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In this paper, the robust fault detection problem for LPV singular delayed systems in the presence of disturbances and
actuator faults is considered. For both disturbance decoupling and actuator fault detection, an unknown input observer
(UIO) is proposed. The aim is to compute a residual signal which has minimum sensitivity to disturbances while having
maximum sensitivity to faults. Robustness to unknown inputs is formulated in the sense of the H∞-norm by means of the
bounded real lemma (BRL) for LPV delayed systems. In order to formulate fault sensitivity conditions, a reference model
which characterizes the ideal residual behavior in a faulty situation is considered. The residual error with respect to this
reference model is computed. Then, the maximization of the residual fault effect is converted to minimization of its effect
on the residual error and is addressed by using the BRL. The compromise between the unknown input effect and the fault
effect on the residual is translated into a multi-objective optimization problem with some LMI constraints. In order to show
the efficiency and applicability of the proposed method, a part of the Barcelona sewer system is considered.
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1. Introduction

Modern systems have become more complex and the need
for higher performance and reliability has made fault
diagnosis a crucial element. The basis for model-based
fault diagnosis methods is to consider a mathematical
model of the system, comparing the outputs of this model
with real outputs (measurements), and finally trying to
discover any abnormal situation in the system through
finding an inconsistency between these two signals (Chen
and Patton, 1999).

Normally, a signal called residual is generated based
on the difference between the real and model outputs,
which in the ideal case is zero but becomes nonzero in the
faulty case. Unknown inputs and modeling errors cause
this signal to be nonzero in healthy conditions, so the
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residual should be compared with a threshold instead of
zero. Due to the effect of unknown input and modeling
errors on the residual generator system, the robustness
of fault diagnosis methods is an important issue to be
considered.

Robustness can be taken into account at the
residual generation stage using several approaches, such
as unknown input observers (UIOs) in the work of
Guan and Saif (1991), or using adaptive thresholds in
the residual evaluation stage (Montes de Oca et al.,
2012a). Observer-based methods for fault diagnosis and
unknown input robustness in these methods have been
well established for LTI systems (see the monograph by
Ding (2008) and the references therein). Some of the
approaches are based on the UIO (Guan and Saif, 1991)
or on robust observers in the sense of the H∞-norm (Hou
and Patton, 1996). Hamdi et al. (2012b) and Youssef
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et al. (2014) designed proportional integral type UIOs
which make it possible to estimate unknown inputs in
the system. In addition to robustness, the residual should
present good sensitivity to faults. Various methods such as
model matching the residual with a reference model (Frisk
and Nielsen, 2006; Mazars et al., 2008; Ichalal et al.,
2009; Habib et al., 2010; Ahmadizadeh et al., 2014) and
using the H− index condition to directly formulate fault
sensitivity (Wang et al., 2007; Aouaouda et al., 2015; Zhai
et al., 2014) were proposed for ensuring fault sensitivity
in observer-based methods.

Time delay occurs in many systems either because
of delayed actuation or measurement or because of
delay in internal states of the system. Delay in
system dynamics usually degrades the stability and
performance of the system. Control and diagnosis of
time delay systems require more involved conditions
than the systems without delay and are still active
research areas. The current research in time delay
systems aims at developing conditions for various control
problems such as stabilization or observer design that
are less conservative than the existing ones. Saadni
et al. (2005) and Liu et al. (2016) provided delay
dependent conditions for stabilization, while Karimi and
Chadli (2012) introduced less conservative conditions for
observer design. In the case of state delay systems, UIO
design was considered by Fattouh et al. (1999) and Fu
et al. (2004), while an H∞ fault detection filter for robust
fault detection was studied by Bai et al. (2006). In the
case of input delay systems, a UIO which is used for
fault detection and isolation was proposed by Koenig
et al. (2005). A geometric approach to fault detection
in time-delay systems was put forward by Meskin and
Khorasani (2009). In the work of Ahmadizadeh et al.
(2014), a UIO was designed for fault detection in
uncertain time delay systems.

Descriptor systems are a more general class of
systems compared with standard state space ones since
they allow modeling systems, including static and
dynamic equations, simultaneously (Dai, 1989; Duan,
2010). They are also called differential-algebraic
equations (DAEs) for their modeling power and singular
systems for the singular nature of the equations that
arise from the modeling. Singular systems have been
successfully used in modeling and analysis of many
robotic systems (Samiei and Shafiee, 2010; Sadati et al.,
2013) and also in other systems such as electrical (Hamdi
et al., 2012a; Zhai et al., 2014) and economic ones
(Koumboulis et al., 2011). A lot of effort has been
devoted to stability analysis, observer design and control
of these systems (see the monograph by Duan (2010)
and the references therein). However, fault diagnosis
in descriptor systems is still in its developmental stage.
An eigenstructure approach was used to design a UIO
by Duan et al. (2002). A UIO was proposed by Yeu

et al. (2005) for fault detection and isolation, and a UIO
was designed for fault estimation by Koenig (2005). A
singular UIO and a fault detection filter for diagnosis
purposes in these systems were designed respectively by
Share Pasand et al. (2010) and Yao et al. (2011).

In the case of linear singular systems which have
delayed dynamics, scarce research has been done for fault
detection and isolation. Two robust fault detection filter
schemes for these systems were introduced by Chen et al.
(2011) and Zhai et al. (2014). For nonlinear singular
delayed systems, to the best of the authors’ knowledge,
no work has been carried out addressing fault diagnosis.
Simultaneous presence of nonlinearity and a delayed term
added by the singular nature of these systems increases
the demand for a particular treatment.

One of the usual methodologies to treat nonlinear
systems is to consider special classes, such as those
satisfying the Lipschitz condition. However, this
condition limits the range of applicability of the obtained
results. Modeling nonlinear systems with some linear
ones at different operating points is a common idea that
is used to treat nonlinear systems. Based on this idea,
Shamma (1988) proposed linear parameter varying (LPV)
systems with a linear structure but with the state space
matrices depending on some exogenous parameters.

In the work of Bokor and Balas (2004), a geometric
approach was used to design the fault detection filter for
LPV systems. Henry et al. (2009) used the H∞/H−
approach to address simultaneous fault sensitivity and
robustness of a residual in LPV systems. A fault
tolerant controller in LPV systems based on a UIO fault
estimator was designed by Montes de Oca et al. (2012b).
UIO design based on perfect and robust unknown input
decoupling for singular LPV systems was considered
respectively by Hamdi et al. (2012b) and Habib et al.
(2010). Fault diagnosis in these systems in the case of
unmeasurable scheduling parameters was discussed by
Lopez-Estrada et al. (2014). For the case of singular LPV
systems with delay, the problem of fault detection has not
been considered yet.

The main contribution in this paper is to address
the problem of robust fault detection of singular delayed
LPV systems including multiple time varying state delays
and disturbances. The system under consideration also
includes actuator faults. After converting the system
to polytopic representation, a UIO is proposed. The
presence of unknown inputs in the system involves
simultaneous robustness and fault sensitivity treatment in
the fault detection process. Unknown input attenuation
is considered with a bounded real lemma (BRL) for
delayed LPV systems. The fault sensitivity issue is
considered by means of a reference model which models
the ideal residual behavior with respect to a fault (Mazars
et al., 2008). The residual error compared with the
output of this reference model is computed and the
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fault sensitivity objective is reformulated into fault effect
attenuation on the residual error. Then, this objective
can be formulated in a standard framework using a BRL
for the residual error augmented system. In particular,
the trade-off between robustness and fault sensitivity is
addressed in a multi-objective optimization problem with
LMI constraints. To illustrate the performance of the
proposed approach, a part of the Barcelona sewer network
is considered as a case study.

Sewer networks are complex large-scale systems
which combine sanitary and rain water flows within the
same network in most cities around the world (Puig
et al., 2009; Ocampo Martínez et al., 2013). They
behave as open-flow channel systems. As discussed
by Bolea et al. (2014), these systems present dynamic
behavior that can be represented by means of a delayed
LPV model. When a network of open flow channels
is considered, a singular delayed LPV model should
be used to take into account the mass balances in the
nodes. Moreover, during rain storms, wastewater flows
can easily overload the sewer network capacity, thereby
causing operators to dump the excess of water into the
nearest receiver environment (rivers, streams or sea).
Highly sophisticated supervisory-control systems are used
to ensure that high performance can be achieved and
maintained under adverse conditions. The need to operate
in adverse meteorological conditions involves, with a high
probability, sensor and actuator malfunctions (faults).
This problem calls for the use of an on-line fault detection
and isolation (FDI) system able to detect such faults and
correct them (if possible) by activating fault tolerance
mechanisms (Puig and Blesa, 2013).

The remainder of the paper is organized as follows:
In Section 2, the problem is formulated. In Section 3, the
structure of a UIO for the systems under consideration
is proposed. In Section 4, simultaneous robustness and
fault sensitivity is formulated with the aid of a reference
model. The trade-off is considered in a multi-objective
optimization problem with LMI constraints. In Section
5, a part of the Barcelona sewer system is discussed as a
real application case study, where the method proposed
in this paper is applied for actuator fault detection and
disturbance decoupling. Section 6 draws the main
conclusions.

Notation. Throughout this paper, the following notation is
used: R is the set of real numbers; In is the n-dimensional
identity matrix; for a matrixX , XT signifies its transpose;
X−1 is the inverse and X+ is the pseudoinverse of X ;
for a symmetric matrix, ∗ is used to show the elements
induced from symmetry; for a symmetric matrix X , X >
0 (X < 0) shows that it is positive (negative) definite. For
a square integrable function x(t), its L2-norm is defined

as ‖x(t)‖2 =
√∫∞

0
x(t)Tx(t) dt.

2. Problem formulation

This paper considers singular delayed LPV systems
including disturbances and actuator faults that can be
formulated in state-space form as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eẋ(t) =
s∑

j=0

Aj(θ(t))x(t − τj(t))

+B(θ(t))u(t) +R(θ(t))d(t)

+ F (θ(t))f(t),

y(t) = Cx(t),

τ0(t) = 0,

0 ≤ τj(t) ≤ τm, j = 1, . . . , s,

τ̇j(t) ≤ μj , j = 1, . . . , s,

x(t) = φ(t)− τm < t < 0,

(1)

where x(t) ∈ R
n, u(t) ∈ R

ku , y(t) ∈ R
m, d(t) ∈

R
kd and f(t) ∈ R

kf are the state vector, input vector,
output vector, exogenous disturbances and actuator faults,
respectively. In (1), E ∈ R

n×n is a constant square
matrix that may have rank deficiency (rank(E) = r ≤
n). Aj(θ(t)) for j = 0, . . . , s , B(θ(t)), R(θ(t)) and
F (θ(t)) are matrices with the appropriate dimensions
which depend affinely on the time varying parameter
θ(t) ∈ R

l that is real time measurable. C is a constant
matrix with appropriate dimensions. Here τj(t) for
j = 1, . . . , s are time varying delays and τ0(t) = 0.
Furthermore, τm is the maximum bound on all delay
values, and μj for j = 1, . . . , s are the maximum
bounds on delay derivative values. φ(t) is a continuous
vector-valued initial function. The time varying parameter
vector θ(t) is assumed to be bounded in a hyperbox
(Hamdi et al., 2012b), i.e.,

θmk ≤ θk(t) ≤ θMk , k = 1, . . . , l. (2)

Definition 1. (Dai, 1989; Duan, 2010) The matrix pencil
(E,A) is regular if det(sE −A) is not identically zero.

Definition 2. (Dai, 1989; Duan, 2010) The matrix pencil
(E,A) is impulse-free if deg(det(sE −A)) = rank(E).

Definition 3. (Li and Zhang, 2012) System (1) is regular
and impulse-free if the matrix pencil (E,A0(θ(t)) is
regular and impulse-free for the whole domain of θ(t)
defined in (2).

Definition 4. (Li and Zhang, 2012) The system (1) is ad-
missible if it is regular, impulse free and stable.

Remark 1. (Li and Zhang, 2012) Regularity and
impulse-freeness of the system (1) guarantee a unique
continuous solution without impulsive behavior in the
case of a compatible initial function φ(t) for the
system (1).
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Assumption 1. The singular delayed LPV system
considered in this paper is admissible according to the
definitions provided.

Thus, admissibility, stabilization and control of this
system are not addressed in this paper. The reader
interested in these issues is referred to the works of Li
and Zhang (2012) as well as Zhang and Zhu (2012).

The system (1) can be transformed to a polytopic
representation. In the polytopic description, h = 2l

subsystems are considered in h vertices of the hyperbox
in the θ(t) space and the whole system is defined as a
convex combination of these subsystems. According to
the theory of convex sets, each point in the θ(t) space can
be represented by a set of subsystem weights defined on h
vertices of the hyperbox in this space. These weights are
considered here by ρ(θ(t)) ∈ R

h and satisfy

0 ≤ ρi(θ(t)) ≤ 1, i = 1, . . . , h, (3)
h∑

i=1

ρi(θ(t)) = 1, i = 1, . . . , h. (4)

Thus, the polytopic representation of (1) is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eẋ(t) =

h∑
i=1

ρi(θ(t))

( s∑
j=0

Ajix(t − τj(t))

+Biu(t) +Rid(t) + Fif(t)

)
,

y(t) = Cx(t),
τ0(t) = 0,
0 ≤ τj(t) ≤ τm, j = 1, . . . , s,
τ̇j(t) ≤ μj , j = 1, . . . , s,
x(t) = φ(t), −τm < t < 0.

(5)

In (5), Aji, Bi , Ri and Fi are matrices related to the
i-th subsystem (i = 1, . . . , h) located at the i-th vertex of
the hyperbox.

3. UIO structure

Considering the polytopic system (5), the following
observer is proposed:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż(t) =

h∑
i=1

ρi(θ(t))

(
s∑

j=0

(
Njiz(t− τj(t))

+ Ljiy(t− τj(t))

)
+Giu(t)

)
,

x̂(t) = z(t) +H2y(t),
ŷ(t) = Cx̂(t),
r(t) = T (y(t)− ŷ(t)),
z(t) = 0, −τm < t < 0.

(6)

where x̂(t) ∈ R
n, ŷ(t) ∈ R

m and z(t) ∈ R
n are the state

estimate, output estimate and observer state, respectively.

Nji, Lji, Gi, T and H2 are observer matrices with
appropriate dimensions that will be determined with the
proposed design methodology later on. Here r(t) ∈ R

kr

is the residual signal which is used for detecting the faults
in the system. The state estimation error is

e(t) = x(t)− x̂(t). (7)

The error dynamics will be designed so that the error
converges to zero under arbitrary initial conditions and
any input u(t). According to (6), the error e(t) in (7) is

e(t) = x(t)− z(t)−H2Cx(t)

= (In −H2C)x(t) − z(t). (8)

If H1 ∈ R
n×n can be found such that the condition

H1E = In −H2C, (9)

is satisfied (Hamdi et al., 2012b) then

e(t) = H1Ex(t) − z(t). (10)

Thus, the error dynamics are described by means of

ė(t) = H1Eẋ(t)− ż(t). (11)

Substituting (5) and (6) in (11) results in

ė(t) =

h∑
i=1

ρi(θ(t))

(
s∑

j=0

(
H1Ajix(t − τj(t))

−Njiz(t− τj(t))− LjiCx(t− τj(t))

)

+H1Biu(t) +H1Rid(t)

+H1Fif(t)−Giu(t)

)
(12)

and, according to (10), observing that

−Njiz(t− τj(t))

= Njie(t− τj(t))−NjiH1Ex(t− τj(t)),

(12) can be written as follows:

ė(t)

=

h∑
i=1

ρi(θ(t))

(
s∑

j=0

(
Njie(t− τj(t))

+ (H1Aji − LjiC −NjiH1E)x(t− τj(t))

)

+ (H1Bi −Gi)u(t) +H1Rid(t) +H1Fif(t)

)
.

(13)

If the following conditions are satisfied for i =
1, . . . , h and j = 0, . . . , s:

H1E +H2C = In, (14)
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H1Aji −NjiH1E = LjiC, (15)

Gi = H1Bi, (16)

the residual dynamic system can be transformed into
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ė(t) =

h∑
i=1

ρi(θ(t))

( s∑
j=0

Njie(t− τj(t))

+H1Fif(t) +H1Rid(t)

)
,

r(t) = TCe(t).

(17)

Now, a lemma is introduced for robust stability of
a delayed LPV system that will be used for robust fault
detection of the system (5).

Lemma 1. Consider the following delayed LPV system:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė(t) =
h∑

i=1

ρi(θ(t))

×
(

s∑
j=0

Ājie(t− τj(t)) + B̄iw(t)

)
,

z(t) = C̄e(t) + D̄w(t),

(18)

in which w(t) is a L2-norm bounded exogenous input and
z(t) is the measured output, and all matrices have com-
patible dimensions. For a given γ > 0, if there exist
P > 0 and Qj > 0 for j = 1, . . . , s such that the fol-
lowing matrix inequality holds for i = 1, . . . , h:
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ĀT
0iP + PĀ0i +Q1 + · · ·+Qs PĀ1i · · ·

∗ −(1− μ1)Q1 · · ·
...

...
. . .

∗ ∗ · · ·
∗ ∗ · · ·
∗ ∗ · · ·

PĀsi PB̄i C̄T

0 0 0
...

...
...

−(1− μs)Qs 0 0
∗ −γ2I D̄T

∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(19)

then the system (18) is asymptotically stable for w(t) = 0
and ‖z(t)‖2 < γ‖w(t)‖2 for zero initial conditions.

Proof. The following Lyapunov–Krasovskii functional is
considered:

V (t, et) = eT (t)Pe(t)

+

s∑
j=1

∫ t

t−τj(t)

eT (λ)Qje(λ) dλ, (20)

in which P and Qj (j = 1, . . . , s) are symmetric positive
definite matrices and et := e(t+ω), where ω ∈ [−τm, 0].
Consider the index

J2 =

∫ ∞

0

(
z(t)

T
z(t)− γ2w(t)

T
w(t)
)
dt. (21)

Then the disturbance attenuation condition ‖z(t)‖2 <
γ‖w(t)‖2 in this lemma is equivalent to J2 < 0. Thus,
for proving the lemma, it is just necessary to show that
J2 < 0 for nonzero w(t) with zero initial conditions and
V̇ (t, et) < 0 for zero w(t). J2 can be written as follows:

J2 =

∫ ∞

0

(
z(t)T z(t)− γ2w(t)Tw(t) + V̇ (t, et)

)
dt

+ V (t, et)|t=0 − V (t, et)|t=∞.

(22)

Under zero initial conditions, V (t, et)|t=0 = 0 by
the definition of the Lyapunov–Krasovskii functional and
V (t, et)|t=∞ ≥ 0 owing to the positive definiteness of
this functional, and it follows that

J2 ≤
∫ ∞

0

(
z(t)T z(t)− γ2w(t)Tw(t) + V̇ (t, et)

)
dt

=

∫ ∞

0

(
eT (t)C̄T C̄e(t) + eT (t)C̄T D̄w(t)

+ wT (t)D̄T C̄e(t) + wT (t)D̄T D̄w(t)

− γ2w(t)Tw(t)

)
dt

+

∫ ∞

0

h∑
i=1

ρi(θ(t))

(
eT (t)PĀ0ie(t)

+ eT (t)ĀT
0iPe(t) +

s∑
j=1

(
eT (t)PĀjie(t− τj(t))

+ eT (t− τj(t))Ā
T
jiPe(t)

)
+ eT (t)PB̄iw(t)

+ wT (t)B̄T
i Pe(t) +

s∑
j=1

(
eT (t)Qje(t)

− (1− τ̇j(t))e
T (t− τj(t))Qje(t− τj(t))

))
dt.

Since

h∑
i=1

ρi(θ(t)) = 1

and τ̇j ≤ μj for j = 1, . . . , s, the previous expression can
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be bounded as follows:

J2 ≤
∫ ∞

0

h∑
i=1

ρi(θ(t))

⎡
⎢⎢⎢⎢⎢⎣

e(t)
e(t− τ1(t))

...
e(t− τs(t))

w(t)

⎤
⎥⎥⎥⎥⎥⎦

T

Θ

×

⎡
⎢⎢⎢⎢⎢⎣

e(t)
e(t− τ1(t))

...
e(t− τs(t))

w(t)

⎤
⎥⎥⎥⎥⎥⎦
dt, (23)

where

Θ =

⎡
⎢⎢⎢⎢⎢⎣

Ξ PĀ1i · · ·
∗ −(1− μ1)Q1 · · ·
...

...
. . .

∗ ∗ · · ·
∗ ∗ · · ·
PĀsi PB̄i + C̄T D̄
0 0
...

...
−(1− μs)Qs 0

∗ D̄T D̄ − γ2I

⎤
⎥⎥⎥⎥⎥⎦
,

Ξ = ĀT
0iP + PĀ0i + C̄T C̄ +Q1 + · · ·+Qs.

Then, by using the Schur complement lemma, (19) can be
obtained which is a sufficient condition for J2 < 0 under
zero initial conditions. The feasibility of the LMI:
⎡
⎢⎢⎢⎣

ĀT
0iP + PĀ0i +Q1 + · · ·+Qs PĀ1i · · ·

∗ −(1− μ1)Q1 · · ·
...

...
. . .

∗ ∗ · · ·
PĀsi

0
...

−(1− μs)Qs

⎤
⎥⎥⎥⎦ < 0

(24)

is directly deduced from (19), which insures V̇ (t, et) < 0
for zero w(t), so the system (18) is asymptotically stable
under no actuation. �

Remark 2. The BRL introduced in Lemma 1 for robust
stability of the delayed LPV system (18) is dependent
on delay derivatives but independent of delay values.
There are some results in the literature which present
delay dependent conditions (see the works of Saadni et al.
(2005), Wu et al. (2010) and Liu et al. (2016) for delay
dependent stability and stabilization results). However,

the goal of Lemma 1 is to introduce a robust stability
result for the system (18) which can be directly used
in the remaining parts of the paper, for the design of
a robust fault detection observer of a singular delayed
LPV system in the LMI format. Other robust stability
results in the literature cannot be directly used since the
LMI formulation of the present method involves dealing
with some nonlinear terms in matrix inequalities, which is
beyond the scope of this paper.

4. Robust fault detection system design

Now, the design of the observer (6) is considered such that
the conditions (14)−(16) are met and the error dynamics
(17) will be robustly stable while having maximum
sensitivity to the actuator fault based on Lemma 1.

Assumption 2. For the solvability of (14), it is assumed
that

rank

[
E
C

]
= n. (25)

Under Assumption 2, the solution of the matrix
equation (14) is (Darouach and Boutayeb, 1995; Hamdi
et al., 2012b)

[
H1 H2

]
=

[
E
C

]+
, (26)

where [
E
C

]+
∈ R

n×(n+m)

is the pseudoinverse of [EC ] calculated from

[
E
C

]+
=

([
E
C

]T [
E
C

])−1[
E
C

]T
. (27)

For extending the solution domain of (14), a term is
added in the null space of this equation, so that

[
H1 H2

]

=

[
E
C

]+
+K(In+m −

[
E
C

] [
E
C

]+
), (28)

where K ∈ R
n×(n+m) is a gain factor that can be freely

chosen to satisfy other restrictions on the problem. Now
(28) is rewritten as follows:

H1 = H10 +KX1, (29)

H2 = H20 +KX2, (30)

where H10 ∈ R
n×n and H20 ∈ R

n×m are constructed
from the first n columns and last m columns of [EC ]

+

respectively. In a similar way, X1 ∈ R
(n+m)×n and
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X2 ∈ R
(n+m)×m are made from the first n columns and

last m columns of

X = In+m −
[
E
C

] [
E
C

]+
,

respectively.
Until now, the condition (14) has been considered

for observer existence. On the other hand, the condition
(15) should be met such that the error dynamics will have
the desired characteristic of being robust to disturbances
and sensitive to faults. Now, some new variables are
introduced for j = 0, . . . , s and i = 1, . . . , h:

Kji = Lji −NjiH2. (31)

With these new variables, the condition (15) can be
rewritten as

Nji = H1Aji −KjiC. (32)

Substituting (29) in (32) results in

Nji = H10Aji +KX1Aji −KjiC. (33)

With this methodology, whenever K and Kji are
found, Nji can be calculated from (33) and then,
according to (31),

Lji = Kji +NjiH2. (34)

Substituting (33) in (17) results in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė(t) =
h∑

i=1

ρi(θ(t))

×
(

s∑
j=0

(H10Aji +KX1Aji −KjiC)

× e(t− τj(t)) +H1Fif(t) +H1Rid(t)

)
,

r(t) = TCe(t).
(35)

Now, the residual signal is expressed in internal form,
that is, in terms of disturbances and faults:

r(t) =

h∑
i=1

ρi(θ(t))(G
i
rdd(t) +Gi

rff(t)), (36)

where, by abuse of notation, the following definitions are
introduced:

Gi
rd :=

(
Λ H1Ri

TC 0

)
, (37)

Gi
rf :=

(
Λ H1Fi

TC 0

)
, (38)

which represent the transfer from disturbance d(t)
and fault f(t) to residual r(t) in the i-th subsystem,
respectively, where

Λ =

s∑
j=0

(H10Aji +KX1Aji −KjiC)e−τjs.

This notation of Eqns. (37) and (38) was introduced
here just for ease of representation, and all the following
calculations will be carried out in the time domain. For
attenuating the disturbance effect on the residual signal,
Lemma 1 can be directly used such that the residual
dynamic system is robustly stable in the presence of
unknown inputs. On the other hand, to have an acceptable
level of residual fault sensitivity, a reference model W i

ref
is introduced for each subsystem which characterizes the
residual ideal behavior in the presence of faults in the
system (Mazars et al., 2008):

W i
ref =

(
Ai

ref Bi
ref

Ci
ref Di

ref

)
. (39)

These reference models have nref states, kf faults as
input and kr ideal residuals as outputs, and their state
space matrices are with appropriate dimensions. The
reference models are chosen from stable transfer matrices
with the following property:

∥∥W i
ref

∥∥
− = inf

w∈R

(σ
(
W i

ref(jw)
)
) ≥ 1, (40)

where ‖·‖− denotes the H− index and σ(·) is the
minimum singular value. The reference models with the
condition (40) are suitable for fault detection because they
have no fault attenuation in any frequency range (Ichalal
et al., 2009). The condition (40) can be tested with the
following lemma.

Lemma 2. (Mazars et al., 2008) Let the reference model
be W i

ref as defined in (39); the condition (40) holds if and
only if there exists a symmetric matrix Pref ∈ R

nref×nref

such that
[

PrefA
i
ref +Ai

ref
T
Pref + Ci

ref
T
Ci

ref

Bi
ref

T
Pref +Di

ref
T
Ci

ref

PrefB
i
ref + Ci

ref
T
Di

ref

Di
ref

T
Di

ref − Ikf

]
≥ 0.

(41)
Mazars et al. (2008) present a linearization procedure

to satisfy the condition (41) for reference model selection
in state space systems, but provide a suboptimal solution
due to its linearization procedure. In the case of time
delay systems, Ahmadizadeh et al. (2014) suggested a
methodology for selecting the reference model. The
method of Ahmadizadeh et al. (2014) is based on
satisfying a related H− index to design the reference
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model. However, this method is not applicable since
it cannot be extended to our system because the term
Dff(t) is not present in the system output equation (1).
Further research may be conducted to present a method for
designing an appropriate reference model for the singular
delayed LPV system (1).

Now the residual error with respect to these ideal
reference models is defined:

er(t) = r(t)−
h∑

i=1

ρi(θ(t))W
i
reff(t). (42)

With this formulation, the goal of enhancing residual
fault sensitivity can be replaced by an equivalent one of
attenuating the fault effect on the residual error. Then, by
using Lemma 1, this problem can also be addressed. Thus,
the robust fault detection problem has three objectives:

1. The residual dynamic system (35) should be stable.

2. The effect of unknown inputs on the residual signal
should be minimized: 1

∥∥Gi
rd

∥∥
∞ < γd. (43)

3. The fault effect on the residual error should be
minimized:2

∥∥Gi
erf

∥∥
∞ =

∥∥Gi
rf −W i

ref

∥∥
∞ < γf . (44)

Now, with the material provided so far, a theorem
can be stated that provides the solution to the robust
fault detection problem for singular delayed LPV systems
considering the previous goals.

Theorem 1. Assume that, for a given scalar a ∈ [0, 1]
and the reference models W i

ref with the constraint (40),
there exist symmetric positive definite matrices P1, P2,
Q1j , Q2j for j = 1, . . . , s, matrices T , M and Mji for
j = 0, . . . , s and i = 1, . . . , h and positive scalars γ̄f and
γ̄d as the solution to the following optimization problem:

min
P1,P2,Q1j ,Q2j ,M,Mji,T,γ̄d,γ̄f

aγ̄f + (1 − a)γ̄d (45)

subject to the LMI constraints
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ωi
0 Ωi

1 · · · Ωi
s R̄i CTT T

∗ Q̄11 · · · 0 0 0
...

...
. . .

...
...

...
∗ ∗ · · · Q̄1s 0 0
∗ ∗ · · · ∗ −γ̄dI 0
∗ ∗ · · · ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (46)

1This criterion is formulated as ‖r(t)‖2 < γd‖d(t)‖2 and, by abuse
of notation, written as (43).

2This criterion is formulated as ‖er(t)‖2 < γf‖f(t)‖2 and, by
abuse of notation, written as (44).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ωi
0 0 Ωi

1 0 · · · Ωi
s 0

0 Γi 0 0 · · · 0 0
∗ ∗ Q̄11 0 · · · 0 0
∗ ∗ ∗ Q̄21 · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · Q̄1s 0
∗ ∗ ∗ ∗ · · · ∗ Q̄2s

∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗

P1H10Fi +MX1Fi CTT T

P2B
i
ref −(Ci

ref)
T

0 0
0 0
...

...
0 0
0 0

−γ̄fI −(Di
ref)

T

∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(47)

for all i = 1, . . . , h, and where for i = 1, . . . , h and j =
1, . . . , s we have

Ωi
0 = P1H10A0i +MX1A0i −M0iC

+ (P1H10A0i +MX1A0i −M0iC)T +Q11

+ · · ·+Q1s,

Ωi
j = P1H10Aji +MX1Aji −MjiC,

Γi = P2A
i
ref + (P2A

i
ref)

T
+Q21 + · · ·+Q2s,

Q̄1j = −(1− μj)Q1j ,

Q̄2j = −(1− μj)Q2j ,

R̄i = P1H10Ri +MX1Ri.

Then the robust residual generator (6) exists and can be
determined as follows:

K = P−1
1 M, (48)

Kji = P−1
1 Mji. (49)

The observer matrices Nji, Lji, Gi and H2 can be cal-
culated from (33), (34), (16) and (30), with attenuation
levels regarding unknown inputs on residuals and faults
on residual errors given respectively by

γd =
√
γ̄d (50)

γf =
√
γ̄f . (51)

Proof. With the notation introduced in (38), the i-th
transfer matrix from the fault to the residual error is

Gi
rf −W i

ref

=

⎛
⎝

Λ 0 H10Fi +KX1Fi

0 Ai
ref Bi

ref
TC −Ci

ref −Di
ref

⎞
⎠ . (52)
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Choosing symmetric positive definite block diagonal
matrices

P =

[
P1 0
0 P2

]

and

Qj =

[
Q1j 0
0 Q2j

]
,

the attenuation of the fault effect on residual error can be
addressed by using Lemma 1. Substituting the associated
terms in (19) results in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄i
0 0 Ω̄i

1 0 · · · Ω̄i
s 0

0 Γi 0 0 · · · 0 0
∗ ∗ Q̄11 0 · · · 0 0
∗ ∗ ∗ Q̄21 · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · Q̄1s 0
∗ ∗ ∗ ∗ · · · ∗ Q̄2s

∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗

P1H10Fi + P1KX1Fi CTT T

P2B
i
ref −(Ci

ref)
T

0 0
0 0
...

...
0 0
0 0

−γ2
fI −(Di

ref)
T

∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(53)

where for i = 1, . . . , h and j = 1, . . . , s

Ω̄i
0 = P1H10A0i + P1KX1A0i − P1K0iC

+ (P1H10A0i + P1KX1A0i − P1K0iC)T

+Q11 + · · ·+Q1s,

Ω̄i
j = P1H10Aji + P1KX1Aji − P1KjiC,

Γi = P2A
i
ref + (P2A

i
ref)

T
+Q21 + · · ·+Q2s,

Q̄1j = −(1− μj)Q1j ,

Q̄2j = −(1− μj)Q2j .

Obviously, this is a nonlinear matrix inequality
because of product terms of unknown variables, so the
following change of variables is applied:

M :=P1K, (54)

Mji :=P1Kji, (55)

γ̄f :=γ2
f . (56)

Then the LMI (47) is obtained. According to
Lemma 1, disturbance attenuation in the residual system
(36) can be addressed in a similar manner. By using P1

and Q1j (j = 1, . . . , s) as positive definite matrices for
P and Qj in Lemma 1 and substituting the associated
expressions of matrices of the transfer matrix Gi

rd in (19)
and again by using the change of variables (54)−(55), and

γ̄d := γ2
d, (57)

the nonlinearity in the matrix inequality is resolved
and the LMI (46) is obtained. Moreover, (48)−(51)
can be directly derived from (54)−(57). Finally, the
simultaneous problem of robustness to disturbances
and sensitivity to faults can be addressed by the
multi-objective optimization problem (45) with the
constraints (46) and (47) considering that the parameter
a ∈ [0, 1] is used to adjust the objective weighting. �

Summary of the method. A summary of the presented
method for robust fault detection in singular LPV
systems with multiple time varying delays is presented in
Algorithm 1.

Algorithm 1. Robust fault detection system design for a
singular LPV system with multiple time varying delays.
Step 1. Check Assumption 2.

Step 2. Calculate H10 and X1 from the first n columns of[
E
C

]+
and X = In+m −

[
E
C

] [
E
C

]+
, respectively.

Step 3. Choose some appropriate reference models W i
ref

satisfying the constraint (40) by checking Lemma 2.

Step 4. Solve the optimization problem (45) under the
LMI constraints (46), and (47) and obtain matrices P1,
P2, M , T , Q1j , Q2j for j = 1, . . . , s and Mji for j =
0, . . . , s and i = 1, . . . , h.

Step 5. Calculate K and Kji for j = 0, . . . , s and i =
1, . . . , h from (48) and (49), respectively.

Step 6. Calculate H2, G and Nji for j = 0, . . . , s and
i = 1, . . . , h from (30), (16) and (33), respectively.

Step 7. Calculate Lji for j = 0, . . . , s and i = 1, . . . , h
from (34).

5. Application

5.1. Description. In order to show the performance
of the proposed fault detection approach, a case study
based on the Riera Blanca catchment of the Barcelona
sewer network is considered. This catchment has already
been used for illustrating the model predictive control of
sewer networks in the work of Puig et al. (2009). This
catchment can be modeled using the virtual tank approach
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described by Ocampo Martínez et al. (2013), leading to
the representation shown in Fig. 1.

Fig. 1. Riera Blanca subnetwork representation using the virtual
tank modeling approach.

The part of the Riera Blanca catchment considered
in this paper is highlighted in Fig. 1. The equations
corresponding to this part are the following:

{
v̇8(t) = −cvc8(t)v8(t) + ε8S8P19(t− τ),

q8(t) = c8v8(t),
(58)

⎧
⎪⎨
⎪⎩

v̇9(t) = −cvc9(t)v9(t) + ε9S9P16(t− τ)

+ C93(t) + f(t),

q9(t) = c9v9(t),

(59)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v̇10(t) = cvc8(t)v8(t− τ) + cvc9(t)v9(t− τ)

− cvc10(t)v10(t) + ε10S10P16(t− τ)

+ C134(t) + d(t),

q10(t) = c10v10(t),

(60)

where vi(t) (i = 8, 9, 10) are water volumes stored in
catchment i (virtual tank i) and qi(t) (i = 8, 9, 10) are
the output flows from these catchments. Here εi and
Si (i = 8, 9, 10) are absorption coefficients and the
surfaces of these catchments, respectively. P19(t) is the
rain intensity falling in catchment 8 and P16(t) is the
rain intensity falling in catchments 9 and 10. C93(t)
is the input flow from other catchments to catchment 9
and C134(t) is the input flow from other catchments to
catchment 10. Furthermore, cvci(t) (i = 8, 9, 10) is
a volume-flow conversion coefficient for the catchment
and ci (i = 8, 9, 10) is the related gain of a flowmeter
transducer measuring the outflow of catchment i; f(t) is
a fault related to the gate in the input of catchment 9 and
d(t) is disturbance in the system related to upstream flows
not measured; τ is the transport delay associated with the
rain-fall and run-off processes. Since parameters cvci(t)
vary with the output flows qi(t), the system is a quasi-LPV
one and, because of the transport delays, with delay. In
order to use the methodology presented in this paper for
state delayed systems, the delayed inputs are chosen as
additional states for the system such that

x(t) =
[
v8(t) v9(t) v10(t) P19(t) P16(t)

]T
.

On the other hand, the vector of system inputs is

u(t) =
[
P19(t) P16(t) C93(t) C134(t)

]T
,

while the vector of system outputs is

y(t) =
[
q8(t) q9(t) P19(t) P16(t)

]T
.

Thus, Eqns. (58)−(60) can be brought to the form
⎧
⎪⎨
⎪⎩

Eẋ(t) = A0(θ(t))x(t) +A1(θ(t))x(t − τ)

+Bu(t) +Rd(t) + Ff(t),

y(t) = Cx(t),

where

E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

A0(θ(t))

=

⎡
⎢⎢⎢⎢⎣

−cvc8(t) 0 0 0 0
0 −cvc9(t) 0 0 0
0 0 −cvc10(t) 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦
,
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A1(θ(t)) =

⎡
⎢⎢⎢⎢⎣

0 0 0 ε8S8 0
0 0 0 0 ε9S9

cvc8(t) cvc9(t) 0 0 ε10S10

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎦
, R =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦
,

F =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎣

c8 0 0 0 0
0 c9 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦ ,

with the parameter varying vector given by

θ(t) =
[
cvc8(t) cvc9(t) cvc10(t)

]T
.

Numerical values of system parameters are presented
in Tables 1, 2 and 3. The value of transport delay is five
minutes.

Table 1. Absorption coefficient of catchment i.

i 8 9 10

εi 0.584383 0.048593 0.9855

Table 2. Surface of catchment i.

i 8 9 10

Si (m
2) 769800 722500 149000

Table 3. Gain of flowmeter transducer of catchment i.

i 8 9 10

ci (1/s) 0.003 0.0026 0.003

A real scenario of one day raining has been used as
input data. In particular, the amount of water coming
from other catchments, i.e., C93(t) and C134(t), measured
from the available flowmeters as well as the amount of
rain entering to the catchments considered, i.e., P16(t)
and P19(t), reading from rain gauges have been used as
the system inputs. These inputs have been provided in
5-minute time samples and are depicted in Fig. 2.

In the system under consideration, there are three
LPV parameters that correspond to the volume-flow
conversion coefficients cvci(t), which are varying with
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Fig. 2. System inputs: P19(t) (a), P16(t) (b), C93(t) (c),
C134(t) (d).
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Fig. 3. Evolution of LPV parameters.

the operating point and can be scheduled in real-time.
The time evolution of system parameters for the scenario
considered is depicted in Fig. 3. Since there are three
parameters, eight subsystems are defined, each of them
at the vertices of the parameter space. The weights of the
different subsystems are calculated based on the following
formula:

ρi(t)

=
{ 3∏
k=1

(ik + (−1)ikαk(t))
∣∣ik = 0, 1

for k = 1, 2, 3 and i = 4i1 + 2i2 + i3 + 1
}
,

(61)

where

αk(t) =
θMk − θk(t)

θMk − θmk
, (62)

in which θk(t) for k = 1, 2, 3 are three LPV system
parameters and ρi(t) for i = 1, 2, . . . , 8 are the
weights associated with each subsystem in the polytopic
model. Here θmk and θMk are respectively, minimum and
maximum values of the range of variation of θk(t).

The weighting function (61) is formulated for the
three-parameter case, but can easily be extended and used
for systems with any number of parameters. The evolution
of eight subsystem weights is depicted in Fig. 4.

The matrices in the i-th vertex of the parameters
domain can be constructed with the following formula:

Aji

=
{
A0

j +ΔAj

∣∣∣
θk=(−1)ik+1Δθk for k=1,2,3

, ik = 0, 1

for k = 1, 2, 3 and i = 4i1 + 2i2 + i3 + 1
}
,

(63)

where

A0
j = Aj(θ(t))

∣∣∣
θk=θ̄k for k=1,2,3,

(64)
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Fig. 4. Evolution of subsystem weights: ρ1(t) and ρ2(t) (a),
ρ3(t) and ρ4(t) (b), ρ5(t) and ρ6(t) (c), ρ7(t) and ρ8(t)
(d),
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ΔAj(θ(t)) = Aj(θ(t))− (Aj(θ(t))
∣∣∣
θk=0 for k=1,2,3

), (65)

in which j = 0, 1, while the central value and the amount
of maximum variation around this central value related to
θk(t) for k = 1, 2, 3 are given by

θ̄k =
1

2
(θmk + θMk ), (66)

Δθk =
1

2
(θMk − θmk ). (67)

5.2. Results. The UIO proposed in this paper is
designed according to Algorithm 1 for the following
reference model for all subsystems

Wref = 1 +
1

s+ 1
,

which satisfies (40). This reference model forces the
residual to have more sensitivity at low frequencies while
having minimum sensitivity with a unity gain in other
frequency ranges. The state space realization of Wref is

Wref =

( −1 1
1 1

)
.

The adjusting parameter a in (45) is chosen to be
a = 0.5 to have equal weights on disturbance rejection
and fault sensitivity. The optimization problem (45) with
the LMI constraints (46) and (47) is solved with the
Sedumi solver (Sturm, 1999) via the YALMIP toolbox
(Lofberg, 2004).

The simulations show that the optimization problem
(45) subject to constraints (46) and (47) tends to decrease
the norm of the matrix T . According to the internal
form of the residual (35), the matrix T has the same
effect on the norm of Grf and Grd, and it adjusts the
steady state response of the residual. To avoid a small
residual, its norm is imposed to be greater than one. The
Lyapunov–Krasovskii functional matrices are

P1 =

⎡
⎢⎢⎢⎢⎣

1.6300 −0.0000 −0.0000
−0.0000 1.6301 0.0000
−0.0000 0.0000 0.0000
0.0025 −0.0002 0.0000
−0.0014 −0.0001 −0.0000

0.0025 −0.0014
−0.0002 −0.0001
0.0000 −0.0000
1.6304 −0.0000
−0.0000 1.6304

⎤
⎥⎥⎥⎥⎦
,

P2 = 2.0000,

Q11 =

⎡
⎢⎢⎢⎢⎣

1.6304 0.0000 0.0000
0.0000 1.6303 −0.0000
0.0000 −0.0000 0.0000
−0.0000 0.0000 0.0000
0.0000 −0.0000 0.0000

−0.0000 0.0000
0.0000 −0.0000
0.0000 0.0000
1.6304 0.0000
−0.0000 1.6304

⎤
⎥⎥⎥⎥⎦
,

Q21 = 1.6018× 10−10.

The values of K and T obtained are

K = 106 ×

⎡
⎢⎢⎢⎢⎣

−0.0000 0.0009 0 0.0000
0.0000 −0.1511 0 −0.0000
−0.0000 4.6080 0 0.0000
0.0000 0.0550 0 −0.0000
−0.0000 0.0550 0 −0.0000

−0.0000 −0.0000 0.0000 0 0
−0.0000 0.0000 −0.0000 0 0
−0.0000 −0.0000 0.0081 0 0
−0.0000 0.0000 0.0000 0 0
−0.0000 −0.0000 0.0000 0 0

⎤
⎥⎥⎥⎥⎦
,

T =
[
1.6301 1.6300 0.3013 0.3013

]
.

The results obtained for G and H2 are

G =

⎡
⎢⎢⎢⎢⎣

0.0000 −0.0000 0.0057 0
−0.0000 −0.0000 0.0053 0
1.5490 −0.5708 9.9850 1.0000
−0.0197 −0.0000 0.3696 0
−0.0000 −0.0202 0.3696 0

⎤
⎥⎥⎥⎥⎦
,

H2 = 103 ×

⎡
⎢⎢⎢⎢⎣

0.0000 −0.0022 0 0
0.0000 0.3826 0 0
−0.0001 −3.8404 0 0
0.0000 −0.1421 0.0010 0
−0.0000 −0.1421 0 0.0010

⎤
⎥⎥⎥⎥⎦
.

Although there are eight subsystems, due to space
limitations, only the resulting matrices for the first
subsystem are presented here:

K01 = 106×

⎡
⎢⎢⎢⎢⎣

0.0003 −0.0000 −0.0000 0.0000
−0.0000 0.0004 0.0000 0.0000
1.7460 −0.2861 −0.0001 0.0000
−0.0000 −0.0000 0.0000 0.0000
−0.0000 −0.0000 −0.0000 0.0000

⎤
⎥⎥⎥⎥⎦
,

K11 = 105 ×

⎡
⎢⎢⎢⎢⎣

0.0000 −0.0000 4.4985 0.0020
−0.0000 0.0000 0.0000 0.0018
0.0000 −0.0000 0.0008 4.9740
−0.0000 0.0000 0.0000 0.1297
0.0000 −0.0000 0.0000 0.1298

⎤
⎥⎥⎥⎥⎦
,
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N01 = 103 ×

⎡
⎢⎢⎢⎢⎣

−0.0010 0.0000 0
0.0000 −0.0010 0
−5.2380 0.7438 0
0.0000 0.0000 0
0.0000 0.0000 0

0.0000 −0.0000
−0.0000 −0.0000
0.0714 −0.0315
−0.0010 −0.0000
0.0001 −0.0010

⎤
⎥⎥⎥⎥⎦
,

N11 =

⎡
⎢⎢⎢⎢⎣

−0.0000 0.0000 0 −0.0000 0.0000
0.0000 −0.0000 0 −0.0000 0.0000
−0.0014 0.0040 0 −0.0317 0.0636
0.0000 −0.0000 0 −0.0000 0.0000
−0.0000 0.0000 0 −0.0000 −0.0000

⎤
⎥⎥⎥⎥⎦
,

L01 = 106 ×

⎡
⎢⎢⎢⎢⎣

0.0003 0.0000 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000
1.7460 0.0044 −0.0000 0.0000
−0.0000 0.0001 0.0000 0.0000
−0.0000 0.0001 0.0000 0.0000

⎤
⎥⎥⎥⎥⎦
,

L11 = 105×

⎡
⎢⎢⎢⎢⎣

0.0000 0.0000 4.4985 0.0020
−0.0000 0.0000 −0.0000 0.0018
0.0000 −0.0000 0.0008 4.9740
−0.0000 0.0000 −0.0000 0.1297
0.0000 0.0000 0.0000 0.1298

⎤
⎥⎥⎥⎥⎦
.

Once the UIO has been designed, two fault scenarios
are considered. In the first one, an abrupt fault occurring
in the time period of 6–8 h is considered. In this scenario,
in the interval of 4–10 h, the system is affected by an
offset-like disturbance. From the residual response in Fig.
5, it can be seen that the fault is detected successfully
while the disturbance is rejected. It can also be noticed
that the residual is almost zero for non-faulty periods,
including the period in which disturbance occurs in the
system. In the second scenario, fault detection has been
tested with the same conditions as the first one, just
replacing the abrupt fault with an incipient one. The
residual is depicted now in Fig. 6. It shows that it is able to
detect the fault while it is not affected by the disturbance.
Moreover, it can be noticed that the residual increases
according to the fault growth in the system.

6. Conclusions

In this paper, the problem of fault detection in singular
LPV systems with multiple time-varying delays was
considered. A UIO was designed for the purpose of state
and output estimation in the presence of disturbances and
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Fig. 5. Residual in the case of an abrupt fault.
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Fig. 6. Residual in the case of an incipient fault.

actuator faults. The effect of disturbance was attenuated
by using a BRL for delayed LPV systems. Thus, in a
non-faulty case, the UIO yields good state and output
estimation. In a faulty situation, as the residual was
model matched with an ideal fault-residual reference
one, fault sensitivity was designed to be much greater
than the disturbance effect on the residual. Thus, the
fault could be detected successfully from the difference
between the measurements and the estimates of output
signals computed in the residual signal. This issue was
formulated as a convex optimization problem with two
LMI constraints, which realizes disturbance attenuation
and fault sensitivity goals for the robust fault detection
problem. Finally, a part of the Barcelona sewer network
was used as a case study.

Successful results of this real application show the
applicability of the proposed methodology. Reducing the
conservatism of the conditions proposed in this paper
for fault diagnosis in singular delayed LPV systems by
using either a parameter dependent Lyapunov–Krasovskii
functional or a delay dependent approach is one of
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the future research directions. Developing a systematic
approach for designing the reference model needed in
the model matching procedure for singular delayed LPV
systems is another interesting topic that can be addressed
in future works. This is important because, without a
good reference model, robustness and fault sensitivity
specifications in a fault diagnosis problem cannot be
satisfied simultaneously.
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