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1. Introduction

Controllability is one of the fundamental concepts in
mathematical control theory. The fixed point technique is
the most powerful method for the controllability problem
for nonlinear dynamical systems. Several fixed point
theorems are explicitly used to derive the controllability
conditions depending on the nonlinear functions involved.
The notion of a fractional derivative dates back two
centuries and several authors have published books on
this subject (see Kilbas et al., 2006; Kaczorek, 2011).
Fractional derivatives and integrals in control theory lead
to better results than integer order ones.

Controllability and observability for fractional
control systems were studied by Shamardan and
Moubarak (1999). Adams and Hartley (2008) obtained
the finite time controllability of fractional order systems.
Bettayeb and Djennoune (2008) established new
results on the controllability and observability of
fractional dynamical systems. The controllability of
nonlinear fractional dynamical systems was studied
by Balachandran et al. (2012b) using the fixed point
argument. Fractional order differential equations with
delay in the state variable have recently proved to be
a valuable tool in the modeling of many phenomena
in various fields. The delay differential equation was
extensively studied by Bellman and Cooke (1963) or
Hale (1977). Wiess (1967) examined the controllability
of delayed differential systems. The controllability of
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nonlinear delay systems with a fixed point technique was
discussed by Dauer and Gahl (1977).

Based on the measure of noncompactness of a
set, Dacka (1980) introduced a new method of analysis
to study the controllability of nonlinear systems with
implicit derivatives through the Darbo fixed point
theorem. Balachandran (1988; 1989) extended the
technique to a larger class of nonlinear dynamical
systems with implicit derivatives. Klamka (1976a;
1976b; 2000) published several papers regarding the
controllability of nonlinear systems with various types
of delays. The relative controllability of perturbed
nonlinear systems with delay in control and time varying
delays were discussed by Dacka (1982). The results on
the controllability of nonlinear systems with distributed
delays in the control variable and delay depending on
the state variable were studied by Balachandran and
Somasundaram (1983; 1986). Yi et al. (2008) obtained
the controllability and observability of a linear delay
system by constructing a Lambert W function. The
controllability of differential equations with delayed and
advanced arguments was given by Manzanilla et al.
(2010) and the numerical method was established by
Wang (2013).

Many authors generalize results from the integer
order case to the fractional order case to obtain better
results. Controllability criteria for linear fractional
differential systems with a state delay and impulse
were studied by Zhang et al. (2013). Several results
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on the controllability of nonlinear fractional dynamical
systems with multiple delays and distributed delays
in control were derived by Balachandran and Kokila
(2012; 2014) as well as Balachandran et al. (2012a;
2012c). Recently, Balachandran and Divya (2014)
studied the controllability of nonlinear implicit fractional
integrodifferential systems. Analysis and numerical
methods for a fractional differential equation with delay
were studied by Morgado et al. (2013). The application of
this equation was discussed by Bhalekar and Gejji (2010)
or Bhalekar et al. (2011). But there is no work reported on
the control problem of nonlinear fractional delay systems
governed by fractional delay differential equations with
implicit fractional derivatives.

In this paper, we make an attempt to study the
controllability problem for fractional delay systems with
implicit fractional derivative through the notion of a
measure of noncompactness of a set and the Darbo fixed
point theorem. Further controllabilty results for multiple
delays and distributed delays in control variables are also
discussed using the Darbo fixed point theorem. Examples
are provided to illustrate the theoretical results.

2. Preliminaries

In this section, we give some basic definitions required
for this paper (Kilbas et al., 2006). The Caputo fractional
derivative of order α > 0, for n− 1 < α < n, is defined
as

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds,

where the function f(t) has absolutely continuous
derivatives up to order n− 1.

The Laplace transform of the Caputo derivative for n −
1 < α < n is

L[Dαx(t)](s) = sαL[x(t)](s) −
n−1∑
k=0

xk(0)sα−1−k.

The Mittag-Leffler functions of various types are defined
by

Eα(λt
α) =

∞∑
k=0

λktαk

Γ(αk + 1)
, t ∈ C, (1)

Eα,β(λt
α) =

∞∑
k=0

λktαk

Γ(αk + β)
, t, β ∈ C, (2)

E
(γ)
α,β(λt

α) =

∞∑
k=0

(γ)k(λ)
k

k!Γ(αk + β)
tαk, (3)

where (γ)n is a Pochhamer symbol which is defined as
γ(γ + 1) · · · (γ + n− 1) and

(γ)n =
Γ(γ + n)

Γ(γ)
.

The relation between (1) and (3) is given as

(
∂

∂λ

)ν

Eα(λt
α) = ν!tανEν+1

α,αν+1(λt
α). (4)

The Laplace transforms of the Mittag-Leffler functions
(1)–(3) are defined respectively as

L[Eα(±λtα)](s) =
sα−1

(sα ± λ)
, (5)

L[tβ−1Eα,β(±λtα)](s) =
sα−β

(sα ± λ)
, Re(α) > 0, (6)

L[tβ−1E
(γ)
α,β(±λtα)](s)=

sαγ−β

(sα ± λ)γ
, |λs−α| < 1. (7)

If F (s) = L[f(t)](s) for Re(s) >0, then

F (s− a) = L[eatf(t)](s),

and

L[ua(t)f(t− a)](s) = e−asF (s), a ≥ 0,

and we also have

L−1[e−asF (s)](t) = ua(t)f(t− a), (8)

where the delayed unit step function is defined as

ua(t) =

{
1, t ≥ a,
0, t < a.

Consider the fractional delay differential equation of
the form

CDαx(t) = Ax(t) +Bx(t− h) + f(t), (9)

x(t) = φ(t), −h < t ≤ 0,

where 0 < α < 1, x ∈ Rn, A and B are n× n matrices,
φ(t) is a continuous function on [−h, 0] and f is a real
valued continuous function on Rn. The solution of (9) as
in the work of Joice Nirmala et al. (2016) is

x(t) = Xα(t)φ(0) +B

∫ 0

−h

(t− s− h)α−1

×Xα,α(t− s− h)φ(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)f(s) ds,

(10)
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where

Xα(t) = L−1

[
sα−1

sα −A−Be−s

]
(t)

and

Xα,α(t) = t1−α

∫ t

0

(t− s)α−2

Γ(α − 1)
Xα(s) ds.

Next we summarize the basic facts about the measure
of noncompactness and the related fixed point theorem;
for more details, we refer the reader to Dacka (1980).

Definition 1. Let (X, || · ||) be a Banach space and E be
a bounded subset of X . Then the noncompactness of the
set E is defined as

μ(E) = inf
{
r > 0: E can be covered by a finite

number of balls whose radii are smaller than r
}
.

Theorem 1. (Darbo fixed point theorem) If S is a
nonempty bounded closed convex subset of X and T :
S → S is a continuous mapping such that, for any E ⊂ S,
we have

μ(TE) ≤ kμ(E),

where k is a constant, 0 ≤ k < 1, then T has a fixed point.

2.1. Implicit fractional delay dynamical systems.
Consider the fractional delay dynamical equation with an
implicit fractional derivative of the form

CDαx(t) = Ax(t) +Bx(t − h) + Cu(t) (11)

+ f(t, x(t), x(t− h),CDαx(t), u(t)),

with x(t) = φ(t), on [−h, 0], where t ∈ J = [0, t1],
x ∈ Rn, A,B are n×n matrices and C is an n×m matrix,
u(t) ∈ R

n is the control function, φ is a continuous
function on [−h, 0] and the nonlinear function f : J ×
Rn ×Rn ×Rn ×Rm → Rn is continuous. We will need
the following terminology:

(i) Define the space of continuous functions Cn(J) with
norm ||x|| = max{|xi(t)|, i = 1, 2, . . . , n, t ∈ J}.
Then the measure of noncompactness of a set S is
given by

μ(S) =
1

2
ω0(S) =

1

2
lim
δ→0

ω(S, δ), (12)

where ω(S, δ) = supx∈S[sup |x(t) − x(s)| : |t −
s| ≤ δ] is the common modulus of continuity of the
functions which belong to the set S.

(ii) Introduce the space Cα
n (J) = {x :C Dαx ∈

Cn and x ∈ Cn} with the norm

||x||Cα
n
= ||x||Cn + ||CDαx||Cn .

Then the measure of noncompactness of a set S is
given by

μ(S) =
1

2
ω0(

CDαS), (13)

where
CDαS = {CDαx : x ∈ S}.

(iii) For the space being the Cartesian product
Cα

n+m(J) = Cα
n (J) × Cm(J) with the norm

||(x, u)||Cα
n+m

= max{||x||Cα
n
, ||u||Cm},

the measure of noncompactness of any bounded set
S in Cα

n+m(J) is given by

μ(S) = [μ(S1), μ(S2)], (14)

where S1 and S2 are natural projections of the set S
onto the spaces Cα

n (J) and Cm(J), respectively.

(iv) Assume that there exist positive real constants K1

and k with 0 ≤ k < 1 such that

|f(t, x, y, z, u)| ≤ K1, (15)

|f(t, x, y, z, u)− f(t, x, y, z̄, u)| ≤ k(|z − z̄|) (16)

for all x, y, z ∈ Rn and u ∈ Rm.

The solution of the system (11) with the initial function
x(t) = φ(t) is given by

x(t) = xL(t;φ)

+

∫ t

0

(t− s)α−1Xα,α(t− s)Cu(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s − h),C Dαx(s), u(s)) ds,

(17)

where

xL(t;φ) = Xα(t)φ(0) +

∫ 0

−h

(t− s− h)α−1

×Xα,α(t− s− h)φ(s) ds.

(18)

The controllability of the fractional delay dynamical
system is defined as follows.

Definition 2. The system (11) is said to be controllable
on [0, t1], if for every φ ∈ Cn[−h, 0] and every x1 ∈ Rn

there exists a control function u defined on [0, t1] such that
the solution of (11) satisfies x(t1) = x1.

Define the controllability Gramian matrix W by

W =

∫ t1

0

[Xα,α(t1 − s)C][Xα,α(t1 − s)C]∗ ds, (19)

where * denotes the matrix transpose.
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Theorem 2. If the controllability Gramian matrix W is
positive definite and the nonlinear function f satisfies the
conditions (15) and (16), then the nonlinear system (11)
is controllable on J .

Proof. Let the initial function φ be continuous on [−h, 0]
and let x1 ∈ Rn. Define the following nonlinear mapping
on the space Cα

n+m(J):

(z, v) = Φ([x, u])(t) = (Φ1([x, u])(t),Φ2([x, u])(t)),

where the pair of operators Φ1 and Φ2 is defined by

Φ2([x, u])(t) (20)

= (t− s)1−αC∗X∗
α,α(t− s)W−1

[
x1 − xL(t1;φ)

−
∫ t1

0

(t1 − s)α−1Xα,α(t1 − s)

× f(s, x(s), x(s − h),C Dαx(s), u(s)) ds

]

and

Φ1([x, u])(t)

= xL(t;φ) (21)

+

∫ t

0

(t− s)α−1Xα,α(t− s)Cv(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s − h),CDαx(s), v(s)) ds.

Since all the functions involved in the definition of
the operator Φ are continuous, this mapping is continuous
and maps the space Cα

n+m(J) into itself. Consider the
closed convex subset S of Cα

n+m(J) defined by

S = {[x, u] : ||u|| ≤ L1, ||x|| ≤ L2,

||CDαx|| ≤ L3}, (22)

where the positive real constants L1, L2 and L3 are
defined by

L1 = c1[|x1|+ c2],

L2 = b1 + b2||C||L1t
α
1α

−1 + a2K1t
α
1α

−1,

L3 = (||A||+ ||B||)L2 + ||C||L1 +K1,

with

b1 = sup ||xL(t;φ)||, b2 = sup ||Xα,α(t− s)||,
c1 = ||C∗||b2||W−1||, c2 = b1 + b2t

α
1α

−1K1.

The set S is bounded, closed and convex in Cα
n+m(J) and

the operator Φ transforms S into S. It is easily seen that,
for each pair [x, u] ∈ S, we have

ω(Φ2([x, u], δ)) ≤ ω(κ1, δ)e1, (23)

where κ1(t1, s) = (t1 − s)α−1C∗Xα,α(t1 − s) and

e1 = sup
[x,u]∈S

||W−1||
[
|x1|+ ||xL(t1;φ)||

+

∫ t1

0

(t1 − s)α−1||Xα,α(t1 − s)||

× ||f(s, x(s), x(s − h),C Dαx(s), u(s))|| ds
]
.

Since the function κ1 does not depend on the choice
of the points in S, all the functions Φ2([x, u])(t) have a
uniform bounded modulus of continuity. Therefore, they
are equicontinuous. All the functions Φ1([x, u])(t) are
also equicontinuous, since they have uniformly bounded
derivatives.

Let us consider the moduli of continuity of the
functions CDαΦ1([x, u])(t). We have

|CDαΦ1([x, u])(t)−CDαΦ1([x, u])(s)|
≤ |AΦ1([x, u])(t)−AΦ1([x, u])(s)|
+ |BΦ1([x, u])(t − h)−BΦ1([x, u])(t− h)|
+ |CΦ2([x, u])(t)− CΦ2([x, u])(s)|
+
∣∣f(t, x(t), x(t − h),C Dαx(t), u(t))

− f(s, x(s), x(s − h),CDαx(s), u(s))
∣∣

≤ |AΦ1([x, u])(t) −AΦ1([x, u])(s)|
+ |BΦ1([x, u])(t − h)−BΦ1([x, u])(s− h)|
+ |CΦ2([x, u])(t)− CΦ2([x, u])(s)|
+
∣∣f(t, x(t), x(t − h),CDαx(t), u(t))

− f(t, x(t), x(t − h),C Dαx(s), u(t))
∣∣

+
∣∣f(t, x(t), x(t − h),CDαx(s), u(t))

− f(s, x(s), x(s − h),CDαx(s), u(s))
∣∣ (24)

≤ β0(|t− s|) + β1(|t− s|)
+ k|CDα(x(t) − x(s))|.

For the first three terms on the right hand side of (24)
we may give an upper bound β0(|t − s|), where β0 is a
nonnegative function such that limδ→0+ β0(δ) = 0. In the
same manner, we find that the last term on the right hand
side of (24) can be bounded from above by k|CDαx(t)−C

Dαx(s)| + β(|t − s|). Setting β = β0 + β1, we finally
obtain

|CDαΦ1([x, u])(t) −CDαΦ1([x, u])(s)|
≤ k|CDαx(t)−CDαx(s)|+ β(|t− s|).

Therefore,

ω(CDαΦ1([x, u]), δ) ≤ kω(CDαx, δ) + β(δ). (25)

Hence, by using (12)–(14), we have, for any set S ⊂
Cα

n+m(J),

ω0(Φ2S) and ω0(Φ1S) ≤ kω0(
CDαS1),
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where S1 is the normal projection of the set S on the space
Cα

n (J). Hence it follows that

μ(ΦS) ≤ kμ(S).

By the Darbo fixed point theorem, the mappingΦ has
at least one fixed point. Therefore there exist functions
z ∈ Cα

n (J) and v ∈ Cm(J) such that

(x, u) = (z, v) = [Φ1([x, u])(t),Φ2([x, u])(t)].

This shows that x(t) is the solution of (11) for the control

u(t) (26)

= (t− s)1−αC∗X∗
α,α(t− s)×W−1

[
x1 − xL(t1, φ)

−
∫ t1

0

(t1 − s)αXα,α(t1 − s)

× f(s, x(s), x(s − h),CDαx(s), u(s)) ds

]
.

By using (26) in the solution

x(t) = xL(t;φ) (27)

+

∫ t

0

(t− s)α−1Xα,α(t− s)Cu(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds,

at t = t1, we have

x(t1) = x1.

Hence the system (11) is controllable on J . �

3. System with multiple delays in control

Consider the implicit fractional delay dynamic system
with time varying multiple delays in control of the form

CDαx(t) = Ax(t) +Bx(t− h) +

M∑
i=0

Ciu(σi(t))

+ f(t, x(t), x(t− h),CDαx(t), u(t)),

t ∈ J,

x(t) = φ(t), −h < t ≤ 0, (28)

where 0 < α < 1, x ∈ Rn, u ∈ Rm and A,B are n × n
matrices, Ci for i = 0, 1, . . .M are n×m matrices, φ(t)
is a continuous function on [−h, 0] and f : J×Rn×Rn×
Rn × Rm → Rn is a continuous function.

(H1) The functions σi : J → R, i = 0, 1, . . . ,M, are
twice continuously differentiable and strictly increasing

in J . Moreover σi(t) ≤ t, i = 0, 1, . . . ,M, for t ∈ J.

(H2) Introduce the time lead functions ri(t) :
[σi(0), σi(t1)] → [0, t1], i = 0, 1, . . . ,M , such that
ri(σi(t)) = t for t ∈ J . Further, σ0(t) = t and for t = t1
the following inequality holds:

σM (t1) ≤ σM1(t1) ≤ · · ·σm+1(t1) ≤ 0 = σm(t1)

< σm−1(t1) = · · · = σ1(t1) = σ0(t1) = t1.

(29)

(H3) Given σ > 0, for functions u : [−σ, t1] → Rm and
t ∈ t1, we use the symbol ut to denote the function on
[−σ, 0] defined by ut(s) = u(t+ s) for s ∈ [−σ, 0).

The set y(t) = {x(t), ut} is the complete state of the
system at time t. The solution of the system (28) is given
by

x(t) = xL(t;φ)

+

∫ t

0

(t− s)α−1Xα,α(t− s)

M∑
i=0

Ciui(σi(s)) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds, (30)

where xL(t;φ) is defined as in (18). Using the time lead
function ri(t), the solution can be written as

x(t) = xL(t;φ) +

M∑
i=0

∫ σi(t)

σi(0)

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u(s) ds (31)

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s − h),CDαx(s), u(s)) ds.

By using the inequality (29), we get

x(t) = xL(t;φ) +

m∑
i=0

∫ 0

σi(0)

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u0(s) ds

+

m∑
i=0

∫ t

0

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u(s) ds

+

M∑
i=m+1

∫ σi(t)

σi(0)

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u0(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)
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× f(s, x(s), x(s − h),CDαx(s), u(s)) ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) +H(t) +

m∑
i=0

∫ t

0

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u(s)ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds, (32)

where

H(t) =

m∑
i=0

∫ 0

σi(0)

(t− ri(s))
α−1

Xα,α(t− ri(s))Ciṙi(s)u0(s) ds

+

M∑
i=m+1

∫ σi(t)

σi(0)

(t− ri(s))
α−1

Xα,α(t− ri(s))Ciṙi(s)u0(s) ds.

Now let us define the controllability Gramian matrix
by

W =

m∑
i=0

∫ t1

0

(Xα,α(t1 − ri(s))Ciṙi(s))

× (Xα,α(t1 − ri(s))Ciṙi(s))
∗ds,

where the complete state y(0) and the vector x1 ∈ Rn are
chosen arbitrarily and ∗ denotes the matrix transpose.

Theorem 3. Assume that the hypotheses (H1)–(H3) hold.
Further assume that the nonlinear function satisfies the
conditions (15) and (16) and suppose that detW > 0.
Then the nonlinear system (28) is relatively controllable
on J .

Proof. Let the initial function φ be continuous on [−h, 0]
and let x1 ∈ Rn. Define the following nonlinear mapping
on the space Cα

n+m(J):

Ψ(x, u) = (z, v) = (Ψ1([x, u])(t),Ψ2([x, u])(t)),

where the pair of operators Ψ1 and Ψ2 is defined by

Ψ2([x, u])(t)

= (t1 − ri(t))
1−α(Xα,α(t1 − ri(t))C

∗
i ṙi(t))

∗

×W−1

[
x1 − xL(t1;φ)−

m∑
i=0

∫ 0

σi(0)

(t1 − ri(s))
α−1

×Xα,α(t1 − ri(s))Ciṙi(s)u0(s) ds

−
M∑

i=m+1

∫ t1

0

(t1 − ri(s))
α−1

×Xα,α(t1 − ri(s))Ciṙi(s)u0(s) ds

−
∫ t1

0

(t1 − s)α−1Xα,α(t1 − s)

× f(s, x(s), x(s − h),CDαx(s), u(s)) ds

]

and

Ψ1([x, u])(t)

= xL(t;φ) +

m∑
i=0

∫ 0

σi(0)

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u0(s) ds

+

m∑
i=0

∫ t

0

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)v(s) ds

+
M∑

i=m+1

∫ σi(t)

σi(0)

(t− ri(s))
α−1

×Xα,α(t− ri(s))Ciṙi(s)u0(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s − h),CDαx(s), v(s)) ds.

Since all the functions involved in the definition of
the operator Ψ are continuous, this mapping is continuous
and maps the space Cα

n+m(J) into itself. Consider the
closed convex subset S of Cα

n+m(J) defined by

S = {[x, u] : ||u|| ≤ P1, ||x|| ≤ P2, ||CDαx|| ≤ P3}, (33)

where the positive real constants L1, L2 and L3 are
defined by

P1 = d1[|x1|+ d2],

P2 = β + μ+ liai||Ci||biL1

+ tα1α
−1K1ν, i = 0, 1, . . . ,M,

P3 = (||A|| + ||B||)L2 + ||Ci||L1 +K1,

i = 0, 1, . . . ,M,

where

ai = sup ||Xα,α(t1 − ri(s))||, bi = sup ||ri(s)||,
ν = sup ||Xα,α(t1 − s)||, ρ = sup ||u0(s)||,

μ =

m∑
i=0

aibiρ||Ci||Ni +

M∑
i=m+1

aibiρ3Mi,

Ni =

∫ 0

σi(0)

(t1 − ri(s))
α−1 ds,

Mi =

∫ σi(t1)

σi(0)

(t1 − ri(s))
α−1 ds,
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li =

∫ t1

0

(t1 − ri(s))
α−1 ds,

β = sup ||xL(t;φ)||,
d1 = aibi||Ci||||W−1||,
d2 = β + μ+ νK1t

α
1α

−1.

Hence the set S is bounded, closed and compact in
Cα

n+m(J) and the operator Ψ transforms S into S. It is
easily seen that, for each pair (x, u) ∈ S, we have

ω(Ψ2([x, u]), δ) ≤ ω(κ2, δ)e2,

where

κ2 = max{(t1 − ri(t))
1−α(Xα,α(t1 − ri(t))C

∗
i ṙi(t))

∗,
i = 0, 1, . . . ,M}

and

e2 = sup
(x,u)∈S

||W ||−1

[
|x1|+ ||xL(t1;φ)||

+

m∑
i=0

∫ 0

σi(0)

(t1 − ri(s))
α−1

× ||Xα,α(t1 − ri(s))|| ||Ci|| ||ṙi(s)||u0(s) ds

−
M∑

i=m+1

∫ t1

0

(t1 − ri(s))
α−1

× ||Xα,α(t1 − ri(s))|| ||Ci|| ||ṙi(s)||u0(s) ds

−
∫ t1

0

(t1 − s)α−1||Xα,α(t1 − s)||

× ||f(s, x(s), x(s− h),CDαx(s), u(s))|| ds
]
.

Since the function κ2 does not depend on the choice
of the points in S, all the functions Ψ2([x, u])(t) have
a uniform bounded modulus of continuity. Hence they
are equicontinuous. All the functions Ψ1([x, u])(t) are
also equicontinuous, since they have uniformly bounded
derivatives. Let us consider the moduli of continuity of
the functions CDαΨ1([x, u])(t). We have

|CDαΨ1([x, u])(t) −CDαΨ1([x, u])(s)|
≤ k|CDαx(t) −CDαx(s)| + β(t− s).

ω(CDαΨ1([x, u]), δ) ≤ kω(CDαx, δ) + β(δ), (34)

where β is a nonnegative function such that
limδ→0+ β(δ) = 0. Hence, from (12)–(14), we come to
the conclusion that, for any set S in Cα

n+m(J),

ω0(Ψ2S) = 0, ω0(Ψ1S) ≤ kω0(
CDαS1),

where S1 is the normal projection of the set S on the space
Cα

n (J). Hence it follows that

μ(ΨS) ≤ kμ(S).

By the Darbo fixed point theorem, the mappingΨ has
at least one fixed point. Therefore there exist functions
z ∈ Cα

n (J) and v ∈ Cm(J) such that

(x, u) = (z, v) = [Ψ1([x, u])(t),Ψ2([x, u])(t)].

This shows that x(t) is the solution of (28) for the control
u(t). It is easy to check that the control u(t) steers the
system from x0 to x1 at time t1 on the interval J . Hence
the system (28) is controllable on J . �

4. System with distributed delays in control

Consider the fractional delay dynamical system with
distributed delays in control of the form

CDαx(t) = Ax(t) +Bx(t− h)

+

∫ 0

−h

dsH(t, s)u(t+ s)

+ f(t, x(t), x(t − h),CDαx(t), u(t)),

x(t) = φ(t), −h < t ≤ 0, (35)

where x ∈ Rn, u ∈ Rm, A and B are n × n matrices,
H(t, s) is an n×m matrix, continuous in t for fixed s and
of bounded variation in s on [−h, 0] for each t ∈ [0, t1].
The nonlinear function f : J × Rn × Rn × Rn × Rm →
Rn is continuous. The symbol ds denotes the integrals in
the Lebesgue–Stieltjes sense. The solution of the above
system (35) is given by

xL(t) = xL(t;φ) +

∫ t

0

(t− s)α−1Xα,α(t− s)

×
∫ 0

−h

dτH(s, τ)u(s+ τ) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds,

where xL(t;φ) is defined as in (18). Now, using the well
known result of the unsymmetric Fubini theorem and a
change of the order of integration in the last term, we have

xL(t) = xL(t;φ) +

∫ 0

−h

dHτ

∫ 0

τ

(t− (s− τ))α−1

×Xα,α(t− (s− τ))H(s − τ, τ)u0(s) ds

+

∫ t

0

∫ 0

−h

(t− (s− τ))α−1

×Xα,α(t− (s− τ)) dτHt(s− τ, τ)u(s) ds
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+

∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds,
(36)

where

Ht(s, τ) =

{
H(s, τ), s ≤ t,

0, s > t,

and dHτ denotes the integration in the Lebesgue–Stietljes
sense with respect to the variable τ in the function
H(t, τ). For our convenience, we take

q(t, u0) =

∫ 0

−h

dHτ

∫ 0

τ

(t− (s− τ))α−1

×Xα,α(t− (s− τ))H(s − τ, τ)u0(s) ds

and

S(t, s) =

∫ 0

−h

(t− (s− τ))α−1

×Xα,α(t− (s− τ))dτHt(s− τ, τ).

Hence the solution is of the form

xL(t) = xL(t;φ) + q(t;u0) +

∫ t

0

S(t, s)u(s) ds

+

∫ t

0

(t− s)α−1Xα,α(t− s) (37)

× f(s, x(s), x(s− h),CDαx(s), u(s)) ds,

for t ∈ J and x(t) = φ(t) for t ∈ [−h, 0]. The Gramian
matrix is defined by

W =

∫ t1

0

S(t1, s)S
∗(t1, s) ds. (38)

Theorem 4. Assume that the nonlinear function f satisfies
the conditions (15) and (16) and suppose that detW > 0.
Then the nonlinear system (35) is relatively controllable
on J .

Proof. Let the initial function φ be continuous on [−h, 0]
and let x1 ∈ Rn. Define the following nonlinear mapping
on the space Cα

n+m(J):

Γ(x, u) = (z, v) = (Γ1([x, u])(t),Γ2([x, u])(t)),

where

Γ2(x, u)(t)

= S∗(T, t)W−1
[
x1 − xL(t1;φ)− q(t1;u0)

−
∫ t1

0

(t1 − s)α−1Xα,α(t1 − s)

× f(s, x(s), x(s − h),CDαx(s), u(s)) ds
]

and

Γ1(x, u)(t)

= xL(t;φ) + q(t;u0) +

∫ t

0

S(t, s)v(s) ds

−
∫ t

0

(t− s)α−1Xα,α(t− s)

× f(s, x(s), x(s − h),CDαx(s), v(s)) ds.

Since all the functions involved in the definition of the
operator Γ are continuous, this mapping is continuous and
maps the space Cα

n+m(J) into itself. Consider the closed
convex subset S of Cα

n+m(J) defined by

S =
{
[x, u] : ||u|| ≤ N1, ||x|| ≤ N2, ||CDαx|| ≤ N3

}
, (39)

where the positive real constants N1, N2 and N3 are
defined by

N1 = k1||W−1||[|x1|+ a1 + k2 + a2K1t
α
1α

−1],

N2 = a1 + k2 + k1N1t1 + a2K1t
α
1α

−1,

N3 = ||A||N2 + ||B||N2 + b1b2N1 +K1,

with

a1 = sup ||xL(t1;φ)||,
a2 = sup ||Xα,α(t1 − s)||,
b1 = ||H(t, s)||,
b2 = max

0≤t≤t1
vars∈[−h,0]||H(t, s)||,

k1 = max
0≤τ≤t1

||S(t, τ)||,
k2 = sup ||q(t;u0)||.

Hence the set S is closed, bounded and convex in
Cα

n+m(J) and the operator Γ maps S into S. It is easily
seen that, for each pair [x, u] ∈ S, we have

ω(Γ([x, u])(t), δ) ≤ ω(κ3, δ)e3,

where

κ3 = S∗(t1, s),

e3 = sup
[x,u]∈S

||W−1||[|x1|+ ||xL(t1;φ)||

+ ||q(t1;u0)|| −
∫ t1

0

(t1 − s)α−1Xα,α(t1 − s)

× f(s, x(s), x(s − h),CDαx(s), u(s)) ds
]
.

Since the function κ3 does not depend on the choice
of the points in S, all the functions Γ2([x, u])(t) have
a uniform bounded modulus of continuity. Hence they
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are equicontinuous. All the functions Γ1([x, u])(t) are
also equicontinuous, since they have uniformly bounded
derivatives. Let us consider the moduli of continuity of
the functions CDαΓ1([x, u])(t). We have

|CDαΓ1([x, u])(t) −CDαΓ1([x, u])(s)|
≤ k|CDαx(t) −CDαx(s)| + β(t− s),

ω(CDαΓ1([x, u]), δ) ≤ kω(CDαx, δ) + β(δ), (40)

where β is a nonnegative function such that
limδ→0+ β(δ) = 0. Hence, from (12)–(14), we come to
the conclusion that, for any set S in Cα

n+m(J),

ω0(Γ2S)ω0(Γ1S) ≤ kω0(
CDαS1),

where S1 is the normal projection of the set S on the space
Cα

n (J). Hence it follows that

μ(ΓS) ≤ kμ(S).

By the Darbo fixed point theorem, the mappingΓ has
at least one fixed point. Therefore there exist functions
z ∈ Cα

n (J) and v ∈ Cm(J) such that

(x, u) = (z, v) = [Γ1([x, u])(t),Γ2([x, u])(t)].

This shows that x(t) is the solution of (35) for the control
u(t). It is easy to check that the control u(t) steers the
system from x0 to x1 at time t1 on the interval J . Hence
the system (35) is controllable on J . �

Remark 1. Control functions defined in Theorems 2–4
are not constrained ones. We can restrict the control
function u(t) inside a closed and convex cone with
a nonempty interior and a vertex at zero. The
constrained controllability criteria for both linear and
nonlinear fractional delay dynamic systems are obtained
by constructing the reachable set by following the work
of Klamka (2001).

Example 1. Consider the nonlinear fractional delay
dynamic system of the form

CD
1
2x(t)

=

(
0 1
−1 0

)
x(t) (41)

+

(
0 1
0 0

)
x(t− 1) +

(
0
1

)
u(t)

+

(
0

x1(t)+x2(t−1)
1+x2

1+x2
2(t−1)

+ sin(CD
1
2x1(t)) cos(

CD
1
2x1(t))

)
,

where α = 1/2, x(t) = φ(t) ∈ R2,

A =

(
0 1
−1 0

)
,

B =

(
0 1
0 0

)
,

C =

(
0
1

)
,

h = 1 and

f(t, x(t), x(t− 1),C Dαx(t), u(t))

=

(
0

x1(t)+x2(t−1)
1+x2

1+x2
2(t−1)

+ sin(CD
1
2x1(t)) cos(

CD
1
2x1(t))

)
.

The solution of the system (41), using the Laplace
transform, is

x(t) =

[t]∑
n=0

Bn(t− n)
1
2n

× E
(n+1)
1
2 ,

1
2n+1

(A(t − n)
1
2 )

+

[t]∑
n=0

Bn+1

∫ 0

−1

(t− s− n− 1)
1
2n− 1

2

× E
(n+1)
1
2 ,

1
2 (n+1)

(A(t − s− n− 1)
1
2 )φ(s) ds

+

[t]∑
n=0

∫ t−n

0

Bn(t− s− n)
1
2n− 1

2

× E
(n+1)
1
2 ,

1
2n+

1
2

(A(t − s− n)
1
2 )u(s) ds

+

[t]∑
n=0

∫ t−n

0

Bn(t− s− n)
1
2n− 1

2

× E
(n+1)
1
2 ,

1
2n+

1
2

(A(t − s− n)
1
2 )

× f(s, x(s), x(s− 1),C D
1
2x(s), u(s)) ds,

where [ · ] is the floor function, i.e., the greatest integer that
is less than or equal to its argument.

Now consider the controllability on [0, 1]. Here [t] =
0. Therefore the solution of (41) on [0, 1] is

x(t) = E 1
2
(At

1
2 ) +B

∫ 0

−1

(t− s− 1)−
1
2

× E 1
2 ,

1
2
(A(t− s− 1)

1
2 )φ(s) ds

+

∫ t

0

(t− s)−
1
2E 1

2 ,
1
2
(A(t− s)

1
2 )u(s) ds

+

∫ t

0

(t− s)−
1
2E 1

2 ,
1
2
(A(t− s)

1
2 )

× f(s, x(s), x(s − 1),C Dαx(s), u(s)) ds,

where

E 1
2
(At

1
2 ) =

(
E1(−t) t

1
2E1, 32

(−t)

−t
1
2E1, 32

(−t) E1(−t)

)
, (42)
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and

E 1
2 ,

1
2
(A(t− s)

1
2 )

=

(
(t− s)−

1
2E1, 12

(−t) E1,1(−t)

−E1,1(−t) (t− s)−
1
2E1, 12

(−t)

)
.

(43)

The Gramian matrix is defined by

W =

∫ 1

0

[E 1
2 ,

1
2
(A(1 − s)

1
2 )C][E 1

2 ,
1
2
(A(1 − s)

1
2 )C]∗ ds.

After some algebra, we get

W =

(
0.1494 0.0636
0.0636 0.0661

)
,

so that det(W ) = 0.0058 ≥ 0. Therefore the linear
system is controllable. The nonlinear function satisfies

|f(t, x, y, z, u)− f(t, x, y, z, u)|
≤ |sin z cos z − sin z cos z| ≤ |z − z|.

Since the function f is continuous and bounded, and
satisfies the Lipschitz condition with respect to CD

1
2x(t)

with the constant k = 1, the hypotheses of Theorem 2 are
satisfied. Take the control function u(t) as

u(t) = (t− s)
1
2 [E 1

2 ,
1
2
(A(1 − s)

1
2 )B]∗W−1

×
[
E 1

2
(AT

1
2 ) +B

∫ 0

−1

(T − s− 1)−
1
2

× E 1
2 ,

1
2
(A(T − s− 1)

1
2 )φ(s) ds

+

∫ T

0

(T − s)−
1
2E 1

2 ,
1
2
(A(T − s)

1
2 )

× f(s, x(s), x(s − 1),C Dαx(s), u(s)) ds

]
,

which steers the system (41) from x0 and x1 and hence
the system (41) is controllable on [0, 1]. �
Example 2. Consider the fractional delay dynamical
system with multiple delays in control in the form

CD
1
2 x(t) =

(
0 1
−1 0

)
x(t) (44)

+

(
0 1
0 0

)
x(t− 1)

+

(
1
0

)
u(t) +

(
0
1

)
u(t− 1)

+

(
x1(t)+x2(t−1)

x1(t)2+x2(t−1)2+u(t)
1
4 sin(

CD
1
2 x1(t) +

C D
1
2x2(t))

)
,

where x(t) = φ(t) ∈ R2, h = 1, σ = 1,

A =

(
1 1
0 1

)
,

B =

(
0 1
0 0

)
,

C0 =

(
1
0

)
,

C1 =

(
0
1

)
.

The solution of the system (44) by using the Laplace
transform is of the form

x(t) =

[t]∑
n=0

Bn(t− n)
1
2nE 1

2 ,
1
2n+1(A(t− n)

1
2 )

+B

[t]∑
n=0

Bn

∫ 0

−1

(t− s− n− 1)
1
2n+

1
2−1

× E 1
2 ,

1
2 (n+1)(A(t− s− n− 1)

1
2 )φ(s) ds

+

[t]∑
n=0

1∑
i=0

BnCi

∫ t−n

0

(t− ri(s)− n)
1
2n− 1

2

× E
(n+1)
1
2 ,

1
2n+

1
2

(A(t − ri(s)− n))
1
2 ṙi(s)u(s) ds

+

[t]∑
n=0

∫ t−n

0

Bn(t− s− n)
1
2n− 1

2

× E
(n+1)
1
2 ,

1
2n+

1
2

(A(t − s− n)
1
2 )

× f(s, x(s), x(s− 1),C D
1
2x(s), u(s)) ds.

Now consider the controllability on [0, 1], where
[t] = 0.

x(t) = E 1
2
(At

1
2 ) +B

∫ 0

−1

(t− s− 1)−
1
2

× E 1
2 ,

1
2
(A(t− s− 1)

1
2 )φ(s) ds

+
1∑

i=0

Ci

∫ t

0

(t− ri(s))
− 1

2

× E 1
2 ,

1
2
(A(t− ri(s))

1
2 )ṙi(s)u(s) ds

+

∫ t

0

(t− s)−
1
2E 1

2 ,
1
2
(A(t− s)α)

× f(s, x(s), x(s − 1),C D
1
2 x(s), u(s)) ds,

with E 1
2
(At

1
2 ) and E 1

2 ,
1
2
(A(1 − s)

1
2 ) defined as in (42)

and (43). The Gramian matrix is defined by

W =

1∑
i=0

∫ 1

0

[CiE 1
2 ,

1
2
(A(1− ri(s))

1
2 )ṙi(s)]

× [CiE 1
2 ,

1
2
(A(1 − ri(s))

1
2 )ṙi(s)]

∗ ds,

where ri(s) is a time lead function and it is defined as
r0(s) = s and r1(s) = s − 1. Then the Gramian matrix
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can be written as

W =

∫ 1

0

[C0E 1
2 ,

1
2
(A(1− s))

1
2 )]

× [C0E 1
2 ,

1
2
(A(1 − s))

1
2 )]∗ ds

+

∫ 1

0

[C1E 1
2 ,

1
2
(A(1 − (s− 1)))

1
2 )]

× [C1E 1
2 ,

1
2
(A(1 − (s− 1))

1
2 )]∗ ds.

Evaluating it, we get

W =

(
681.8463 229.7418
229.7418 78.6800

)
,

so that det(W ) = 866.3722 ≥ 0. Therefore the linear
system is controllable. Since the function f is continuous,
bounded and satisfies the Lipschitz condition with respect
to CD1/2x(t) with the constant k = 1

2 , the hypotheses
of Theorem 3 are satisfied. Hence the system (44) is
controllable on [0, 1]. �

Example 3. Consider the nonlinear fractional delay
dynamic system with distributed delays in control of the
form

CD
1
2 x(t) = Ax(t) +Bx(t − 1) (45)

+

∫ 0

−1

dsH(t, s)u(t+ s)

+ f(t, x(t), x(t − 1),C Dαx(t), u(t)),

where α = 1/2, x(t) = φ(t) ∈ R2, h = 1, A, B are
defined as in Example 1,

H(t, τ) =

(
eτ+t eτ sin t

−eτ sin t eτ+t

)

and

f(t, x(t), x(t − 1),C D
1
2 x(t), u(t))

=

⎛
⎜⎝

x1(t)

1 + x2
1(t− 1) + u(t)

x2

1 + x2
2

+ |CD 1
2 x2(t)− cosC D

1
2 x2(t)|

⎞
⎟⎠ .

We consider the controllability on [0, 1]. The solution
of the system (45) can be written in the form

x(t) = E 1
2 ,1

(At
1
2 ) +B

∫ 0

−1

(t− s− 1)−
1
2

× E 1
2 ,

1
2
(A(t− s− 1)

1
2 )φ(s) ds

+

∫ 0

−1

dHτ

∫ 0

τ

(t− (s− τ))−
1
2

× E 1
2 ,

1
2
[A(t− (s− τ))

1
2 ]H(s− τ, τ)u0(s) ds

+

∫ t

0

∫ 0

−1

(t− (s− τ))−
1
2

× E 1
2 ,

1
2
[A(t− (s− τ))

1
2 ]dτHt(s− τ)u(s) ds

+

∫ t

0

(t− s)
1
2E 1

2 ,
1
2
[A(t− s)

1
2 ]

× f(s, x(s), x(s− 1),C D
1
2x(s), u(s)) ds.

The Mittag-Leffler functions of the matrices E 1
2
(At

1
2 )

and E 1
2 ,

1
2
(A(1 − (s − τ))

1
2 ) are defined as in (42) and

(43), where

(1− (s− τ))−
1
2E 1

2 ,
1
2
(A(1 − (s− τ))

1
2 )

=

(
a(τ) b(τ)
−b(τ) a(τ)

)
,

with a(τ) = (1−(s−τ))−1E1, 12
(1−(s−τ)) and b(τ) =

(1− (s− τ))−
1
2E1,1(1− (s− τ)). Then

S(1, s) =

∫ 0

−1

(1− (s− τ))−
1
2E 1

2 ,
1
2
(A(1 − (s− τ))

1
2 )

dτH1(s− τ, τ).

Hence

S(1, s) =

(
L(s) K(s)

−K(s) L(s)

)
,

where

L(s) =

∫ 0

−1

b(τ)eτ cos(s− τ) − b(τ)eτ sin(s− τ) dτ,

K(s) =

∫ 0

−1

a(τ)eτ sin(s− τ) − a(τ)eτ cos(s− τ) dτ.

Now, evaluating the Gramian matrix, we have

W =

∫ 1

0

S(1, s)S∗(1, s) ds,

=

∫ 1

0

L2(s) +K2(s)

(
1 0
0 1

)
ds,

which means that is positive definite. Further, if the
nonlinear function f is continuous, bounded and satisfies
the Lipschitz condition with constant k = 1, then by
Theorem 4, the given nonlinear system is controllable on
[0, 1]. �
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