum gap to PHA 0.00% 54.28%
Minimum gap to PHA 0.00% 302.83%

Average execution time [s] 619 3359

number of time slots 15).
In the following experiments, we compared the per-

formance of P2P data delivery with respect to the com-
puting system using unicast flows for distributed results
of computations. In our previous work (Chmaj and
Walkowiak, 2008), we formulated an optimization model
similar to (1)–(8), although the unicast transmission was
applied to distribute result blocks to all nodes. Unicast, in
this context, means that a particular result block b can be
downloaded only directly from a node v selected to pro-
cess that block (xbv = 1). To optimize the system with
unicast flows, we developed a greedy algorithm called
UHA. The general idea of UHA is similar to that of the
PHA algorithm. The key difference between both meth-
ods is the peer selection criteria. Due to unicast flow re-
strictions, a node can download the result data block only
from the node that has computed this certain data block.
Compared to PHA algorithm, in UHA the selection pro-
cedure becomes trivial, which significantly simplifies the
algorithm. Unicast characteristic also impacts source data
allocation, which has to be tailored to fit a more restrictive
flow than the highly flexible peer-to-peer flow.

The first tested parameter was the node upload
capacity—we repeated simulations increasing the upload
capacity of each node by 20 (up to 200). In Fig. 4 we
report average (over 20 tested networks) results showing
how the cost of P2P and unicast approaches changes with
the increase of upload capacity. We present the average
cost difference, i.e., for each particular case in terms of
the upload capacity increase we calculate the percentage
difference between the obtained cost and the cost of the

Heuristic algorithms for optimization of task allocation and result distribution . . . 743

Fig. 4. Performance of P2P and unicast approaches as a func-
tion of the upload capacity increase.

initial case when the capacity is not increased. Since the
upload capacity is increased in subsequent experiments,
which leads to a reduction in the cost, the average cost dif-
ference is negative. Notice that the increase in the upload
capacity has the greatest influence in the case of the trans-
fer cost of the P2P approach (up to 8%)— a higher upload
capacity enables the P2P approach to select cheaper trans-
fers, since nodes can upload more blocks. However, the
increase in the upload capacity does not reduce the pro-
cessing cost of the P2P case. This follows mainly from
the fact that the node processing limit is not increased. In
the case of the unicast approach, both kinds of costs (pro-
cessing and transfer) are reduced with an increase in the
upload capacity. As mentioned above, in the case of the
unicast scenario, the limit of source blocks that can be al-
located to a particular node v is a function of the process-
ing limit pv and the upload capacity uv. The latter con-
straint follows from the fact that in the unicast approach
each node must have enough capacity to upload all pro-
cessed blocks to the remaining (V − 1) nodes.

After that, we conducted a similar experiment, i.e.,
we repeated simulations by halving the upload capacity
(up to 8). Figure 5 presents the average results. Again,
we can see that changing the upload capacity does not in-
fluence the P2P processing cost. In all other cases, the
cost increases with capacity decrease—the curves can be
explained in the same way was in the context of Fig. 5.
It should be noted that for some networks, when we de-
creased the original capacity by a factor of 8, the algo-
rithms (UHA and PHA) could not find a feasible result.
We also conducted experiments when the download ca-
pacity was changed (increased and decreased). However,
we observed no impact on the cost.

The next evaluated parameter was the node process-
ing limit related to the constraint (4). The methodology
was the same as in the case of previous experiments focus-
ing on node capacity. When the processing limit was in-
creased for each node, there was a very low impact on the
cost of P2P and unicast systems. However, when we were
decreasing the processing limit by 2 (up to 70), the OPEX
cost was growing—Fig. 6 reports the average results. The

Fig. 5. Performance of P2P and unicast approaches as a func-
tion of the upload capacity decrease.

Fig. 6. Performance of P2P and unicast approaches as a func-
tion of the processing limit decrease.

greatest influence can be observed in the case of the uni-
cast processing cost. This is in harmony with our previous
observations, i.e., when the processing limit is reduced,
source blocks must be allocated to relatively more expen-
sive nodes for processing to fulfill processing limits and
capacity constraints following from the construct of uni-
cast flows. Notice that changing the processing limits has
very little influence on the transfer costs.

In the following experiments, we examined the sys-
tem performance when the number of blocks to be pro-
cessed was changed. Since the number of blocks must ex-
ceed the number of nodes (see the constraint (2)), we start
experiments with B = V (the number of blocks equals the
number of nodes) and increase the number of blocks each
time adding 5 blocks to the system, up to 60 new blocks.
Figure 7 shows the performance of P2P and unicast ap-
proaches.

All the six curves presented referring to various costs
grow nearly linear as the number of blocks increases. The
greatest impact is observed in the case of the P2P trans-
fer cost. However, a relatively large growth in the P2P
transfer cost is compensated by a slow increase in the P2P
processing cost. These results can be explained by the
fact that the P2P approach provides very flexible alloca-
tion of new blocks to cheaper nodes, as in most cases only
the processing constraint limits the maximum number of
blocks to be allocated to a particular node (the capacity
constraint plays a less significant role compared with the
unicast approach). Thus, new blocks can be allocated to

744 G. Chmaj et al.

Fig. 7. Performance of P2P and unicast approaches as a func-
tion of the block increase.

cheap nodes, which leads to a relatively slow growth in
the P2P processing cost. But, at the same time, the cost of
P2P transfers grows more dynamically, as more expansive
block transfers occur in the network. However, there is a
kind of tradeoff between both kinds of costs, as the opti-
mization objective is the P2P OPEX cost including both
elements (processing and transfer).

The next tested parameter was the number of time
slots (iterations). For each tested network, we ran experi-
ments with the number of time slots in the range from 5 to
30. In Fig. 8, we report the obtained results, showing how
the cost changes with the increase of time slots; the ref-
erence result is the value of the cost obtained for the case
when T = 30. We can easily notice that for a relatively
small number of time slots the yielded cost is significantly
higher compared with the reference case (T = 30). How-
ever, for larger values of T (> 15) the average cost differ-
ence is less than 1%, i.e., the cost converges to a stable
value and further increase of the iteration number does
not provide substantial gain. As in the case of the number
of blocks (Fig. 7), also in this case (i.e., the number of
time slots) the P2P transfer cost is the most sensitive type
of cost. The P2P transfer curve significantly differs from
the unicast transfer curve. This observation confirms that
the P2P approach is much more flexible than the unicast
case, as P2P flows more efficiently use the larger number
of available time slots to reduce the OPEX cost. More-
over, in this experiment we noticed that in many cases too
small a number of time slots disables the algorithms from
finding a feasible solution.

Finally, the last parameter we focused on was the
number of nodes. For each network, we increased the
number of nodes by 2 up to 10 (Fig. 9). We can easily
notice that the processing cost of both P2P and unicast
slightly decreases when the number of nodes grows. The
reason for this lies in the fact that the number of blocks
is unchanged while there are more nodes to be selected
for processing. Consequently, if at least one new node is
cheaper than at least one existing node, the new node can
be assigned with blocks and thus the processing cost is re-
duced. However, the transfer cost grows with an increase

Fig. 8. Performance of P2P and unicast approaches as a func-
tion of the number of time slots.

Fig. 9. Performance of P2P and unicast approaches as a func-
tion of the number of nodes.

in the number of nodes. This follows mainly from the con-
straint (5), assuring that each result block must be deliv-
ered to each node, which increases the transfer cost. How-
ever, the P2P approach provides less dynamic increase of
the transfer cost than to the unicast approach.

7. Related work

Scheduling is an important issue for the efficiency of dis-
tributed computing systems. It is significantly related to
peer-to-peer networks, which use this mechanism for data
delivery. Scheduling for most P2P systems is realized in
a more or less centralized manner as fully decentralized
peer-to-peer systems are not widely used. The following
work is also related to non-fully decentralized P2P struc-
tures. Scheduling for distributed systems was described
by Pop (2012). The approach for a multi-group multi-
algorithm was presented. These ideas appear as a more
sophisticated scheduler, which is able to analyze the job
types, their dependencies and other attributes, and take
them into consideration during the scheduling process.
Also multiple queuing models were examined. However,
typically for grid systems, the focus was on the execu-
tion makespan and the aspect of inter-peer communication
was omitted. Vanderster et al. (2009) introduce a policy
of assigning resources to grid participants. The optimiza-
tion problem formulated as a variant of the multichoice
multidimensional knapsack problem is solved using var-
ious policies. Offline modeling of computing systems is

Heuristic algorithms for optimization of task allocation and result distribution . . . 745

also considered by Nabrzyski et al. (2004). Samanta et al.
(2001) propose a distributed computing system for render
images. Contrary to previous works, which required the
presence of a large amount of data on each participating
node, the new approach uses a division of image to prim-
itives, which are then replicated on many nodes. Results
of rendering are delivered to a central node to combine the
final result image.

Many network computing systems presume that
source blocks are fully independent, which means that
each node can process a particular block without any
knowledge about other blocks. The GTapestry model
described by Jin et al. (2006) allows using relations
on blocks—they may be dependent between each other.
Computing nodes are divided into groups, which then
compute groups of related blocks. Nodes may commu-
nicate inside groups (intra-communication) or between
groups (inter-communication).

Kim et al. (2009) use peer-to-peer mechanisms over
a distributed computation system to implement person-
alized recommendation over a customer network, which
is applied for ubiquitous shopping. They operate on the
buying. Net architecture built using both hardware and
software components. The proposed system offers rec-
ommendation services, whose main idea is to do the per-
sonalization for each user, which should help to make an
individual shopping decision. Authors propose their own
model built over a proposed notation, and algorithms to
solve the discussed problem. Researched systems use the
P2P architecture having many peers and one central server
(i.e., a P2P centralized approach), which plays very mi-
nor and minimal role—most of the communication goes
on between peers. A peer logs into the Buying. Net net-
work (i.e., P2P network) and fetches the control informa-
tion from the server, which provides the neighborhood (a
similar idea to BitTorrent) and recommendation informa-
tion. Messages regarding shopping actions are exchanged
between peers. Authors pinpoint inefficiency of informa-
tion dissemination in other recommendation systems and
show the advantage of using the peer-to-peer architecture
in comparison with the central unicast approach.

The streaming problem is also studied by Zhou et al.
(2011), who examine the stochastic model used in several
downloading strategies: Rarest First and Greedy, and pro-
pose to use a mix of these approaches. Experimentation
assumptions and results are described. The P2P aspects
are investigated in the scope of efficient data dissemina-
tion in the group of peers. Experiments show that the pro-
posed Mix approach is outperforms both the Rarest First
and Greedy approaches. We could put the idea of Mix
strategy as an interesting idea worth with our download
(thus also upload) strategies.

Looking from this perspective, the ideas presented
by Miller and Wolisz (2011) are also interesting. The au-
thors present the optimization of chunk dissemination in

an overlay the peer-to-peer network. The described prob-
lem assumes a network of peers, each having the initial
set of chunks and peer link capacities. Detailed modeling
and dissemination algorithms are presented together with
experimentation results. In relation to our case, Miller and
Wolisz (2011) describe the dissemination part of our prob-
lem, without taking care of the computation phase. How-
ever, the ideas presented by Miller and Wolisz (2011) may
be worth analyzing as an inspiration for better solutions to
our problem.

Liu et al. (2010) present various issues related to
existing distributed computing with a special focus on
joint resource allocation of both computing resources and
network resources. A wide range of resource allocation
schemes that provide distributed computing applications
with performance and reliability guarantees are described.

The idea of scheduling flows in predefined slots,
which simulate BitTorrent-like systems, has been already
exploited and discussed in many previous works. A time-
indexed integer program defined as overlay network con-
tent distribution is presented by Killian et al. (2005). All
content to be distributed is in the form of unit-sized to-
kens. At the start tokens are located at one of more nodes
(senders), and they are must be transferred to a different
set of nodes (receivers). The distributed schedule of to-
kens proceeds as a sequence of timesteps. There is a ca-
pacity constraint set on each overlay arc, i.e., only a lim-
ited number of tokens can be assigned to an arc for each
timestep. A token may be uploaded in a given timestep
only by a node that possesses this token at the start of the
timestep. The problem is proved to be NP-complete.

For more information related to P2P systems and
computing systems, refer to the works of Milojicic et al.
(2002), Nabrzyski et al. (2004), Shen et al. (2009),
Tarkoma (2010) and Travostino et al. (2006).

8. Conclusions and future work

In this paper, we studied how to optimize P2P computing
systems. We described a novel architecture of a highly
collaborative P2P computing system. An ILP model was
formulated and discussed. Next, two heuristics, PHA and
PEA, were proposed. To verify the proposed algorithms,
extensive numerical experiments were conducted using
problems instances of various size. For small networks,
both heuristics yielded solutions close to optimal ones, al-
though with significantly lower execution time (especially
PHA). For medium networks, PHA and PEA outperform
the CPLEX solver run with 1 hour time limit again with
much lower execution time. Finally, for large networks
only PHA and PEA were able to find feasible results.
However, PHA provided significantly better results. Ex-
periments proved that using the P2P approach for result
delivery significantly reduces the OPEX cost compared to
the unicast approach. In our opinion, results presented in

746 G. Chmaj et al.

this work can be useful in designing P2P computing sys-
tems. The algorithms presented and studied in this paper
can be used in collaborative distributed systems, which
strongly take the processing, networking and operating
cost in general into consideration. These aspects are im-
portant not only in Internet-based applications. A non-
Internet example is a network containing many mobile de-
vices with limited packet network access. Our algorithms
would, among others, decrease the amount of data trans-
ferred in such a system, thus minimizing the money spent
by each mobile user on packet data. The proposed ap-
proach refers to static optimization, but in our other work
(Chmaj and Walkowiak, 2010a) we also address the same
system architecture in the context of dynamic optimiza-
tion.

We are aware of the fact that the formulated ILP
model of the P2P computing system contains some simpli-
fications compared with real systems. However, even the
simplified model is complicated and computationally de-
manding, which was shown in the experiments. Moreover,
in the field of ILP optimization, in many cases constraints
of the original system are reduced in order to enable for-
mulation of an ILP model that is to be solved in reasonable
time. To address limitations of our approach, in our pre-
vious work (Chmaj and Walkowiak, 2010a) we also ex-
amined the online version of the P2P computing system
by using simulations. In future work, we plan to extend
the ILP model formulated above to consider the following
aspects: delivery of source blocks, blocks (source and re-
sult) of different size, differentiation of block starting time
(blocks to be processed appear in the system in various
moments of time), multiple computational projects last-
ing for longer time (input data is continuously generated
with constant rate).

Acknowledgment

This work was supported by the Polish Ministry of
Science and Higher Education (grant N N516 070435,
2008–2011).

References

Anderson, D.P. (2004). BOINC: A system for public-resource
computing and storage, 5th IEEE/ACM International
Workshop on Grid Computing, Pittsburgh, PA, USA, pp. 4–
10.

Arthur, D. and Panigrahy, R. (2006). Analyzing BitTorrent and
related peer-to-peer networks, Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithm, SODA’06, ACM, New York, NY, pp. 961–969, DOI:
10.1145/1109557.1109664.

BOINC (2011). BOINC poject,
http://boinc.berkeley.edu/.

Chmaj, G. and Walkowiak, K. (2008). Data distribution in
public-resource computing: Modeling and optimization,
Polish Journal of Environmental Studies 17(2B): 11–20.

Chmaj, G. and Walkowiak, K. (2009). Heuristic algorithm
for optimization of P2P-based public-resource comput-
ing systems, in M. Parashar and S.K. Aggarwal (Eds.),
Proceedings of the 5th International Conference on Dis-
tributed Computing and Internet Technology, ICDCIT ’08,
Springer-Verlag, Berlin/Heidelberg, pp. 180–187, DOI:
10.1007/978-3-540-89737-8 19.

Chmaj, G. and Walkowiak, K. (2010a). A P2P computing system
for overlay networks, Future Generation Computer Sys-
tems, DOI: 10.1016/j.future.2010.11.009.

Chmaj, G. and Walkowiak, K. (2010b). Random approach to op-
timization of overlay public-resource computing systems,
International Journal of Electronics and Telecommunica-
tions 56(1): 55–62.

Christakidis, A., Efthymiopoulos, N., Fiedler, J., Dempsey,
S., Koutsopoulos, K., Denazis, S. G., Tombros, S., Gar-
vey, S. and Koufopavlou, O. G. (2011). Vital++, a new
communication paradigm: Embedding P2P technology in
next generation networks, IEEE Communications Maga-
zine 49(1): 84–91.

Cohen, B. (2003). Incentives build robustness in BitTorrent,
http://www.bittorrent.org/
bittorrentecon.pdf.

Couto da Silva, A.P., Leonardi, E., Mellia, M. and Meo, M.
(2011). Chunk distribution in mesh-based large-scale P2P
streaming systems: A fluid approach, IEEE Transactions
on Parallel and Distributed Systems 22(3): 451–463, DOI:
10.1109/TPDS.2010.63.

Ganesan, P. and Seshadri, M. (2005). On cooperative con-
tent distribution and the price of barter, in D.C. Martin
(Ed.), Proceedings of the 25th IEEE International Confer-
ence on Distributed Computing Systems, ICDCS ’05, IEEE
Computer Society, Washington, DC, pp. 81–90, DOI:
10.1109/ICDCS.2005.53.

González-Vélez, H. and Kontagora, M. (2011). Performance
evaluation of MapReduce using full virtualisation on a de-
partmental cloud, International Journal of Applied Math-
ematics and Computer Science 21(2): 275–284, DOI:
10.2478/v10006-011-0020-3.

ILOG (2009). AMPL/CPLEX software,
http://www.ilog.com/products/cplex/.

Jansen, K. and Muller, H. (1994). The minimum broadcast time
problem, in M. Cosnard, A. Ferreira and J. Peters (Eds.),
Parallel and Distributed Computing Theory and Practice,
Lecture Notes in Computer Science, Vol. 805, Springer-
Verlag, Montreal, pp. 219–234.

Jin, H., Luo, F., Zhang, Q., Liao, X. and Zhang, H.
(2006). GTapestry: A locality-aware overlay network
for high performance computing, in P. Bellavista and C.-
M. Chen (Eds.), Proceedings of the 11th IEEE Sympo-
sium on Computers and Communications, ISCC ’06, IEEE
Computer Society, Washington, DC, pp. 76–81, DOI:
10.1109/ISCC.2006.82.

http://boinc.berkeley.edu/
http://www.bittorrent.org/
bittorrentecon.pdf
http://www.ilog.com/products/cplex/

Heuristic algorithms for optimization of task allocation and result distribution . . . 747

Kasprzak, A. (2001). Designing of Wide Area Networks,
Wrocław University of Technology Press, Wrocław, (in
Polish).

Killian, C., Vrable, M., Snoeren, A.C., Vahdat, A. and Pasquale,
J. (2005). The overlay network content distribution prob-
lem, Technical Report CS2005-0824 UCSD, University of
California, San Diego, CA.

Kim, H.K., Kim, J.K. and Ryu, Y.U. (2009). Personalized
recommendation over a customer network for ubiqui-
tous shopping, IEEE Transactions on Services Computing
2(2): 140–151, DOI: 10.1109/TSC.2009.7.

Krauter, K., Buyya, R. and Maheswaran, M. (2002). A tax-
onomy and survey of grid resource management systems
for distributed computing, International Journal of Soft-
ware: Practice and Experience 32(2): 135–164, DOI:
10.1002/spe.432.

Liu, X., Qiao, C., Yu, D. and Jiang, T. (2010). Application-
specific resource provisioning for wide-area dis-
tributed computing, IEEE Network: The Maga-
zine of Global Internetworking 24(4): 25–34, DOI:
10.1109/MNET.2010.5510915.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures
= Evolution Programs, 3rd Edn., Springer-Verlag, London.

Miller, K. and Wolisz, A. (2011). Transport optimization
in peer-to-peer networks, in Y. Cotronis, M. Danelutto
and G.A. Papadopoulos (Eds.), Proceedings of the 2011
19th International Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing, PDP’11, IEEE
Computer Society, Washington, DC, pp. 567–573, DOI:
10.1109/PDP.2011.26.

Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne,
J., Richard, B., Rollins, S., and Z, X. (2002). Peer-to-peer
computing, Technical report, HP Laboratories, Palo Alto,
CA, HPL-2002-57.

Munidger, J. and Weber, R. (2004). Efficient file dissemination
using peer-to-peer technology, Technical report, Statistical
Laboratory Research Reports 2004-01, Cambridge.

Nabrzyski, J., Schopf, J.M. and Weglarz, J. (Eds.) (2004). Grid
Resource Management: State of the Art and Future Trends,
Kluwer Academic Publishers, Norwell, MA.

Pioro, M. and Medhi, D. (2004). Routing, Flow, and Capacity
Design in Communication and Computer Networks, Mor-
gan Kaufman Publishers, San Francisco, CA.

Pop, F. (2012). Heuristics analysis for distributed scheduling us-
ing MONARC simulation tool, ICMS 2012: International
Conference on Modeling and Simulation, Zurich, Switzer-
land, pp. 157–163.

Przewozniczek, M., Walkowiak, K. and Wozniak, M. (2011).
Optimizing distributed computing systems for k-nearest
neighbors classifiers: Evolutionary approach, Logic Jour-
nal of IGPL 19(2): 357–372, DOI: 10.1093/jigpal/jzq034.

Ramzan, N., Quacchio, E., Zgaljic, T., Asioli, S., Celetto,
L., Izquierdo, E. and Rovati, F. (2011). Peer-to-peer
streaming of scalable video in future Internet applications,
IEEE Communications Magazine 49(3): 128–135, DOI:
10.1109/MCOM.2011.5723810.

Samanta, R., Funkhouser, T. and Li, K. (2001). Parallel render-
ing with k-way replication, in S.N. Spencer (Ed.), Proceed-
ings of the IEEE 2001 Symposium on Parallel and Large-
Data Visualization and Graphics, PVG’01, IEEE Press,
Piscataway, NJ, pp. 75–84.

Shen, X., Yu, H., Buford, J. and Akon, M. (Eds.) (2009). Hand-
book of Peer-to-Peer Networking, 1st Edn., Springer Pub-
lishing Company, New York, NY.

Stutzbach, D., Zappala, D. and Rejaie, R. (2004). Swarming:
Scalable content delivery for the masses, Technical Report
CIS-TR-2004-1, University of Oregon, Eugene, OR.

Suri, N., Benincasa, G., Tortonesi, M., Stefanelli, C., Kovach, J.,
Winkler, R., Kohler, R., Hanna, J., Pochet, L. and Watson,
S. (2010). Peer-to-peer communications for tactical en-
vironments: Observations, requirements, and experiences,
IEEE Communications Magazine 48(10): 60–69.

Tarkoma, S. (2010). Overlay Networks: Toward Informa-
tion Networking, 1st Edn., Auerbach Publications, Boston,
MA.

Terzo, O., Mossucca, L., Cucca, M. and Notarpietro, R. (2011).
Data intensive scientific analysis with grid computing, In-
ternational Journal of Applied Mathematics and Computer
Science 21(2): 219–228, DOI: 10.2478/v10006-011-0016-
z.

Travostino, F., Travostino, F. and Karmous-Edwards, G. (Eds.)
(2006). Grid Networks Enabling Grids with Advanced
Communication Technology, Wiley, Chichester.

Vanderster, D.C., Dimopoulos, N.J., Parra-Hernandez, R. and
Sobie, R.J. (2009). Resource allocation on computational
grids using a utility model and the knapsack problem, Fu-
ture Generation Computer Systems 25(1): 35–50, DOI:
10.1016/j.future.2008.07.006.

Wozniak, M. (2009). Evolutionary approach to produce classi-
fier ensemble based on weighted voting, in A. Abraham,
A. Carvalho, F. Herrera and V. Pai (Eds.), Nature and Bio-
logically Inspired Computing, IEEE, Coimbatore, pp. 648–
653.

Yang, X. and de Veciana, G. (2004). Service capacity of peer to
peer networks, INFOCOM 2004. 23rd Annual Joint Con-
ference of the IEEE Computer and Communications Soci-
eties, Hong Kong, China, Vol. 4, pp. 2242–2252.

Zhou, Y., Chiu, D.-M. and Lui, J.C.S. (2011). A simple
model for chunk-scheduling strategies in P2P streaming,
IEEE/ACM Transactions on Networking 19(1): 42–54,
DOI: 10.1109/TNET.2010.2065237.

Grzegorz Chmaj received the M.Sc. and Ph.D.
degrees in computer science from the Wrocław
University of Technology, Poland, in 2005 and
2010, respectively. Currently, he is under con-
tract with the University of Nevada in Las Ve-
gas, USA. His main areas of scientific interests
are distributed processing systems and peer-to-
peer networks, but he has also spent several years
in computer science industry. Doctor Chmaj has
published several papers in journals and partici-

pated in sponsored programs.

748 G. Chmaj et al.

Krzysztof Walkowiak was born in 1973. He
received the Ph.D. degree and the D.Sc. (ha-
bilitation) degree in computer science from the
Wrocław University of Technology, Poland, in
2000 and 2008, respectively. Currently, he is
an associate professor in the Department of Sys-
tems and Computer Networks, Faculty of Elec-
tronics, Wrocław University of Technology. His
research interest is mainly focused on optimiza-
tion of network distributed systems like P2P sys-

tems, multicasting systems, grid systems; network survivability; opti-
mization of connection-oriented networks (MPLS, DWDM); application
of soft-optimization techniques for design of computer networks. Pro-
fessor Walkowiak has been involved in many research projects related to
optimization of computer networks. Moreover, he has consulted projects
for large Polish companies including TP SA, PZU, PKO BP, Energia Pro,
or Ernst and Young. Professor Walkowiak has published more than 150
scientific papers.

Michał Tarnawski was born in 1986. In 2005, he
started his M.Sc. studies in computer science at
the Faculty of Electronics, Wrocław University
of Technology, Poland. In 2010, he graduated
and was awarded for the best thesis at the Faculty
of Electronics in the academic year 2009/2010.
His main objects of interest are computing sys-
tems, reliability and survivability of computer
networks. Currently, he is employed at Opera
Software International as a system and network

administrator.

Michał Kucharzak received his M.Sc. degree
in teleinformatics from the Wrocław University
of Technology in 2008. He is currently a Ph.D.
candidate at the same university and holds the
position of a senior radio research engineer at
the Wrocław Research Center EIT+, Poland. In
recent years, he has been a member of review-
ing committees for many international journals,
as well as program and technical committees for
various conferences. His current research inter-

ests are primarily in the areas of network modeling and network opti-
mization with special regard to overlays, simulations, design of efficient
algorithms and wireless system protocols.

Received: 8 September 2011
Revised: 28 March 2012

	Introduction
	Motivations
	Our contributions
	Paper overview

	System architecture
	Integer linear programming modeling
	Assumptions
	Model

	Greedy algorithm
	Evolutionary algorithm
	Chromosome coding
	Algorithm overview

	Results
	Evaluation of heuristics
	P2P computing system performance

	Related work
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

