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The problem of robust linear and nonlinear diagnostic observer design is considered. A method is suggested to construct
the observers that are disturbance decoupled or have minimal sensitivity to the disturbances. The method is based on a
logic-dynamic approach which allows us to consider systems with non-differentiable nonlinearities in the state equations
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1. Introduction and problem statement

The problem of fault diagnosis has extensively been
investigated for the past 30 years; see, e.g., the surveys by
Alcorta-Garcia and Frank (1997), Gertler (1993), Frank
(1990), Patton (1994), Samy (2011), and the books by
Blanke et al. (2006), Ding (2013), Caccavale and Villiani
(2002), Patton et al. (2000), Russell et al. (2001), or
Simani et al. (2002). Various models of technical systems
have been investigated: linear, polynomial, nonlinear,
descriptor, and hybrid. Many practical examples have
been considered; in particular, special books have been
devoted to industrial systems (Boulkroune et al., 2013;
Caccavale and Villiani, 2002; Ducard, 2015; Filaretov et
al., 2003; Russell et al., 2001).

The main purpose of this paper is to consider the fault
diagnosis problem for a wide class of technical systems,
in particular, mechatronic systems. As a rule, these
systems are nonlinear essentially with non-differentiable
nonlinearities such as saturation, Coulomb friction,
backlash, and hysteresis. In this case, one has to
use nonlinear methods of diagnosis. However, most
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of papers dealing with the fault diagnosis problem
consider the nonlinear systems with smooth nonlinearities
(Alcorta-Garcia and Frank, 1997; Persis and Isidori,
2001; Schreier et al., 1997). Therefore, they cannot
be used in this case. There are several papers
developing the algebraic approach to the fault diagnosis
problem and intended for systems with non-differentiable
nonlinearities (Shumsky and Zhirabok, 2006; Zhirabok
et al., 2010). However, they require rather complex
analytical transformations and, therefore, it is difficult to
use them in practice.

This paper is intended to overcome these difficulties
and develop an approach allowing one to solve the
fault diagnosis problem for a wide class of industrial
and robotic systems described by nonlinear dynamic
models. The so-called logic-dynamic approach (LDA) is
considered to obtain a simple fault diagnosis procedure in
systems with non-differentiable nonlinearities. The LDA
has been suggested by Zhirabok and Usoltsev (2002) and
used for various applications by Filaretov and Zhirabok
(2006) or Zhirabok and Shumsky (2010). The main
idea of this approach consists in replacing the initial
nonlinear system by a linear one, solving the problem
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under consideration for this linear system by well-known
linear methods and finally taking into account nonlinear
terms to correct the obtained solution.

In comparison with the paper by Persis and
Isidori (2001), where affine systems are considered
and differential geometry is used for solution of the
problem, the present paper deals with systems containing
non-differentiable nonlinearities and uses linear algebra
methods underlying the LDA.

The problem solved in this paper is to develop the
LDA for fault detection in systems described by dynamic
models with non-differentiable nonlinearities.

2. Basic models and relations

Consider a nonlinear control system described by the
equations

x(t+ 1) = f(x(t), u(t), γ(t)) + Lρ(t),

y(t) = Hx(t),
(1)

where x(t) ∈ X ⊆ R
n, u(t) ∈ U ⊆ R

m, y(t) ∈ Y ⊆ R
l

are vectors of state, control, and output, respectively;
ρ(t) is an unknown function of time describing the
disturbances; γ(t) ∈ R

p is the vector of parameters:
if there are no faults, γ(t) = γ0, where γ0 is the
nominal value of the vector γ, if the i-th fault occurs,
the i-th component γi(t) becomes an unknown function
of time; f is a nonlinear vector function which should be
differentiable with respect to γ and may be non-smooth
with respect to x and u; the matrices L and H are assumed
to be constant. Additionally, we assume that the system
(1) is stable.

According to the LDA, solution of the problem under
consideration includes four main steps (Zhirabok and
Usoltsev, 2002; Zhirabok and Shumsky, 2013).

Algorithm 1. Logic-dynamic approach.
Step 1. Transforming the initial system (1) into the form
where the linear and nonlinear terms are separated.

Step 2. Replacing the transformed nonlinear system by a
linear system via removing the nonlinear terms.

Step 3. Solving the problem under consideration for the
obtained linear system with some additional restriction.

Step 4. Transforming the obtained linear observer into
the nonlinear one by adding nonlinear terms to the model
constructed in Step 3.

To implement the first step of the LDA, use the
following approximate representation of the function
f(x(t), u(t), γ(t)):

f(x, u, γ) = f(x, u, γ0) +

p∑

i=1

∂f(x, u, γ)

∂γi
(γi − γ0i).

Write

Di :=
∂f(x, u, γ)

∂γi
,

di := γi − γ0i, i = 1, 2, . . . , p,

D := (D1 D2 . . . Dp),

d := (d1 d2 . . . dp)
T ,

f(x, u) := f(x, u, γ0)

and rewrite the first equation in (1) in the form

x(t + 1) = f(x(t), u(t)) +D(x(t), u(t))d(t) + Lρ(t).

Then transform the function f(x(t), u(t)) by
separating the linear terms from nonlinear ones. Such a
transformation results in the system of the form

x(t+ 1) = Fx(t) +Gu(t) +D(x(t), u(t))d(t)

+ Lρ(t) + C

⎛

⎜⎝
ϕ1(A1x(t), u(t))

...
ϕq(Aqx(t), u(t))

⎞

⎟⎠ ,

y(t) = Hx(t),

(2)

where F and G are matrices of appropriate dimensions,
describing the linear part of the system; C is a constant
matrix, ϕ1, . . . , ϕq are arbitrary nonlinearities, A1, . . . ,
Aq are row matrices. It is assumed that the pair (F,H) is
observable and the function ϕi is Lipschitz with constant
Mi, i.e.,

‖ϕi(Aix, u)− ϕi(Aix
′, u)‖ ≤ Mi|Ai(x− x′)|,

i = 1, . . . , q (Schreier et al., 1997). Generally, the
functionϕj may contain several terms in the form Ajx(t).

Example 1. Consider the control system (for simplicity,
we use the notation: x+ = x(t + 1), x = x(t), u = u(t),
y = y(t)):

x+
1 = ln |x1| − 2x1 + u2 + x2 + x2u

2
1,

x+
2 = −x2 − ln |x1| − u1.

Clearly, the matrices and the function used in (2) are given
by

F =

( −2 1
0 −1

)
, G =

(
0 1
−1 0

)
,

C =

(
1 1
−1 0

)
,

ϕ1(A1x, u) = ln |A1x|,
ϕ2(A2x, u) = (A2x)u

2
1,

A1 = ( 1 0 ),

A2 = ( 0 1 ).
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In some cases, removing the nonlinear terms in Step 2
of the LDA may yield dynamics of the linear part
of system (2) such that no solution in Step 3 exists.
To overcome this difficulty, we need to make some
corrections in the model (2). �
Example 2. (Continuation of Example 1) Notice that
according to the structure of the matrix F above, the
linear part does not contain the variable x1(t) on the
right-hand side of the equation for x+

2 while the initial
system does. To correct this situation, insert the formal
term x1(t) − x1(t) into the right-hand side of the second
equation and include the variable x1(t) in the linear part,
−x1(t) in the nonlinear term. As a result, the matrix F
and the nonlinear term become

F =

( −3 1
1 −1

)

and ϕ1(A1x(t), u(t)) = ln |A1x(t)|+x1(t), respectively.
�

Generally, if some equation in the model (2) contains
some variable xj on its right-hand side only as an
argument of some nonlinear function, the formal term
xj − xj should be inserted into this equation. Then
the variable xj supplements the linear part and −xj the
nonlinear term.

The model of the diagnostic observer is found in the
form similar to the model (2) that is required for the LDA
application:

x∗(t+ 1) = F∗x∗(t) +G∗u(t) + Jy(t)

+ C∗

⎛

⎜⎝
ϕ1(A∗1z(t), u(t))

...
ϕq(A∗qz(t), u(t))

⎞

⎟⎠+Kr(t),

y∗(t) = H∗x∗(t),
(3)

where

z(t) =

(
x∗(t)
y(t)

)
,

K is the gain matrix, x∗(t) ∈ R
k is the state vector of the

observer, the scalar residual r(t) is generated as

r(t) = Ry(t)− y∗(t)

for some row matrix R. The problems of the matrix K
choice are studied in (Schreier et al., 1997), and are not
considered in this paper.

It is assumed that when the faults and disturbances
are absent, the states x∗(t) of the observer are linear
combinations of the system states x(t) according to

x∗(t) = Φx(t)

after the response to an unlikely condition has died out
(Frank, 1990). A sufficient condition for the existence

of such an “ideal” relation is the stability of the observer
provided by the appropriate choice of the gain matrix K .

Notice that in the works of Persis and Isidori
(2001) or Shumsky and Zhirabok (2006) the states x∗(t)
are nonlinear combinations of x(t), generally. Our
assumption limits the class of possible problem solutions,
but allows us to use only the methods of linear algebra.

The matrix Φ satisfies the following well-known
conditions (Frank, 1990; Zhirabok and Usoltsev, 2002):

RH = H∗Φ, ΦF = F∗Φ+ JH, G∗ = ΦG (4)

associated with the linear parts of system (2) and the
observer (3). The additional conditions

C∗ = ΦC, A = A∗

(
Φ
H

)
(5)

correspond to the nonlinear terms (Zhirabok and
Shumsky, 2013). Here

A =

⎛

⎜⎝
A1

...
Aq

⎞

⎟⎠ , A∗ =

⎛

⎜⎝
A∗1

...
A∗q

⎞

⎟⎠ .

The last relation in (5) is equivalent to the condition

rank

(
Φ
H

)
= rank

⎛

⎝
Φ
H
A

⎞

⎠ . (6)

Indeed, if (6) holds, then every row of the matrix A
linearly depends on the rows of the matrices Φ and H ,
that is a matrix A∗ exists such that the last relation in (5)
holds. The implication (5) ⇒ (6) is evident.

Besides, the matrix Φ has to satisfy the conditions

ΦL = 0, ΦDi(x(t), u(t)) �= 0, i = 1, . . . , p.

The first is a full decoupling condition. This means that
the residual r(t) is disturbance decoupled; the second
relates to the sensitivity to the faults. We admit that the
second condition may be violated on a set of measure zero.
Let X = R

4 and ΦD(x(t), u(t)) = abs(x1(t)+2x3(t)−
x4(t)), then ΦD(x(t), u(t)) �= 0 for all (x(t), u(t)) ∈
X × U except on the set S = {(x(t), u(t)) ∈ X ×
U |x1(t)+2x3(t)−x4(t) = 0, u(t) ∈ U}; the measure of
the set S is equal to zero.

Consider the linear part of system (2) and assume
that the pair (F∗, H∗) is observable. It is known that in
this case the matrices F∗ and H∗ can be presented in the
canonical form

F∗ =

⎛

⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞

⎟⎟⎠ ,

H∗ = ( 1 0 0 . . . 0 ).
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Here first the two equations in (4) can be expressed in the
form of k + 1 equations:

RH = Φ1,

ΦiF = Φi+1 + JiH, i = 1, . . . , k − 1,

ΦkF = JkH,

(7)

where Φi and Ji are the i-th rows of the matrices Φ and J ,
respectively, i = 1, . . . , k, k is the observer dimension. It
was shown by Zhirabok and Usoltsev (2002) that (7) can
be reduced to the single equation

RHF k = J1HF k−1 + J2HF k−2 + · · ·+ JkH. (8)

Solutions of this equation are the minimal dimension k
and the matrices R and J .

Rewrite (8) in the form

( R −J1 −J2 . . . −Jk )V (k) = 0, (9)

where

V (k) =

⎛

⎜⎜⎜⎝

HF k

HF k−1

...
H

⎞

⎟⎟⎟⎠ .

This equation has nontrivial solutions if

rank(V (k)) < l(k + 1). (10)

There are M = l(k+1)−rank(V (k)) variants of solutions
of (9) where the minimal value of the dimension k can be
found from the condition (10).

A shortcoming of the method considered is that
it does not take into account the condition ΦL = 0.
Therefore, after solving (9), we have to check this
condition. If it does not hold, we have to find another
solution to the former or to increase the dimension k, i.e.,
we must consider several variants.

To overcome this shortcoming, we develop a new
method for solving the fault detection problem allowing
to reduce the number of variants owing to taking account
of the condition ΦL = 0.

3. Observer existence conditions

It is well known (Frank, 1990; Zhirabok and Usoltsev,
2002) that (9) is solvable for an arbitrary matrix R, i.e., if
this matrix is known, one can find the matrix J in addition
to the matrices F∗ and H∗ presented in the canonical
form. The condition ΦL = 0 imposes a restriction on
the possibility to design such an observer. Therefore,
it is reasonable to check whether the observer with this
property exists.

To this end, introduce the matrix L0 of maximal row
rank such that L0L = 0. Then Φ = NL0 for some
matrix N .

Replace the matrix Φ by Φ = NL0 in the equation
RH = H∗Φ and transform it by separating known
matrices from unknown ones as follows:

(
R −H∗N

)( H
L0

)
= 0. (11)

Equation (11) has a nontrivial solution with R �= 0 when
the rows of the matrices H and L0 are linearly dependent.
This is equivalent to the following condition:

rank

(
L0

H

)
< rank(H) + rank(L0). (12)

As for the equation ΦF = F∗Φ+ JH , replacing the
matrix Φ by Φ = NL0 and transforming the result, we
obtain

(
N −F∗N −J

)
⎛

⎝
L0F
L0

H

⎞

⎠ = 0. (13)

This equation has a nontrivial solution with N �= 0 when
rows of the matrices L0F and L0 are linearly dependent.
Clearly, (13) is true if

rank

(
L0F
L0

)
< rank(L0F ) + rank(L0). (14)

Considering by analogy the equation

A = A∗

(
Φ
H

)
,

we get the necessary condition

rank

(
L0

H

)
= rank

⎛

⎝
L0

H
A

⎞

⎠ . (15)

Note that the inequalities (12), (14), and (15)
are necessary solvability conditions for the problem of
designing a disturbance decoupled observer.

The condition (14) is not sufficient because if the
matrix

(
A′ B′ C′ )

is a solution of (13), i.e.,

(
A′ B′ C′ )

⎛

⎝
L0F
L0

H

⎞

⎠ = 0,

then rows of the matrix B′ must be linearly dependent on
the rows of the matrix A′ according to (13). The condition
(15) is not sufficient since the rows of the matrix A may
be linearly independent of the matrices Φ = NL0 and the
rows of H , even if the rows of the matrix A are linearly
dependent on the matrices L0 and the rows of H .

If one of these conditions is not valid, the disturbance
decoupled observer cannot be built, and one has to use
robust methods. If, however, all conditions are valid, this
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does not guarantee the existence of such an observer but
means only a potential for the observer design.

In addition to the condition ΦL = 0, the condition
ΦDi(x(t), u(t)) �= 0 for all i = 1, . . . , p has to be
checked as well. To detect faults, this condition should
be satisfied for all (x(t), u(t)) ∈ X×U except on a set of
measure zero. Notice that this condition is not very rigid
unlike ΦL = 0.

4. Full decoupling

In this section, we solve the problem of the diagnostic
observer design when the conditions ΦL = 0 and
ΦDi(x(t), u(t)) �= 0 hold for all i = 1, . . . , p i.e., the
observer is disturbance decoupled and sensitive to faults.

4.1. Linear systems. In this section, we assume the
conditions (12), (14), and (15) are valid.

Based on (7), obtain the equations for the first three
rows of the matrix Φ:

Φ1 = RH,

Φ2 = Φ1F − J1H = RHF − J1H,

Φ3 = Φ2F − J2H = (RHF − J1H)F − J2H

= RHF 2 − J1HF − J2H.

(16)

The relations for the rest of the rows can be obtained by
analogy.

It is known (Alcorta-Garcia and Frank, 1997) that
the contribution of the disturbance to the residual can be
estimated by the Frobenius norm of the matrix ΦL as
follows:

‖ΦL‖F = (
k∑

i=1

b∑

j=1

(ΦL)2ij)
1/2, (17)

where b is the number of columns of the matrix L. From
(17) it follows that ‖ΦL‖2F =

∑k
i=1 ‖ΦiL‖2F = ‖Φ∗‖2F ,

where

Φ∗ = ( Φ1L Φ2L . . . ΦkL ).

The last relation allows us to replace the product ΦL in
(17) by Φ∗. Replace the elements in Φ∗ according to (16):

Φ∗ = ( RHL RHFL− J1HL

RHF 2L− J1HFL− J2HL . . . )

It is easy to check that the last matrix can be rewritten
in the form

Φ∗ = (R −J1 . . . −Jk) B
(k)
1 ,

where

B
(k)
1 =

⎛

⎜⎜⎜⎜⎝

HL HFL HF 2L . . . HF k−1L
0 HL HFL . . . HF k−2L
0 0 HL . . . HF k−3L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎠
.

(18)
The condition ΦL = 0 is now of the form

(R −J1 . . . −Jk) B
(k)
1 = 0. Apart from that, the

matrix (R −J1 . . . −Jk) satisfies the condition
(9) therefore, we obtain

(R −J1 . . . −Jk) (V (k) B
(k)
1 ) = 0. (19)

The minimal value of the dimension k can be found
through the condition similar to (10):

rank(V (k) B
(k)
1 ) < l(k + 1). (20)

Whenever (20) is satisfied, a row vector
(R −J1 . . . −Jk) exists such that (19) has a

solution. Then the rows of the matrix Φ are obtained
from (16) and the matrix G∗ = ΦG is determined. As
a result, the disturbance decoupled linear observer has
been built. If ΦDi(x(t), u(t)) = 0 for some i and for all
(x(t), u(t)) ∈ X × U , another solution of (19) should be
found.

Thus, the suggested approach allows us to obtain a
solution in the linear case without detailed analysis of
several variants, one needs to find the minimal dimension
k only. A more sophisticated analysis is required in the
nonlinear case.

4.2. Nonlinear systems. Notice that if the rows of
the matrix A in (2) linearly depend on the matrix H , the
argument of the nonlinear function in (3) depends on the
output vector y only and the problem of the nonlinear
observer design reduces to the linear case. To analyze the
general case, consider the set of all linearly independent
solutions of (19) for some k presented in the form

W =

⎛

⎜⎝
R(1) −J

(1)
1 . . . −J

(1)
k

. . . . . . . . . . . . . . . . . . . . . . . . . . .

R(N) −J
(N)
1 . . . −J

(N)
k

⎞

⎟⎠ , (21)

N is the number of such solutions.

Theorem 1. Let the matrices Φ(1), . . . ,Φ(N) obtained
based on (21) describe the set of linearly independent dis-
turbance decoupled solutions for the linear system. Then
any arbitrary linear combination of solutions from (21)
yields the matrix Φ which is the appropriate linear combi-
nation of the matrices Φ(1), . . . ,Φ(N) and describes some
disturbance decoupled solution as well.
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Proof. Let

(R −J1 ... −Jk)

= v1 (R(1) −J
(1)
1 . . . −J

(1)
k )

+ v2 (R(2) −J
(2)
1 . . . −J

(2)
k )

be some linear combination of two solutions, where v1
and v2 are weight coefficients then R = v1R

(1) + v2R
(2),

J1 = v1J
(1)
1 + v2J

(2)
1 , . . . , Jk = v1J

(1)
k + v2J

(2)
k .

Since (19) is a homogeneous equation, the row matrix
(R −J1 . . . −Jk) is also the solution of (19).

Then

Φ1 = RH = v1R
(1)H + v2R

(2)H

= v1Φ
(1)
1 + v2Φ

(2)
1 ,

Φ2 = Φ1F − J1H

= (v1Φ
(1)
1 + v2Φ

(2)
1 )F − (v1J

(1)
1 + v2J

(2)
1 )

H = v1(Φ
(1)
1 F − J

(1)
1 H)

+ v2(Φ
(2)
1 F − J

(1)
2 H)

= v1Φ
(1)
2 + v2Φ

(2)
2 ,

the rest of rows can be obtained by analogy. As a result,
we obtain Φ = v1Φ

(1) + v2Φ
(2); clearly, this relation can

be generalized to an arbitrary vector of weight coefficients
v = (v1, . . . , vN ). �

Assume that the value k is minimal, satisfying
the condition (20) and the set of solutions of (19) is
represented in the form (21); note that the value N = 1
is possible. To find the vector v = (v1, . . . , vN ), taking
into account the nonlinear term, rewrite the last equation
in (5) in the form

A = A∗1

⎛

⎜⎝
Φ1

...
Φk

⎞

⎟⎠+A∗2H, (22)

where A∗ = (A∗1 A∗2). Set

ΦΣ
1 =

⎛

⎜⎜⎝

Φ
(1)
1
...

Φ
(N)
1

⎞

⎟⎟⎠ , . . . , ΦΣ
k =

⎛

⎜⎜⎝

Φ
(1)
k
...

Φ
(N)
k

⎞

⎟⎟⎠

and rewrite (22) in the form

A = A∗1

⎛

⎜⎝
vΦΣ

1
...

vΦΣ
k

⎞

⎟⎠+A∗2H, (23)

By analogy with (6), Eqn. (23) has a solution if

rank

⎛

⎜⎜⎜⎝

ΦΣ
1
...

ΦΣ
k

H

⎞

⎟⎟⎟⎠ = rank

⎛

⎜⎜⎜⎜⎜⎝

ΦΣ
1
...

ΦΣ
k

H
A

⎞

⎟⎟⎟⎟⎟⎠
. (24)

Assuming that (24) holds, at first consider the simple
case when A is a row matrix. Here, (23) can be
represented in the form

A = (a1v . . . akv)

⎛

⎜⎝
ΦΣ

1
...

ΦΣ
k

⎞

⎟⎠+A∗2H,

where A∗1 = (a1 . . . ak), or in the form

A = Av

⎛

⎜⎝
ΦΣ

1
...

ΦΣ
k

⎞

⎟⎠+A∗2H, (25)

where Av is considered an unknown matrix. Note that if
N = 1, then A∗1 = Av . Solve this algebraic equation and
find the matrices Av and A∗2. If Av can be represented in
the form

Av = (a1v . . . akv) (26)

for some coefficients a1, . . . , ak and the vector v =
(v1, . . . , vN ), then stop, the results are the matrices
A∗1 = (a1 . . . ak) and A∗2 and the vector v of the
weight coefficients. Then we find the matrix R and the
rows of matrices J and Φ from the relations

R =

N∑

i=1

viR
(i), Jj =

N∑

i=1

viJ
(i)
j ,

Φj =

N∑

i=1

viΦ
(i)
j , j = 1, 2, . . . , k, (27)

and the matricesG∗ = ΦG andC∗ = ΦC. As a result, the
nonlinear observer described by the model (3) has been
constructed.

If the matrix A has several rows (25) is solved for all
rows with some coefficients a1, . . . , ak specific for each
row and the vector v which is the same for all rows. If the
condition (24) does not hold or the matrix Av cannot be
represented in the required form, the dimension k should
be increased and the described procedure is repeated.

Let Φ be the matrix with rows found from
(27), which guarantees disturbance decoupling and fault
sensitivity for the linear part. Since the nonlinear part
is constructed based on this matrix (C∗ = ΦC and
the matrices A∗1 and A∗2 are found from (25)), then
the nonlinear observer is disturbance decoupled and fault
sensitive as well. Besides, if faults are not masked by
disturbances in the linear systems, i.e., if the conditions
ΦL = 0 and ΦD(x, u) �= 0 hold, then the faults are not
masked by disturbances in the nonlinear systems.

Note that unlike the basic procedure of the LDA,
where the nonlinear term is added to the existing
linear part, the approach considered requires finding the
matrices, describing the linear part, from the start.
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5. Robustness

5.1. Linear systems. If for all k < n Eqn. (19) has
no solutions, the disturbance decoupled linear observer
cannot be designed and one has to use robust methods.
From (19) it follows that the problem of minimizing the
contribution of the disturbances in the residual reduces to
minimizing the norm ‖ (R −J1 . . . −Jk) B

(k)
1 ‖F

under the condition (9).
To solve this problem, we suggest to find the minimal

value of the dimension k when (9) has several linearly
independent solutions in the form (21). It follows from
Theorem 1 that an arbitrary linear combination of the rows
of the matrix W with the vector of weight coefficients
w = (w1, . . . , wN ) yields some solution as well. The
problem is to find the vector w such that ‖w‖ = 1 and the

norm ‖wWB
(k)
1 ‖F is minimal. The constraint ‖w‖ = 1

is used to avoid the trivial solution w = 0.
To solve this problem, find the singular value

decomposition of the matrix WB
(k)
1

WB
(k)
1 = UBΣBVB,

where UB and VB are orthogonal matrices,

ΣB = (diag(σ1, . . . , σc) 0),

or

ΣB =

(
diag(σ1, . . . , σc)

0

)

depending on the numbers of rows and columns of the
matrix WB

(k)
1 , c = min(N, k), 0 ≤ σ1 ≤ · · · ≤ σs

are the singular values of the matrix WB
(k)
1 ordered

by magnitude (Low et al., 1996). Choose the first
transposed column of the matrix UB as a vector of the
weight coefficients w = (w1, . . . , wN ). It follows from
singular value decomposition and properties of orthogonal
matrices that the norm of the matrix wWB

(k)
1 is equal to

the minimal singular value σ1.

Theorem 2. The vector w = (w1, . . . , wN ) yields
an optimal solution with the minimal norm of the vector
(R −J1 . . . −Jk) B

(k)
1 .

Proof. This result follows immediately from the choice
of the vector w = (w1, . . . , wN ) and properties of the
singular value decomposition (Low et al., 1996). �

Note that if σ1 = 0, then wWB
(k)
1 = 0. This

means that the linear combination of solutions represented
by rows of the matrix W with the vector of weight
coefficients w = (w1, . . . , wN ) yields the disturbance
decoupled solution. If σ1 �= 0, such a linear combination
yields the solution with the minimal value of the norm
‖ (R −J1 . . . −Jk) B

(k)
1 ‖F .

Thus, the linear combination of solutions,
represented by the rows of the matrix W with the weight

coefficients w1, . . . , ws, yields the optimal solution with
matrices R, J and Φ found from (27) with v = w.
Then the matrix G∗ = ΦG is defined, and the robust
linear observer has been built. Notice that this solution
is optimal for a given dimension of the observer; if this
dimension increases, the solution can be improved in the
sense of the norm ‖ (R −J1 . . . −Jk) B

(k)
1 ‖F .

If ΦD(x(t), u(t)) = 0 for all (x(t), u(t)) ∈ X × U,
then another transposed column of the matrix UB should
be chosen as the vector of the weight coefficient w =
(w1, . . . , wN ).

5.2. Nonlinear systems. The main idea to construct
the nonlinear robust observer is as follows. We find all
solutions satisfying the conditions (9), (24), and (26) and
obtain the optimal solution according to Section 5.1.

The algorithm below constructs the robust nonlinear
observer based on the singular value decomposition.

Algorithm 2. Robust nonlinear observer design.
Step 1. Find the minimal value of k for which (9) has
several linearly independent solutions.

Step 2. Find the set of all linearly independent solutions
of (9) in the form (21).

Step 3. Find matrices Φ(1)
1 , . . . , Φ(1)

k , . . . , Φ(N)
k from (7)

and check the condition (24). If it holds, solve (25) and
check the condition (26). Let b be the number of solutions
satisfying the conditions (9), (24), and (26).

Step 4. If b > 1, construct matrices W and B
(k)
1 ,

choose the vector w = (w1, w2, . . . , wN ), solve (25) and
construct the nonlinear observer with minimal sensitivity
to the disturbances. If b = 1, the solution satisfying
the conditions (9), (24), and (26) is unique for a given
k. To improve the quality of this solution, one may take
k := k + 1 and go to Step 2. If b = 0, set k := k + 1 and
go to Step 2.

A shortcoming of the suggested approach is that the
minimal sensitivity to the disturbances may be followed
by low sensitivity to the faults. To overcome this
difficulty, we suggest to consider the norm ‖ΦD‖F ,
estimating the contribution of the faults in the residual,
on the analogy of the norm ‖ΦL‖F , estimating the
contribution of the disturbances to the residual, and
minimize the performance index

J =
‖ΦL‖2F
‖ΦD‖2F

.

The problem can be solved by the method considered
by Alcorta-Garcia and Frank (1997) for parity relations;
it may be reduced to the generalized eigenvector and
eigenvalue problem of the matrices WB

(k)
1 (WB

(k)
1 )T
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and WB
(k)
2 (WB

(k)
2 )T , where

B
(k)
2 =

⎛

⎜⎜⎜⎜⎝

HD HFD HF 2D . . . HF k−1D
0 HD HFD . . . HF k−2D
0 0 HD . . . HF k−3D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎠
.

The best choice for the row (R −J1 . . . −Jk)
in this case is the transposed generalized eigenvector,
corresponding to the minimal generalized eigenvalue.
Recall that the generalized eigenvector and eigenvalue
problem for the matrices Q1 and Q2 is formulated as
follows: find a vector w and a number λ such that Q1w =
λQ2w.

To summarize, the algorithm suggested below
constructs the disturbance decoupled observer or the
robust observer based on the generalized eigenvectors and
eigenvalues.

Algorithm 3. Nonlinear observer design.
Step 1. Find the minimal dimension k from (10).

Step 2. Construct the matrix B
(k)
1 .

Step 3. If the condition (20) holds, from (19) find the
row (R − J1 . . . − Jk) and construct the disturbance
decoupled linear observer. Otherwise, go to Step 5.

Step 4. To construct the nonlinear observer, find a set of
all linearly independent solutions of (19) in the form (21),
find matrices Φ(1)

1 , . . . , Φ(1)
k , . . . , Φ(N)

k from (7) and check
the condition (24). If it holds, solve (25) and check the
condition (26). If it holds, find the matrices, describing
the nonlinear observer and stop. Otherwise, go to Step 5.

Step 5. Set k := k + 1 and repeat Steps 2–4.
If the conditions (20), (24), and (26) hold, construct
the disturbance decoupled nonlinear observer; otherwise,
repeat Step 5. When k = n, go to Step 6 to find the robust
solution.

Step 6. Find the minimal value k for which (9) has several
linearly independent solutions, construct matrices W ,
B

(k)
1 , and B

(k)
2 , choose the vector w = (w1, w2, . . . , wN )

and construct the linear observer with the minimal value
of the performance index J .

Step 7. Use Algorithm 2 after replacing the matrices W
and B

(k)
1 in Step 4 by W , B(k)

1 , and B
(k)
2 , respectively.

6. Illustrative example

Consider the control system:

x+
1 = x1 + x2 − x3u1 + L1ρ,

x+
2 = 0.5x1 − x3 + γabs(1.7831x4 − x2) + L2ρ,

x+
3 = x1 + x2 − x4 + u2 + L3ρ,

x+
4 = −0.1x1 + x4 + L4ρ,

y1 = x1, y2 = x3.

The nominal value of the parameter γ is equal to 1.
The system has the logic-dynamic description with the
following matrices and nonlinearities:

F =

⎛

⎜⎜⎝

1 1 0 0
0.5 0 −1 0
1 1 0 −1

−0.1 0 0 1

⎞

⎟⎟⎠ ,

H =

(
1 0 0 0
0 0 1 0

)
,

D(x, u) =

⎛

⎜⎜⎝

0
abs(1.7831x4 − x2)

0
0

⎞

⎟⎟⎠ ,

G =

⎛

⎜⎜⎝

0 0
0 0
0 1
0 0

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

−1 0
0 1
0 0
0 0

⎞

⎟⎟⎠ ,

ϕ1(A1x, u) = x3u1,

ϕ2(A2x, u) = abs(1.7831x4 − x2),

A1 = ( 0 0 1 0 ),

A2 = ( 0 −1 0 1.7831 ).

Consider at first the case

L(1) = (L1 L2 L3 L4)
T

=
(
0.2060 0.7960 0.0905 0.5619

)T

and construct the disturbance ρ decoupled linear observer.
It can be shown that the condition (20) holds for k = 2

since rank(V (2) B
(2)
1 , 0.0001) = 5 and l(k+1) = 6; the

matrices V (2) and B
(2)
1 are as follows:

V (2) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.5 1 −1 0
1.6 1 −1 −1
1 1 0 0
1 1 1 −1
1 0 0 0
0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,
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B
(2)
1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.2060 1.0020
0.0905 0.4401

0 0.2060
0 0.0905
0 0
0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

One can check that the row

(R −J1 −J2)

= (0.2604 −0.5929 −0.2604

0.5929 0.2255 −0.3325)

is the solution of (19) and

R = (0.2604 − 0.5929),

J =

(
0.2604 −0.5929
−0.2255 0.3325

)
.

From (4) and (7) it follows that

Φ =

(
0.2604 0 −0.5929 0
−0.5929 −0.3325 0.5929 0.5929

)

and

G∗ =

(
0 −0.5929
0 0.5929

)
.

Since the row A1 can be expressed via H , consider
the second nonlinearity ϕ2(A2x, u) = abs(1.7831x4 −
x2). Since rank(V (2) B

(2)
1 ) = 5 and l(k + 1) = 6, (19)

has a unique solution and N = 1. As a result, the relation
(25) for ϕ2(A2x, u) takes the form
(
0 −1 0 1.7831

)

= Av

(
0.2604 0 −0.5929 0
−0.5929 −0.3325 0.5929 0.5929

)

+A∗2

(
1 0 0 0
0 0 1 0

)
,

which gives
Av = ( 0 3.0075 ),

A∗2 = ( 1.7831 −1.7831 ).

Since N = 1, we have A∗1 = Av .
Since

ΦD(x, u) = −0.3325abs(1.7831x4 − x2) �= 0

for all (x, u) ∈ X × U except on the set

S = {(x, u)|1.7831x4 − x2 = 0, u ∈ U},

the observer is sensitive to the fault. Calculate

C∗ = ΦC =

( −0.2604 0
0.5929 −0.3325

)

and set

x∗1 := 0.2604x1 − 0.5929x3,

x∗2 := −0.5929x1 − 0.3325x2

+ 0.5929x3 + 0.5929x4.

As a result, we obtain the description of the
disturbance decoupled nonlinear observer:

x+
∗1 = x∗2 + 0.2604y1 − 0.5929y2 − 0.2604y2u1

− 0.5929u2,

x+
∗2 = −0.2255y1 + 0.3325y2 + 0.5929y2u1

+ 0.5929u2 − 0.3325abs(3.0075x∗2
+ 1.7831y1 − 1.7831y2),

r = 0.2604y1 − 0.5929y2 − x∗1.

(28)

Next, to illustrate the process of obtaining the robust
solution, assume that the disturbances are described by the
matrixL(2) = ( 0.2 0.5 0.2 0.5 )T . It can be shown
that (19) has no solutions for all k < 4, so we need to use
the robust methods. It can be also shown that (9) has two
solutions for k = 2:

(R(1) −J
(1)
1 −J

(1)
2 )

= (0.2604 −0.5929

−0.2604 0.5929 0.2255 −0.3325),

(R(2) −J
(2)
1 −J

(2)
2 )

= (0.5443 0.0248

−0.5443 −0.0248 −0.2870 0.5691).

Construct the matrices

W =

(
0.2604 −0.5929 −0.2604
0.5443 0.0248 −0.5443

0.2255 −0.3325 0.5929
−0.2870 0.5691 −0.0248

)
,

B
(2)
1 =

(
0.2 0.2 0 0 0 0
0.7 0.2 0.2 0.2 0 0

)T

.

Find the matrixUB from the singular value decomposition
of WB

(2)
1 :

UB =

(
0.3447 0.9387
0.9387 −0.3447

)
.

The last column of this matrix corresponds to the minimal
singular value σ = 0.1056; therefore,

w = (0.9387 − 0.3447).

Compute

R = (0.0568 − 0.5651),

J =

(
0.0568 −0.5651
−0.3106 0.5083

)
,
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Φ =

(
0.0568 0 −0.5651 0
−0.5651 −0.5083 0.5651 0.5651

)
,

G∗ =

(
0 −0.5651
0 0.5651

)
,

ΦL(2) =

( −0.1017
0.0284

)
.

Note that ‖ΦL(2)‖ = σ = 0.1056. The description
of the linear observer with minimal sensitivity to the
disturbances is as follows:

x+
∗1 = x∗2 + 0.0568y1 − 0.5651y2 − 0.5651u2,

x+
∗2 = −0.3106y1 + 0.5083y2 + 0.5651u2,

r = 0.0568y1 − 0.5651y2 − x∗1.

Based on Algorithm 1, one can show that b = 1 so
the solution satisfying the conditions (9), (24), and (26) is
unique for k = 2 with

R = (0.2604 − 0.5929),

J =

(
0.2604 −0.5929
−0.2255 0.3325

)
.

The description of the nonlinear observer almost coincides
with (28); since

ΦL(2) =

( −0.0665
0.1302

)
,

we get ‖ΦL(2)‖ = 0.1462 > σ.
To improve this solution, one may take k = 3 that

yields a better solution with

R = (−0.1115 0.4518),

J =

⎛

⎝
−0.1675 0.6281
0.2713 −0.5165
−0.0778 0.1202

⎞

⎠ .

It can be shown that

Φ =

⎛

⎝
−0.1115 0 0.4518 0
0.5078 0.3403 −0.6281 −0.4518
−0.1763 −0.1203 0.1762 0.1763

⎞

⎠ ,

C∗ =

⎛

⎝
0.1115 0
−0.5078 0.3403
0.1763 −0.1203

⎞

⎠ ,

G∗ =

⎛

⎝
0 0.4518
0 −0.6281
0 0.1762

⎞

⎠ ,

A∗ = (0 6.7703 27.4640 1.4040 − 0.5868),

ΦL(2) =

⎛

⎝
0.0681
−0.0798
0.0280

⎞

⎠ ,

and then ‖ΦL(2)‖ = 0.1086.

The description of the there-dimensional nonlinear
observer is as follows:

x+
∗1 = x∗2 − 0.1675y1 + 0.6281y2 + 0.4518u2

+ 0.1115y2u1,

x+
∗2 = x∗3 + 0.2713y1 − 0.5165y2 − 0.6281u2

− 0.5078y2u1 + 0.3403abs(6.7703x∗2
+ 27.4640x∗3 + 1.4040y1 − 0.5868y2),

x+
∗3 = −0.0778y1 + 0.1202y2 + 0.1762u2

+ 0.1763y2u1 − 0.1203abs(6.7703x∗2
+ 27.4640x∗3 + 1.4040y1 − 0.5868y2),

r = −0.1115y1 + 0.4518y2 − x∗1.

(29)

For simulation, consider the observers (28) with
K =

(
0 0.1

)T
and (29) with K =

(
0 0 0

)T
.

The initial conditions of the system are zero, the initial
conditions of the observer (28) are x∗1(0) = x∗2(0) =
0.01, and those of the observer (29) are zero. The control
are u1(t) = 0.1 sin(i/10), u2(t) = 0.2 if t < 30, u2(t) =
0.1 if t ≥ 30. The disturbance ρ(t) has uniform random
distribution on (−0.5, 0.5). The fault is modeled by
abruptly changing the parameter γ at t = 120 from γ = 1
to γ = 0.7 onward.

Simulation results are shown in Figs. 1–3. Figure 1
shows that the observer is disturbance decoupled,
Figures 2 and 3 show the behavior of robust observers.
The observer (29) reveals less sensitivity to the
disturbances than (28).

7. Conclusions

In the present paper, the problem of fault detection
and isolation in technical systems described by dynamic

0 50 100 150 200
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t

r

Fig. 1. Residual behavior for the observer (28) and L(1) =
(0.2060 0.7960 0.0905 0.5619)T .
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Fig. 2. Residual behavior for the observer (28) and L(2) =
(0.2 0.5 0.2 0.5)T .
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Fig. 3. Residual behavior for the observer (29) and L(2) =
(0.2 0.5 0.2 0.5)T .

models with non-differentiable nonlinearities has been
considered. Some method to construct disturbance
decoupled observers or having minimal sensitivity to
disturbances have been suggested. The method is
based on the so-called logic-dynamic approach which
allows us to solve the problem under consideration by
linear methods. This approach can be applied for both
continuous-time and discrete-time systems.
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