
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 3, 765–778
DOI: 10.2478/v10006-012-0057-y

THE FAN–RASPAUD CONJECTURE: A RANDOMIZED ALGORITHMIC
APPROACH AND APPLICATION TO THE PAIR ASSIGNMENT

PROBLEM IN CUBIC NETWORKS

PIOTR FORMANOWICZ ∗,∗∗, KRZYSZTOF TANAŚ ∗

∗ Institute of Computing Science
Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland

Krzysztof.Tanas@cs.put.poznan.pl

∗∗Institute of Bioorganic Chemistry
Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland

It was conjectured by Fan and Raspaud (1994) that every bridgeless cubic graph contains three perfect matchings such that
every edge belongs to at most two of them. We show a randomized algorithmic way of finding Fan–Raspaud colorings of
a given cubic graph and, analyzing the computer results, we try to find and describe the Fan–Raspaud colorings for some
selected classes of cubic graphs. The presented algorithms can then be applied to the pair assignment problem in cubic
computer networks. Another possible application of the algorithms is that of being a tool for mathematicians working in
the field of cubic graph theory, for discovering edge colorings with certain mathematical properties and formulating new
conjectures related to the Fan–Raspaud conjecture.

Keywords: cubic graph, edge coloring, perfect matching, randomized algorithms, computer networks.

1. Introduction

We study edge colorings of cubic graphs. A proper edge
coloring of a graph G = (V, E) is a coloring of all edges
such that, for every pair of edges e1, e2 ∈ E, if e1 and e2
are incident (share a common vertex), then e1 and e2 have
different colors. The smallest number for which there ex-
ists a proper edge coloring for a given graph G = (V, E)
is called the chromatic index of the graph G and is de-
noted by χ

′
(G). For cubic graphs, the chromatic index

is either 3 or 4, what has been proven by Vizing (1964).
Thus there exist cubic graphs which cannot be 3-edge col-
ored in a classic (proper) way. The class of cubic graphs
for which χ

′
= 4 (that is, the class of cubic graphs which

do not have a proper 3-edge coloring) has a special name,
i.e., snark graphs, or simply snarks.

Because of the above fact, we turn our atten-
tion to less restricted 3-edge colorings, where for every
(vertex , color) pair there still exists exactly one adjacent
edge containing the given color but, unlike in a proper
edge coloring, the edges of the graph are allowed to con-
tain two, but not all three colors. The edges are also al-
lowed to remain uncolored. In terms of graph theory, we

are coloring cubic graphs by three perfect matchings with
empty intersection.

It was conjectured by Fan and Raspaud (1994) that
every bridgeless cubic graph can be colored in the above
way. Thus, we call any coloring which meets the specified
conditions a ‘Fan–Raspaud coloring’. If the edges were
allowed to contain all three colors, the coloring would be
trivial—it would be enough to find just one perfect match-
ing and represent it with all three colors.

In this paper, we propose an algorithm which con-
structs Fan–Raspaud colorings for a given cubic graph.
The resulted colorings may represent, for example, pair
assignments of computers for parallel computations in a
cubic network. The colorings can also be studied to ex-
plore their mathematical properties and form new conjec-
tures related to the Fan–Raspaud conjecture.

The edge coloring has been studied in many papers.
For example, Fouquet and Vanherpe (2008) proved that
the conjecture holds true for all graphs with fewer than
32 vertices. It was also proven by Holyer (1981) that the
3-edge-coloring problem of a cubic graph is NP -
complete.

The paper is organized as follows. In Section 2 we

Krzysztof.Tanas@cs.put.poznan.pl

766 P. Formanowicz and K. Tanaś

provide some basic definitions and conjectures concern-
ing Fan–Raspaud colorings. In Section 3 some mathe-
matical properties of these colorings are presented. In
Sections 4–6 we describe the proposed algorithms. One
of the possible applications of the Fan–Raspaud coloring
is shortly discussed in Section 7, while in Section 8 the
classes of graphs used for testing the proposed algorithms
are briefly described. The paper ends with conclusions
and some open problems in Section 9.

2. Basic definitions and conjectures

Definition 1. A cubic graph is a graph with all vertices
of degree 3 (a 3-regular graph).

Definition 2. A snark is a cubic graph G = (V, E) for
which χ

′
= 4, that is, a cubic graph without a proper

3-edge coloring.

Definition 3. A perfect matching of a graph G =
(V, E) on n = 2k vertices, k ∈ N+, is a set of edges
{(a1, b1), . . . , (ak, bk)} where a1, . . . , ak, b1, . . . , bk are
all pairwise distinct vertices.

Definition 4. A girth of a graph G = (V, E) is the length
of the shortest cycle in the graph G. If a graph contains no
cycles, then its girth is infinity.

Conjecture 1. (Fan and Raspaud, 1994) For every bridge-
less cubic graph G = (V, E) there exist three perfect
matchings M1, M2, M3 such that M1 ∩ M2 ∩ M3 = ∅.

Definition 5. A Fan–Raspaud coloring of a cubic
graph G = (V, E) is a set of three perfect matchings
{M1, M2, M3} satisfying the Fan–Raspaud conjecture,
that is, for every e ∈ E there exists i ∈ {1, 2, 3} such
that e /∈ Mi.

Fact 1. The Fan–Raspaud coloring is a generalized
3-edge coloring. It is obvious that every proper 3-edge
coloring of any bridgeless cubic graph is a Fan–Raspaud
coloring. In a Fan–Raspaud coloring, however, a single
edge can have assigned two (but not three) colors.

3. Mathematical properties of
Fan–Raspaud colorings

In this section we describe the studied mathematical prop-
erties of the Fan–Raspaud colorings, such as the bicolored
cycle structure and the Fan–Raspaud disorder, and prove
some facts connected with those properties.

3.1. Bicolored (alternating) cycle structure.

Lemma 1. For every Fan–Raspaud coloring
{M1, M2,M3} of any cubic graph G and for every pair

(a, b), a, b ∈ {1, 2, 3}, a �= b, there exists a set of vertex-
disjoint cycles Ca,b of even length which covers all ver-
tices of the graph G, except for vertices having an inci-
dent edge containing both the colors a and b (we call these
edges ‘sticks’ and describe them later in the paper), and
for every cycle in Ca,b edges are alternating with colors a
and b.

Proof. Let v1 be an arbitrarily chosen vertex, v1 ∈ V (G),
and let a, b ∈ {1, 2, 3}, a �= b be any two colors used
in the coloring. From the definition of the Fan–Raspaud
coloring there exists an edge adjacent to the vertex v1 be-
longing to the perfect matching Ma (that is, painted with
color a). Let it be the edge (v1, v2). From the definition
there also exists an edge adjacent to v2 belonging to Mb.
Let it be the edge (v2, v3). Now, we can repeat the proce-
dure for each visited vertex with alternating colors a and
b. Since the graph G is cubic, which means G has no
dead ends (degree 1 vertices), we can always continue the
procedure and visit the next vertex on our way, and since
n = |V (G)| is finite, we will always return to an already
visited vertex (v1) after a finite number of steps. Since
every cycle of odd length requires at least three colors for
a proper edge coloring, and our procedure allows travel-
ling through edges of only two colors while the coloring
of our graph is a proper edge coloring, the cycle we have
constructed has even length. �

The set of cycles produced by our procedure forms a
bicolored cycle structure of the cubic graph G.

Fact 2. Some of the bicolored cycles of a bicolored cycle
structure of a Fan–Raspaud coloring may not be normal
cycles, but ‘sticks’ (single edges with some two colors a
and b).

When counting the bicolored cycle structure of a
given cubic graph G, we assume that a stick is a cycle
of length 2 for the pair of colors it contains.

Lemma 2. For every snark G, every Fan–Raspaud col-
oring {M1, M2, M3} contains at least one stick for every
pair of colors (a, b), a, b ∈ {1, 2, 3}, a �= b.

Proof. It is derived by contradiction. Let us assume
that G is a snark and for some Fan–Raspaud coloring
{M1, M2, M3} there exists a pair of colors a, b with no
edge having both the colors a and b. That implies that
the bicolored cycle structure of the snark G, Fan–Raspaud
coloring M1, M2, M3 and colors a, b consists of standard
cycles only. From this, we know that the whole graph
G (all vertices) can be covered by a set of vertex-disjoint
standard bicolored cycles (we say that a vertex is covered
when for every of the three colors there exists an adja-
cent edge containing that color). Thus, every vertex of the
graph has exactly two adjacent colored edges, both single-
colored.

Since G is cubic, every vertex has exactly one not yet
colored adjacent edge, so the set of all uncolored edges

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 767

forms a perfect matching. Coloring it with the third color
would complete a proper 3-edge coloring of the graph G.
So, G has a proper 3-edge coloring. Therefore G is not a
snark. �

3.2. Fan–Raspaud cycle structure: The ‘disorder’.

Definition 6. Every Fan–Raspaud-coloring A =
{M1, M2, M3} which is not a proper 3-edge coloring con-
tains a set of edges colored in a way not allowed in a
standard coloring, that is, non-single-colored ones. These
edges have 0 or 2 colors.

Let us call the set of non-single-colored edges in the
coloring A a Fan–Raspaud disorder (or just disorder) of
the coloring A.

Lemma 3. For every Fan–Raspaud coloring the disorder
is a set of vertex-disjoint cycles of even length.

Proof. It is analogical to the bicolored cycle structure
proof, using the same procedure by going through double-
colored and empty edges, although in this case the cycles
will not cover the entire graph. �

4. Randomized algorithm approach and its
advantages

Since we know that the proper 3-edge coloring problem
for cubic graphs is NP-complete, we suspect that the
Fan–Raspaud coloring problem for cubic graphs is also
NP-complete. If this were true, this would mean there
did not exist a deterministic polynomial time algorithm
for this problem, unless P = NP . We then turn our at-
tention to randomized methods and construct algorithms
which try to find a Fan–Raspaud coloring for a given cu-
bic graph by coloring the edges of the graph in a way de-
termined by a series of random draws.

As the Fan–Raspaud conjecture is already solved for
small graphs (Fouquet and Vanherpe, 2008), the algorithm
we construct must be able to effectively handle larger cu-
bic graphs, too. The algorithms we construct belong to the
Monte-Carlo class of randomized methods.

4.1. Basic algorithms components. The constructed
algorithms are based on the idea of edge-coloring of a
given cubic graph with recursive place nonplace scanning
technique performed every time after adding a color to an
edge. When the recursions have finished (and the result
of the attempt to find a Fan–Raspaud coloring is undeter-
mined yet), we perform a random draw which will decide
which edge to color next. The algorithms are arranged in
such a way that it is never needed to make a random draw
with more than two possible numbers (except the selec-
tion of the starting vertex, but in this case it is chosen by
the user (or by default, we start from the vertex 0), rather
than being randomly drawn).

We have constructed and tested two algorithms. The
first one is a ‘simple’ version. In this algorithm the place-
nonplace scanning procedure (described later in Section
5.2) does not check the number of empty (without any
assigned colors yet) edges adjacent to the scanned ver-
tex, and we do not make a distinction whether the ad-
jacent edge is empty or single-colored (although double-
colored edges are always considered ‘blocked’, since the
Fan–Raspaud conjecture forbids any edge of the graph to
have three colors).

The second algorithm is the ‘minimum disorder’ al-
gorithm (or we can call it the ‘max-single-colored-edge’
algorithm). In this algorithm the place/nonplace scan-
ning procedure’s decision is different for various num-
bers of (still) empty edges adjacent to the scanned ver-
tex. In this algorithm we seek to create as many nor-
mal (single-colored) edges as possible, creating double-
colored edges only when there is no place to fit some color
for the scanned vertex without creating a new double-
colored edge.

4.2. Definitions, procedures and functions used in
both algorithms.

• Assigning colors to vertices. Obviously, in a
Fan–Raspaud coloring we color edges, not vertices,
of a given cubic graph. However, for technical reasons,
since the graph G = (V, E) is described (in the input file)
as a set of triples [v.s[0], v.s[1], v.s[2]], v ∈ V (G), where
v.s[i], i ∈ {0, 1, 2} is the number of v’s neighbor on
position i, the current state of the graph is implemented as
an array of vertices, each of which has stored information
about the neighbor numbers and positions of each of the
three colors. From the definition of perfect matching, we
know that no vertex may have more than one adjacent
edge containing the same color, and in a complete
coloring for every pair (v, k), v ∈ G, where k is a color,
there exists exactly one i ∈ {0, 1, 2} such that the edge
(v, v.s[i]) contains the color k. Therefore it is safe to
store information about the current state of the coloring
in the above way.

• Starting vertex. For both algorithms, we need to choose
a vertex to start the algorithm from. The starting vertex is
chosen by the user (or by default, we start from the vertex
0). The number of the starting vertex is denoted as sv. Ini-
tially, we color all the edges incident to the starting vertex
with one color each. Permutation of the colors is irrele-
vant, so we assume that the edge connecting the neighbor
of the starting vertex in position 0 has the first color, in
position 1—the second color, and in position 2—the third
color. In the sample results shown later in the article, the
first color is dark gray, the second—middle gray and the
the third—light gray. The empty (uncolored) edges are
painted with dashed lines in the examples.

768 P. Formanowicz and K. Tanaś

Definition 7. For our algorithm, we say that a color k is
assigned to a vertex v ∈ V (G) on position i, i ∈ {0, 1, 2}
if and only if the edge (v, v.s[i]) contains the color k. In
a more general way, we can say that a color k is assigned
to a vertex v ∈ V (G) if and only if any edge adjacent to v
(already) contains the color k.

In the presented algorithm, positions of the colors
for each vertex v ∈ V (G), at the current state of the
coloring, are stored as [v.kol[0], v.kol[1], v.kol[2]]. If
the vertex v has not been assigned the color k yet,
then v.kol[k] = 255. Initially for every v ∈ V (G),
k ∈ {0, 1, 2}, v.kol[k] = 255, except for values which
correspond to the edges adjacent to the starting vertex.

• Partially Done Vertices (PDV) list. During the progress
of the algorithm we need to keep information about the
vertices which were already visited (and assigned any
color(s)). If a series of recursive colorings finishes but
the result of the coloring (success or failure) is undeter-
mined yet, we need to know which vertex (and color) we
should start from now making a random draw. For this
purpose, we construct the PDV (Partially Done Vertices)
list. From now on, we will refer to the element of the list
in the position x as PDV[x]. The first element is PDV[0].
There is also a function PDVL to get the current length of
the PDV list. Initially, for both versions of the algorithm,
the PDV list contains three vertices—the neighbors of the
starting vertex.

• Binary code. To store information about the results of
all random draws made during the progress of the algo-
rithm, the graph is assigned a CODE array. In general,
CODE[i] is a result of the i + 1-th random draw (we start
from CODE[0]). There is also a CODEL function to get
the length of the code at present. Initially, CODEL = 0
and CODE = ∅. Due to specification of the algorithms,
there are always exactly two possible edges to add the
color of the draw to the vertex assigned for the draw,
hence every random draw performed in the algorithm is
a binary draw, and thus CODE [i] ∈ {0, 1} for every
i ∈ {0, . . . ,CODEL − 1}.

• Places and nonplaces.

Definition 8. A place of a vertex v1 adjacent to v is a
place for color k if and only if it is legal to add the color
k to the edge (v, v1).

Thus, for the Fan–Raspaud coloring algorithm, a ver-
tex v1 is a place if and only if v1 does not have (already)
assigned color k (because in any perfect matching there
cannot be two same-color edges sharing a common ver-
tex), and the (v, v1) edge does not already have two as-
signed colors (because the Fan–Raspaud conjecture does
not allow any edge to be three-colored). We can always
assume that the vertex v has not been assigned the color
k yet, because both the presented algorithms perform the

PNS procedure only for vertices which are still without
the scanned color. If a vertex is not a place for a given
color, it is a nonplace.

• Prefix tree. A prefix tree is a structure which stores the
data about all the possible binary codes for the given cu-
bic graph and specified starting vertex. Every leaf of the
prefix tree has an associated binary code and a Boolean
value determining whether the coloring was successful or
not (so the prefix tree has ‘good’ and ’bad’ leaves). By
counting the number of good leaves among all the leaves
and their binary code lengths, we can determine the proba-
bility of finding a complete Fan–Raspaud coloring for any
given cubic graph and a given starting vertex.

To construct a prefix tree, we can modify any of the
presented algorithms in such a way that we do not make
random draws at all, but every time a draw would be made
in the unmodified algorithm, split the graph G into two
graphs G and G′ instead, keeping G’s current coloring
state for both newly formed graphs. Then add 0, and 1
to the binary codes of G and G′, respectively, and make
colorings such as if the added digits were the results of a
random draw in the unmodified algorithm. Then we can
continue the algorithm recursively for G and G′.

A sample prefix tree looks like the set of binary prefix
codes below, for the first Celmins–Swart snark (Fig. 1)
used as an example:

FIRST_CELMINS-SWART_SNARK
starting vertex = 8
minimum disorder (md) version
00 N
010 N
0110 N
0111 N
1000 N
1001 N
101 N
110 Y
111 N

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

Fig. 1. First Celmins–Swart snark.

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 769

• Explanation of the listed prefix tree. The prefix tree
listed above shows results of the algorithm in the mini-
mum disorder (md) version for the first Celmins–Swart
snark with vertices numbered as shown in Fig. 1. We
have chosen the vertex number 8 as the starting vertex,
and colored each of its incident edges with one color.
Permutation of colors is irrelevant, so we assume that
the colors are assigned as follows: color0 = darkgray ,
color1 = middlegray , color2 = lightgray . We have ob-
tained a coloring position as shown in Fig. 2.

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

starting vertex=8, CODE=NULL

Fig. 2. Starting position for a given example.

In the above coloring position there is neither a cer-
tain edge to add any color, nor has the coloring ended
(either in a success or failure). The first random draw
(vertex, color) pair found is (5,middlegray). The neigh-
bors of the vertex 5 are 2, 7, 8. The nonplace for the pair
(5,middlegray) is the vertex number 8, so the position of
the nonplace is 2. We draw a random bit. If a 0 is drawn,
we add the middle gray color in position 2 +3 1 = 0, and
if a 1 is drawn—in position 2+3 2 = 1. Therefore we add
the gray color to the edge (5, 2) or (5, 7) depending on the
result of the random draw performed.

Let us now show a situation after the last draw before
conclusion of the coloring, where one result of the draw
leads to a successful Fan–Raspaud coloring and the other
to a failure.

In the above situation the algorithm has al-
ready drawn two 1’s in earlier stages of the color-
ing. We have reached a position without a certain
(edge, color) pair, and the (vertex , color) pair for a
draw was (24, darkgray). The cases when a 0 and
a 1 were drawn, thus adding the dark gray color to
the (24, 21) or the (24, 22) edge, are shown on the
left and the right, respectively. In this example, the
0-case will eventually form a successful Fan–Raspaud
coloring, while the 1-case will end in a failure. Let us
show final coloring states for both specified cases Fig. 4:

The left part shows a successful Fan–Raspaud color-
ing for the given example, represented by the 110 code

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

starting vertex=8, CODE=110

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

starting vertex=8, CODE=111

Fig. 3. Positions after the last draw, one leading to a successful
Fan–Raspaud coloring and the other ending in a failure.

in the sample prefix tree. The right part shows a failed
coloring represented by the code 111. We know that the
coloring ended in a failure, because there is no legal place
for the (15, lightgray) pair. All three positions for the ver-
tex number 15 and the light gray color are nonplaces.

Fact 3. The prefix tree can be used to compute the effi-
ciency of the algorithm.

• The OP[] array. OP[] is a temporary globally de-
clared array containing the list of operations on the PDV
list created during each recursive series of colorings (tem-
porary list of vertices to add to the PDV list after the recur-
sion has finished). It is implemented for technical reasons.
The present length of the OP array is stored in the variable
OPL.

4.3. Procedures and functions used in the algorithm.

• int NCOL(v): Returns the number of colors already
assigned to the vertex v.

• bool COL2(v, p): Returns TRUE if and only if the
edge adjacent to the vertex v on position p (p ∈
{0, 1, 2}) has (already) assigned two colors.

770 P. Formanowicz and K. Tanaś

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

starting vertex=8, CODE=110 SUCCESS!

0 1

2 3 4

5 6

7

8

9

10

11 12

13 14 15

16 17

18

19

2021

22

2324

25

starting vertex=8, CODE=111 FAILURE(15,blue)

Fig. 4. Successful Fan–Raspaud coloring (left) and a failed one
(right).

• int POZ (v1, v2): Returns the position (∈ {0, 1, 2})
of the vertex v2 among the neighbors of v1 (or 255 if
the vertices v1 and v2 are not adjacent).

Algorithm 1 PNS (v, k)
pl = 0; // the number of places
p = −1; // position of the place, relevant only when
there is exactly one place
for (i = 0, 2) do

if ((COL2(v, i) == false)
and (v[v.s[i]].kol[k] == 255)) then

pl = pl + 1; p = i;
end if

end for
if (pl == 0) then

PRINT RESULT(FAILURE); STOP;
end if
if (pl == 1) then

COLOR(v, v.s[p], k);
end if

Place/Nonplace Scanning (PNS) procedure.
A place/nonplace scanning is the checking of possi-
ble places (among the neighbors of a given vertex) where
it is possible to legally add the scanned color to this
vertex. In the simple version any of the scanned vertex’s
neighbors is a place for the color k if and only if the color

k has not been assigned there yet, and the edge connecting
the scanned vertex and neighbor is not blocked (i.e., it is
not double-colored). If the procedure finds that there are

x y

x
1

x
2

y
1

y
2

[pxy+1]
3

[pyx+1]
3

[pxy+2]
3

[pyx+2]
3

[pxy]
3

[pyx]
3

Fig. 5. Vertices x and y and their neighbors with marked posi-
tion numbers.

no places for the scanned color, we already know that we
will not be able to complete the Fan–Raspaud coloring.
This time the randomized algorithm has failed. If there
is exactly one place, we are sure where to fit the color k
for the vertex v and then we proceed to the (recursive)
coloring procedure. If there are two or more possible
places to add the color k to the vertex v, we cannot
determine the color’s location yet.

Recursive coloring procedure. Every time the algorithm
reaches the beginning of this procedure, a color k is added
to the edge (x, y).

Now, for both other neighbors of the vertices x and
y (let us name them x1, x2 and y1, y2, respectively) we
check if the vertex is still free for the color k and the
edge connecting the scanned vertex and neighbor is not
blocked (already double-colored), and if so, we will go
to the place/nonplace scanning procedure. Also, for the
vertices x and y, check if the vertex has exactly two (al-
ready) assigned colors, and if so, go to the PNS proce-
dure for this vertex and the only lacking color (let us
call this color l). The pair of vertices (x, y) and their
neighbors with marked position numbers (mod 3), where
pxy = POZ (x, y) and pyx = POZ (y, x), are shown in
the Fig. 5.

5. Algorithms

5.1. Basic algorithm. In the basic algorithm we try to
create random Fan–Raspaud colorings, without giving ex-
tra constraints on the coloring. This way we can use the
algorithm to seek Fan–Raspaud colorings, and discover
the ones with interesting properties, without limiting the
set of possible colorings to any specific subset.

Fan–Raspaud coloring: The basic algorithm—code.
In the basic algorithm we do not check the number of
empty edges when performing a place/nonplace scanning
or before the random draw step. This algorithm generally

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 771

Algorithm 2 COLOR(x, y, k)
for (a={x,y}) do

if (NCOL(a) == 0) then
OPL = OPL + 1;OP [OPL − 1] = a;

end if
end for
pxy = POZ (x, y); pyx = POZ (y, x);
x.kol[k] = pxy; y.kol[k] = pyx;
x1 = v[x].s[(pxy + 1) mod 3];
x2 = v[x].s[(pxy + 2) mod 3];
y1 = v[y].s[(pyx + 1) mod 3];
y2 = v[y].s[(pyx + 2) mod 3];
for ({a, b, c} = {x, pxy + 1, x1}, {x, pxy + 2, x2},
{y, pyx + 1, y1}, {y, pyx + 2, y2}) do

if ((COL2(a, (b mod 3)) == false)
and (c.kol[k] == 255)) then

PNS (c, k);
end if

end for
for (a = {x, y}) do

if (NCOL(a) == 2) then
PNS (a, l); // l is the only lacking color for

the vertex x or y, respectively
end if

end for

Algorithm 3 FAN − RASPAUD STARTUP(G, sv)
Graph G: {v[n] : s[3], kol[3]}

CODEL = 0;CODE = ∅;PDVL = 3;
for (i = 0, 2) do

v[sv].kol[i] = i;
(v[sv].s[i]).kol[i] = POZ (v[sv].s[i], sv)
PDV [i] = v[sv].s[i];

end for
// elsewhere kol[i] = 255;
FAN RASPAUD COLORING(G);

gives colorings with more non-single-colored edges than
the minimum disorder algorithm, but is more likely to find
a complete Fan–Raspaud coloring (with greater probabil-
ity of success).

5.2. ‘Minimum disorder’ algorithm. In this al-
gorithm we try to create a Fan–Raspaud coloring of a
given cubic graph with as small Fan–Raspaud disorder
as possible. Thus, we try to maximize the number of
‘classic’ (single-colored) edges in the coloring. As many
steps of the md algorithm are performed in the same way
as in the basic algorithm, we will limit the description of
the md algorithm to the steps and procedures which work
differently.

• Place-nonplace scanning procedure. The PNS pro-

Algorithm 4 FAN − RASPAUD COLORING(G)
if (PDVL > 0) then

rdf = false; // random draw found? (true/false)
lk, lw, lw(0), lw(1); p = PDV [0];
if (NCOL(p) == 3) then // the fully-collored

// vertex case
for (i = 1,PDVL− 1) do

PDV [i − 1] = PDV [i];
end for
PDVL = PDVL − 1;
Let emp be the number of empty edges adjacent
to p
if (emp == 1) then

Let a be the position of the only empty edge
for p
q = v[p].s[a]; kt = POZ(q, p);
x1 = v[q].s[(kt + 1) mod 3];
x2 = v[q].s[(kt + 2) mod 3];
if (NCOL(x1) + NCOL(x2) == 0) then

// A safeguard against locking by an
// all-empty-edge edge cut.
lk = 0; lw = q; lw(0) = x1;
lw(1) = x2; rdf = true;

end if
end if

else // the non-fully-colored vertex case
Let lk be the lowest-numbered color for which
vertex p has exactly 2 places.
Let nm be the position of the only nonplace for
the pair (p, k).
lw = p; lw(0) = v[p].s[(nm + 1) mod 3];
lw(1) = v[p].s[(nm + 2) mod 3];

end if
if (rdf == true) then

// the random draw
x = random, x ∈ {0, 1}.
CODEL = CODEL + 1;
CODE [CODEL − 1] = x;
COLOR(lw, lw(x), lk);
// recursive coloring sequence
MERGE OP ;
// merge OP array with the end of the PDV list

end if
FAN − RASPAUD COLORING(G);
// for the modified graph, after coloring sequence

else // if the PDV list is empty
PRINT RESULT (SUCCESS);STOP ;

end if

cedure in the minimum disorder algorithm works quite
differently than in the basic algorithm. The definitions
of place and nonplace remain the same, but there is a
priority for scanning for places among those neighbors
for which the edge connected to the scanned vertex is

772 P. Formanowicz and K. Tanaś

empty. If there is exactly one place among the empty-
edge neighbors, we proceed directly to the recursive
scanning procedure for that place and the current color.
We scan the other neighbors only if there are no places
among the empty-edge neighbors. If there are at least
two empty-edge places or no empty-edge places and
two non-empty-edge places, we cannot determine the
location of the current color yet. If all three neighbors are
nonplaces, the algorithm returns a ‘failure’ result as in the
basic algorithm.

• Non-fully colored vertex case. The non-fully colored
vertex case step is also different in this algorithm. To de-
termine the position of the nonplace for the random draw
step we consider two cases, depending on the number of
empty edges adjacent to the vertex p:

(i) One empty adjacent edge: In this case we know
that the vertex p is lacking only one color, both the
non-empty-edge neighbors are places and the empty-
edge neighbor is a nonplace (otherwise, the algo-
rithm would have found a sure coloring or a failure
earlier, before reaching this step).

(ii) Two empty adjacent edges: In this case we have
two empty-edge places and a non-empty-edge non-
place (otherwise the algorithm would have found a
sure coloring or a failure earlier, before reaching this
step).

Thus, in both cases the position of the nonplace for
the next random draw (let us call it nm), nm ∈ {0, 1, 2},
is the position of the edge with a distinct state of emptiness
(the empty edge in Case (i) or the non-empty edge in Case
(ii)).

Fact 4. The minimum disorder algorithm does not al-
ways find the Fan–Raspaud coloring with minimum pos-
sible disorder for the given cubic graph. If this version
succeeds, hovewer, then the coloring found is usually a
good approximation.

The above fact is confirmed by results shown in the
efficiency tables, constructed by running the mimimum
disorder algorithm for the tested snarks, constructing a
prefix tree for every possible starting vertex and count-
ing the total number of the Fan–Raspaud colorings for
each possible length of the Fan–Raspaud disorder. For the
tested graphs the average length of the Fan–Raspaud dis-
order in successful colorings is less than 9 and most of the
found colorings have disorder of length 6, except for the
Goldberg snark graphs, for which most of Fan–Raspaud
colorings found have length 8.

6. Properties and analysis of the algorithms

In the previous section we described the algorithms and
the mathematical properties of the resulting Fan–Raspaud

colorings. Now we describe the properties of the algo-
rithms.

6.1. Time complexity.

• Coloring procedure. In a Fan–Raspaud coloring of a
cubic graph of order n there are always 3 colors, and n/2
edges with each color. Thus, the coloring procedure must
be applied 3n/2 times (or less when the coloring fails).

• Place/nonplace scanning procedure. After every col-
oring of any edge the place-nonplace scanning procedure
is applied several times. Now let us compute the maxi-
mum possible number of scannings for any vertex. Let
x ∈ V (G) be an arbitrarily chosen vertex of the cubic
graph G. The vertex x is scanned for places-nonplaces if
and only if (i) any of x’s three neighbors receives a new
color and (ii) x receives a double-colored edge.

Every time any neighbor receives a color which is
already assigned to any other neighbor of the vertex x, x
has at most one place for that color. Hence x will either
be assigned that color or had no place to legally fit this
color and the algorithm will end in a failure. Thus, for
m colors Case (i) will occur at most 2m times. For a
Fan–Raspaud coloring m = 3, so 2m = 6. Case (ii)
can happen only once because for three colors a vertex
can have only one adjacent double-colored edge. Since
the vertex x is arbitrarily chosen, we know that any vertex
will be scanned at most 7 times during the progress of the
presented coloring algorithms.

• Random draw phase. The random draw phase (with de-
termining the vertex and the color to draw and its possible
places) has always O(1) steps.

• Total. Totalling the complexities of all the procedures,
we can now determine that the time complexity of the
whole algorithm (in an unmodified version, when we
make random draws, without splitting the graph to find
the prefix tree) is O(n).

6.2. Memory complexity.

• Graph data. Since we know that the graph is cubic, there
is no need to store the full adjacency matrix of the graph.
We only need to store 3n numbers being every vertex’s
neighbor indices. The data about the position of each of
the three colors has only 4 possible values, so for all the
vertices and colors the memory needed here is 3n ·2 = 6n
bits.

• PDV + OP lists. The Partially Done Vertices (PDV) list
plus the temporary OP list of operations to be made on the
list (new vertices to add) have a combined length less than
n at any time during the run of the algorithm.

• Binary code. The binary code contains the results of
all the random draws. Theoretically, there are at most

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 773

3n/2 times that the coloring procedure must be applied,
and every draw result needs just one bit of memory, hence
the length of the binary code will never exceed 3n/2 bits
3n/16 bytes.

• Depth of recursion in the coloring procedure. Since
there are no more than 3n/2 times that the coloring pro-
cedure is applied and information on every use of the col-
oring procedure (its vertices and color) has O(1) bytes, at
any time while running the algorithm the memory com-
plexity of the recursive coloring does not exceed O(n).

• Total. Counting the total needed memory for the algo-
rithm, in both versions, we find that the memory complex-
ity of the shown algorithm is O(n).

6.3. Efficiency. The efficiency of the algorithm is mea-
sured as a probability of successfully finding the complete
Fan–Raspaud coloring for a given cubic graph and start-
ing vertex. It can be measured by the classical probability
of hitting any of the ‘correct’ leaves of the prefix tree.

For the minimum disorder algorithm another possi-
ble measure of efficiency can be applied by counting the
average number of non-single-colored edges (that is, the
average size of the Fan–Raspaud disorder) of the color-
ings represented by the correct leaves of the prefix tree of
a given cubic graph.

The efficiency of the algorithms can also be com-
puted using other measures. Computing using classic
probability is not always the most accurate option, as the
algorithm uses different amounts of time for different se-
quences of random draws, that is, for reaching different
leaves of the prefix tree (whether they are ‘correct’ or ‘in-
correct’ leaves). Hence, if we include the time optimiza-
tion, another measure would be needed to the effectively
compute efficiency of our algorithm. Efficiency tables and
results are shown in Appendix B.

6.4. Validity of the algorithm. We now prove that the
simple version of the algorithm can find a Fan–Raspaud
coloring if one exists. For the starting vertex coloring
problem, for any given current state of the coloring, be-
fore each random draw we have exactly two possibilities
(possible places) for a particular color to add. Thus, the
continuation of coloring for a given starting vertex and
current code plus a 0 covers all possible colorings (suc-
cessful or failed) with the drawn color added to one of the
places, and for a 1 added to the code—for the other case.
Given the generality of the position, we can recursively
prove that the simple version of the algorithm covers all
the possible states of the coloring. We assign three single-
colored edges (1, 1, 1) to the starting vertex because it is
known that, if there exists a Fan–Raspaud coloring with
all the (2, 1, 0)-edge vertices for a given cubic graph, the
graph is not a snark (we can just convert edges with the

same number of colors to three new perfect matchings,
which form a classic 3-edge coloring). Of course, if the
algorithm is unable to find a Fan–Raspaud coloring for a
given starting vertex with 3 single-colored edges (statis-
tically a very rare situation), we can start from any other
vertex (the starting vertex number is given as a parameter
of the algorithm).

7. Application of Fan–Raspaud colorings in
the pair assignment problem in cubic net-
works

In this section we show a possible application of Fan–
Raspaud colorings to assigning pairs of computers in a
cubic network for a possible research project consisting of
3 parallel computations, represented by colors of edges.

7.1. Cubic network as a computer network topology.
A cubic network is one of the possible topologies for com-
puter networks. The mathematical model of such a net-
work is a cubic graph. Its advantages include a constant
vertex degree and (generally) a low graph diameter. The
Fan–Raspaud conjecture also requires the cubic graph to
be bridgeless, as a cubic graph with a bridge (cut-edge)
may contain no perfect matching at all. However, a graph
representing a cubic computer network should be bridge-
less, as it is generally not a wise idea to design networks
in such a way that a failure of just one connection (cable)
would lead to a disconnection of the whole network and
make communication between some computers and others
unavailable.

7.2. Pair assignment problem in a cubic network.
Let us assume that we are operating on a bridgeless cu-
bic computer network, which is used for doing distributed
programming computations, that must be performed by
pairs of computers linked by a network connection. Sup-
pose that the network is computing a distributed research
problem consisting of n parallel subproblems. Assume
that the data used in the computations have to be trans-
ferred, so we want the computations to be performed by
pairs of computers. Of course, any two computers can be
assigned as a pair for computing any of the subproblems
if, and only if, they are directly linked by a network con-
nection. Let us assume that the cables, or some other ob-
jects representing the network connections, have a trans-
fer limit, which allows at most m computations to have
data transferred at the same time by one network connec-
tion (or exceeding the limit would reduce the speed of the
computatiom below a satisfactory level).

In terms of graph theory, we are trying to find n per-
fect matchings in a bridgeless cubic graph, such that no
edge of the graph belongs to more than m of them.

774 P. Formanowicz and K. Tanaś

Fact 5. For m = 1, the problem turns into finding a
proper n−edge coloring. For m = 2, n = 3, we seek
a Fan–Raspaud coloring.

If m = 1, we would be seeking n disjoint perfect
matchings, and the problem would be associated with
classic edge coloring. Most bridgeless cubic graphs can
be 3-edge-colored in a classic way (see Fig. 6). However,

Fig. 6. Proper 3-edge-colored cubic graph.

because of the existence of snarks, not every bridgeless
cubic graph has a proper 3-edge coloring (see Fig. 7).

Fig. 7. Petersen graph has no proper 3-edge coloring. This is an
example of a Fan–Raspaud coloring.

Because of the previously mentioned facts, we turn
our attention to the case when m = 2.

Fact 6. For m = 2, n = 3, the problem turns into find-
ing a Fan–Raspaud coloring for a given graph. Unless the
Fan–Raspaud conjecture turns out to be false, it is possi-
ble to assign pairs of computers for three parallel compu-
tations with every computer being assigned to a pair for
every of the three computations, and there are no edges

(network cables) overloaded by transferring data for all
three of them.

7.3. When to use which algorithm. Depending on the
additional condition associated with the pair assignment
problem in a cubic computer network, it varies which of
the presented algorithms would be the best to use. We
consider the following two cases

(i) Network connections may be assigned to 2 compu-
tations without loss of efficiency. In this case the
number of overloaded network cables (represented
by double-colored edges) is unimportant. In this case
we use the basic algorithm, which has greater prob-
ability of finding a complete Fan–Raspaud coloring
without specific properties.

(ii) Assigning 2 computations to a single connection
would reduce efficiency of the computed prob-
lem. In this case we seek an assignment with
minimum possible overloaded connections (double-
colored edges). Hence we use the md algorithm.

8. Snarks as the chosen class of cubic graphs
for the algorithm

The graphs which we have used as the input while testing
the algorithm are snarks (although, technically, both the
algorithms can handle any cubic graph). The reason is the
following fact and its implications.

Fact 7. Every proper 3-edge coloring of any cubic graph
is a Fan–Raspaud coloring.

The above fact implies that the Fan–Raspaud con-
jecture is true for all the cubic graphs with a proper
3-edge coloring. Hence, the only interesting graphs when
exploring the Fan–Raspaud conjecture, and the only pos-
sible counterexamples, are snarks. Although it has been
proven (Holyer, 1981) that it is an NP -complete problem
whether a given cubic graph is a snark, we can test the
algorithm for many graphs which are known to be snarks.

8.1. Classes of snarks used for testing the algorithms.
As the Fan–Raspaud conjecture is open only for snarks,
the snarks are the graphs used as the input for the pre-
sented algorithm. We now describe various subclasses of
snarks, for which the algorithm has found a Fan–Raspaud
coloring (shown in the figures in Appendix A).

• Flower snarks. Isaacs (1975) found an infinite fam-
ily of snarks of order 8n + 20,n ∈ N, named respec-
tively “Flower snark J5, J7, J9, . . .”. A sample Fan–
Raspaud coloring of the Flower snark 5 is shown in
Fig. 8.

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 775

• Goldberg snarks. Goldberg (1981) found an infinite
family of snarks of order 16n + 24, n ∈ N. These
snarks are now named respectively “Goldberg snark
3, 5, 7, Because the Goldberg snark 3 is trivial
(contains triangles), as the input graphs for the stud-
ied algorithms we use only Goldberg snarks 5 and
higher. A sample Fan–Raspaud coloring of the Gold-
berg snark 5 is shown in the Fig. 9.

• Szekeres snarks. Another famous and one of the
oldest known snarks is the 50-vertex snark found
by Szekeres (1973), now known as the Szekeres
snark. Furthermore, the Szekeres snark can be gen-
eralized into an infinite family of 50 + 40n-vertex
snarks, n ∈ N, called “generalized Szekeres snarks”.
The construction of generalized Szekeres snarks is
shown by Watkins (1989). An example of a Fan–
Raspaud coloring of the classic (50-vertex) Szekeres
snark is shown in Fig. 13.

• Watkins snark. Another well-known 50-vertex snark
is the Watkins snark, found by Watkins and Wilson
(1988). An example of a Fan–Raspaud coloring of
the Watkins snark is shown in the Fig. 12.

• Celmins-Swart snarks. The Celmins–Swart snarks
are two 26-vertex snarks discovered by Celmins and
Swart (1979). Examples of Fan–Raspaud colorings
of the Celmins–Swart snarks 1 and 2 are shown in
Figs. 10 and 11, respectively.

Fact 8. Studying the resulting Fan–Raspaud colorings for
the subclasses of snarks listed in the paper, it is possi-
ble to create a generalized mathematical construction of
a Fan–Raspaud coloring. This, combined with the proof
of validity of the algorithm shown in Section 6.4, proves
that the algorithm finds Fan–Raspaud colorings for whole
classes of snarks, not just for individual ones.

9. Conclusion

The class of cubic graphs plays an important role in graph
theory and related fields of research, with various ap-
plications. A survey of cubic graphs is well described
by Greenlaw (1995). In this paper we have studied edge
coloring, which is a well-known subfield of graph theory,
and presented algorithms seeking a kind of generalized 3-
edge colorings known as Fan–Raspaud colorings, which
can represent a mathematical model of pair assignments
for parallel computations in cubic computer networks.
The performance results of both algorithms are shown in
Appendix B. For nearly all tested classes of graphs, the
minimum disorder version has a high probability of find-
ing a coloring with disorder of length 6 (which is a min-
imum possible for a snark), except for Goldberg snarks,
for which the most often found disorder length is 8, but it
is still a good approximation.

Another possible application of the implemented al-
gorithms is that of being a tool for mathematicians work-
ing in the field of cubic graph theory, which allows dis-
covering Fan–Raspaud colorings with interesting mathe-
matical properties and formulate new related conjectures,
some of which we propose below.

9.1. Proposed generalization of the Fan–Raspaud
conjecture and related problems. Having performed
the presented algorithm for various snarks and studied the
resulting Fan–Raspaud colorings and their properties, we
describe an interesting property of the Fan–Raspaud col-
orings, the minimum number of cycles in a Fan–Raspaud
coloring of a given snark and related problems.

• Minimum number of cycles in the Fan–Raspaud disor-
der. By testing the algorithm we have found that for the
tested classes of snarks there exists a Fan–Raspaud col-
oring with a disorder consisting of only one small cycle,
usually a 6-cycle.

However, Kochol (1996) found a method (using
graph superposition) to construct snarks of large (> 6)
girth. That implies that there does not exist a con-
stant number k such that for every snark there exists a
Fan–Raspaud coloring with the Fan–Raspaud disorder of
length not greater than k.

Nevertheless, it is not known whether there exists a
constant number k such that for every snark there exists
a Fan–Raspaud coloring with the disorder consisting of
at most k cycles (of any length). Thus, after testing the
described algorithms for various classes of snarks (and in-
dividual snarks) appearing i the literature, we propose a
generalization of the Fan–Raspaud conjecture, which we
call the K-cycle Fan–Raspaud conjecture.

• K-cycle Fan–Raspaud conjecture. If there does not exist
a one-cycle-disorder Fan–Raspaud coloring for any snark,
does there exist a minimal number k > 1 for which there
exists a Fan–Raspaud coloring with the disorder having
no more than k cycles, for every snark?

Conjecture 2. For every snark there exists a Fan–
Raspaud coloring whose Fan–Raspaud disorder contains
no more than k cycles.

• Finding the subclass of non l-cycle Fan–Raspaud-
colorable snarks. Another interesting problem is to
find and define the subclass of snarks which contain no
Fan–Raspaud coloring with disorder consisting of at most
l cycles, l = {1, 2, . . .}. As most snarks have a Fan–
Raspaud coloring with a single-cycle disorder (which has
been found by performing the descibed algorithms on var-
ious classes of snarks), we think that the most interesting
case to study would be for l = 1.

776 P. Formanowicz and K. Tanaś

References

Celmins, U.A. and Swart, E. (1979). The constructions of
snarks, Research Report CORR, No. 18, Department of
Combinatorics and Optimization, University of Waterloo,
Waterloo.

Fan, G. and Raspaud, A. (1994). Fulkerson’s conjecture and
circuit covers, Journal of Combinatorial Theory, Series B
61(1): 133–138.

Fouquet, J.-L. and Vanherpe, J.-M. (2008). On Fan–
Raspaud conjecture, CoRR—Computing Research Repos-
itory, abs/0809.4821.

Goldberg, M.K. (1981). Construction of class 2 graphs with
maximum vertex degree 3, Journal of Combinatorial The-
ory, Series B 31(3): 282–291.

Holyer, I. (1981). The NP-completeness of edge coloring, SIAM
Journal on Computing 10(4): 718–720.

Isaacs, R. (1975). Infinite families of nontrivial trivalent graphs
which are not Tait colorable, American Mathematical
Monthly 82(3): 221–239.

Kochol, M. (1996). Snarks without small cycles, Journal of
Combinatorial Theory, Series B 67(1): 34–47.

Greenlaw, R. P. (1995). Cubic graphs, ACM Computing Surveys
27(4): 471–495.

Szekeres, G. (1973). Polyhedral decompositions of cubic graphs,
Bulletin of the Australian Mathematical Society 8(3): 367–
387.

Vizing, V. (1964). On an estimate of the chromatic class of a
p-graph, Diskretnyj Analiz 3: 25–30.

Watkins, J. and Wilson, R. (1988). A survey of snarks, in Y.
Alavi, G. Chartrand, O.R. Oellermann, and A.J. Schwenk
(Eds.), Graph Theory, Combinatorics, and Applications,
Wiley Interscience, New York, NY/Kalamazoo, MI.

Watkins, J. (1989). Snarks, Annals of the New York Academy of
Sciences 576: 606–622.

Piotr Formanowicz received the Ph.D. degree in 2000 and the habilita-
tion qualification in 2005 from the Poznań University of Technology. He
is an associate professor at the Institute of Computing Science, Poznań
University of Technology, and at the Institute of Bioorganic Chemistry,
Polish Academy of Sciences. His research interest include combinatorial
optimization, scheduling theory, computational complexity, graph theory
and computational biology.

Krzysztof Tanaś received his M.Sc. in the field of computer science
in 2007 at Adam Mickiewicz University in Poznań. Now he is a Ph.D
student at the Poznań University of Technology, Faculty of Computer
Science, Laboratory of Computing Systems and Algorithm Design. His
research interests include discrete mathematics, theoretical computer sci-
ence, graph theory and algorithms. Currently he focuses on the edge
coloring of cubic graphs, especially snarks.

Appendix A

Sample results and their visualization

This appendix contains sample results of the described al-
gorithm, which are sample Fan–Raspaud colorings and
their visualization in the Asymptote environment.

Fig. 8. Fan–Raspaud coloring of the Flower snark 5 with a sin-
gle 6-cycle disorder.

Fig. 9. Fan–Raspaud coloring of the Goldberg snark 5 with a
single 6-cycle disorder.

Fig. 10. Fan–Raspaud coloring of the Celmins–Swart snark 1
with a single 6-cycle disorder.

The Fan–Raspaud conjecture: A randomized algorithmic approach . . . 777

Appendix B

Efficiency tables

This appendix contains results in the field of efficiency
for the tested algorithms. The first two tables measure the
probability of success (finding a successful Fan–Raspaud
coloring) for various starting vertices for the example of
the Flower snark 5 for both presented algorithms.

The measure is performed by constructing two tables
Y [0, . . . , m], N [0, . . . , m], where Y [i] and N [i] is the
total number of correct and incorrect leaves in the prefix
tree, respectively. The number m is the maximum length

Fig. 11. Fan–Raspaud coloring of the Celmins–Swart snark 2
with a single 6-cycle disorder.

Fig. 12. Fan–Raspaud coloring of the Szekeres snark with a sin-
gle 6-cycle disorder.

Fig. 13. Fan–Raspaud coloring of the Watkins snark with a sin-
gle 6-cycle disorder.

of a coded leaf in the tree.

The last table shows the effectiveness of the mini-
mum disorder algorithm formed by computing the aver-
age size of the Fan–Raspaud disorder for all the successful
colorings found by testing the algorithm for every starting
vertex for various graphs.

The variables used in the efficiency tables are as fol-
lows:

Y[]: table showing numbers of correct leaves for var-
ious code lengths.

N[]: table showing numbers of incorrect leaves for
various code lengths.

total: total number of leaves in the prefix tree.

Y total: total number of correct leaves in the prefix
tree.

total2: total number of possible random draw re-
sults for given code length. total2 is equal to
2max code length .

Y total2: total number of random draws leading
to successful coloring (= a correct leaf). Y total2
is equal to

∑m
i=0 Y [i] · 2m−i, where m =

max code length .

P: probability of the coloring ending in a success
(hitting a correct leaf).

Flower snark 5: Efficiency. The basic algorithm

FLOWER_SNARK_J5 starting_vertex=0
max_code_length=14
Y=[0,0,0,0,0,0,0,2,10,44,56,176,194,184,40]
N=[0,0,0,0,0,0,2,2,100,98,18,0,0,0,0]
total=926, Y_total=706
total2=16384,Y_total2=5792 P = 0.353516

FLOWER_SNARK_J5 starting_vertex=1
max_code_length=15
Y=[0,0,0,0,0,0,0,0,0,2,40,70,154,212,100,24]
N=[0,0,0,0,0,0,16,22,60,34,116,34,0,0,0,0]
total=884, Y_total=602
total2=32768,Y_total2=4832 P = 0.147461

FLOWER_SNARK_J5 starting_vertex=2
max_code_length=16
Y=[0,0,0,0,0,0,0,6,6,21,78,160,201,148,58,18,4]
N=[0,0,0,0,0,0,2,0,103,102,30,2,0,0,0,0,0]
total=939, Y_total=700
total2=65536,Y_total2=22080 P = 0.336914

FLOWER_SNARK_J5 starting_vertex=3
max_code_length=16
Y=[0,0,0,0,0,0,0,6,6,21,78,160,201,148,58,18,4]
N=[0,0,0,0,0,0,2,0,103,102,30,2,0,0,0,0,0]
total=939, Y_total=700
total2=65536,Y_total2=22080 P = 0.336914

778 P. Formanowicz and K. Tanaś

Flower snark 5: Efficiency. The md algorithm

FLOWER_SNARK_J5 starting_vertex=0
max_code_length=4
Y=[0,0,0,1,0]
N=[0,0,0,5,4]
total=10, Y_total=1
total2=16,Y_total2=2 P = 0.125000

FLOWER_SNARK_J5 starting_vertex=1
max_code_length=5
Y=[0,0,0,0,0,7]
N=[0,0,0,6,0,1]
total=14, Y_total=7
total2=32,Y_total2=7 P = 0.218750

FLOWER_SNARK_J5 starting_vertex=2
max_code_length=4
Y=[0,0,0,2,2]
N=[0,0,0,2,6]
total=12, Y_total=4
total2=16,Y_total2=6 P = 0.375000

FLOWER_SNARK_J5 starting_vertex=3
max_code_length=4
Y=[0,0,0,2,2]
N=[0,0,0,2,6]
total=12, Y_total=4
total2=16,Y_total2=6 P = 0.375000

FLOWER_SNARK_J5
Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18

0 65 25 0 0 0 0 0
Number of all found colorings:90
Average size of F-R disorder:6.555556

GOLDBERG_SNARK_5
Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18 20 22

24 26 28 30 32 34 36 38

0 30 619 10 58 6 1 0 0 0
0 0 0 0 0 0 0 0

Number of all found colorings:724
Average size of F-R disorder:8.325967

FIRST_CELMINS-SWART_SNARK
Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18 20 22 24

0 34 2 0 1 0 0 0 0 0 0
Number of all found colorings:37
Average size of F-R disorder:6.270270

SECOND_CELMINS-SWART_SNARK

Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18 20 22 24

0 36 4 16 4 0 0 0 0 0 0
Number of all found colorings:60
Average size of F-R disorder:7.600000

SZEKERES_SNARK_50
Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18 20 22 24 26 28

30 32 34 36 38 40 42 44 46 48

0 684 0 0 66 60 29 73 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0
Number of all found colorings:914
Average size of F-R disorder:8.269147

WATKINS_SNARK_50
Number of found colorings for possible
F-R disorder sizes:
0 6 8 10 12 14 16 18 20 22 24 26 28

30 32 34 36 38 40 42 44 46 48

0 798 0 26 11 46 20 0 0 0 0 5 0
0 0 0 0 0 0 0 0 0 0
Number of all found colorings:906
Average size of F-R disorder:6.924945

Received: 27 March 2011
Revised: 21 September 2011
Re-revised: 16 January 2012

	Introduction
	Basic definitions and conjectures
	Mathematical properties of Fan–Raspaud colorings
	Bicolored (alternating) cycle structure
	Fan–Raspaud cycle structure: The 'disorder'

	Randomized algorithm approach and its advantages
	Basic algorithms components
	Definitions, procedures and functions used in both algorithms
	Procedures and functions used in the algorithm

	Algorithms
	Basic algorithm
	'Minimum disorder' algorithm

	Properties and analysis of the algorithms
	Time complexity
	Memory complexity
	Efficiency
	Validity of the algorithm

	Application of Fan–Raspaud colorings in the pair assignment problem in cubic networks
	Cubic network as a computer network topology
	Pair assignment problem in a cubic network
	When to use which algorithm

	Snarks as the chosen class of cubic graphs for the algorithm
	Classes of snarks used for testing the algorithms

	Conclusion
	Proposed generalization of the Fan–Raspaud conjecture and related problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

