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The fusion under unknown correlations tunes a combination of local estimates in such a way that upper bounds of the
admissible mean square error matrices are optimised. Based on the recently discovered relation between the admissible
matrices and Minkowski sums of ellipsoids, the optimality of existing algorithms is analysed. Simple examples are used to
indicate the reasons for the suboptimality of the covariance intersection fusion of multiple estimates. Further, an extension
of the existing family of upper bounds is proposed, which makes it possible to get closer to the optimum, and a general case
is discussed. All results are obtained analytically and illustrated graphically.
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1. Introduction

The optimal processing of data is a subject of the classical
estimation theory (Lehmann and Casella, 1998). Sup-
posing that a probabilistic description of the observed data
is available, unknown parameters of the description are to
be inferred. A standard application is the estimation of
the state of a dynamical system (Bar-Shalom et al., 2001;
Simon, 2006), where an assessment of the (in)accuracy of
the processing is needed for recursive calculations.

A direct combination of data originating from mul-
tiple sensors may be impossible due to various reasons
such as bandwidth limitation. The data, a probabilistic
description of which is available only locally, can be trans-
formed into local estimates of the unknown parameters
or their functions. If the functions are globally known,
the estimates can be communicated to other sensors and
combined with the other local estimates.

Besides the description of the local estimates, the
optimal linear fusion (Li et al., 2003) also needs the
knowledge of the cross-correlations of the local estimation
errors. However, a local evaluation of cross-correlations
requires additional information about the other estimates,
which may be unavailable. The decentralised estimation
fusion problems therefore make a shift in the sense of
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optimality. They focus on worst cases and typically, tune
the combination of estimates according to upper bounds
of mean square error matrices.

Such a linear fusion rule has been proposed by Julier
and Uhlmann (1997) under the name covariance inter-
section (CI). Various generalisations of the fusion have
been presented later by, e.g., Julier and Uhlmann (2001),
Arambel et al. (2001), Uhlmann (2003) or Wu et al.
(2018). Unfortunately, the rule is often presented in a
compressed form that suggests that an upper bound is
computed first and the combination is defined by the upper
bound next. This mental shortcut conceals that the upper
bound is not unique. A discussion of general bounds
can be found in the works of Chen et al. (2002) or Ajgl
and Šimandl (2014), for example. The overall optimality
of the CI fusion of two estimates has been justified by
Reinhardt et al. (2015).

The virtue of CI is that the mean square error
matrices of the local estimates need not be known exactly,
but their upper bounds can be used for the fusion.
Although the optimality of the fused bound is lost in
such a case, the fusion rule still provides an upper bound
for the fused estimate. Therefore, a sequential fusion
of multiple estimates is possible (Deng et al., 2012) and
various fusion strategies can be adopted (Hu et al., 2012;
Kowalczuk and Domżalski, 2013; Ajgl and Straka, 2016a;
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2016b). A weak point of the sequential fusion is that in
case pairwise optimisations are used, the batch-optimal
parameters of the fusion need not be found. Ajgl et al.
(2014) show that this quantitative weakness is more
profound.

A qualitative deficiency of the fusion of multiple
estimates has been observed by Ajgl and Straka (2017).
The matrices provided by the CI fusion can be strictly
larger than it is needed to guarantee that they are valid
upper bounds. Nevertheless, the reasons have not been
explored in depth.

Thus, the goal of this paper is to provide a deeper
insight into the problem of fusion under unknown corre-
lations. To achieve it, mean square error matrices and their
upper bounds are visualised by geometrical equivalents.

The paper is organised as follows. Section 2 formu-
lates the estimation fusion problem and rises optimality
questions. Section 3 discusses the optimisation process
and demonstrates the suboptimality of the CI fusion on
the simplest examples. Section 4 inspects the reason of
the suboptimality and points to a refinement. Section 5
summarises the contribution.

2. Problem formulation

2.1. Fusion under unknown correlations. Let X be
an n-dimensional column vector to be estimated and let N
local estimates Zi be available, i = 1, . . . , N . According
to Li et al. (2003, Section III.A), the local estimates can
be viewed as measurements of X . A general case is given
by considering ni-dimensional Zi. If the estimation error
Ei of Zi is defined as Ei = HiX − Zi, where Hi is
a measurement matrix, a generic measurement equation
Zi = HiX + (−Ei) can be used to describe Zi. Typical
examples of Hi are the identity matrix I , which appears
in classical estimation fusion problems, or a selection of
its rows, which appears when only some components of
X are estimated locally. The global measurement matrix
H, H = [H�

1 , . . . , H�
N ]�, is assumed to be of full column

rank in the sequel.
The fused estimate X̂ is considered to be given by a

linear fusion of Zi,

X̂ =

N∑

i=1

WiZi,

N∑

i=1

WiHi = I, (1)

which can be expressed in a compact form as X̂ = WZ,
WH = I , where the global weight W is introduced
as W = [W1, . . . ,WN ] and the vector of stacked local
estimates is denoted as Z, Z = [Z�

1 , . . . , Z�
N ]�. The

equality condition WH = I preserves unbiasedness of the
local estimates1 and is needed for evaluation of the quality

1If the local estimates are unbiased, E{Zi − HiX} = 0 holds for
each i. A weighted sum of the equalities gives E{WZ −WHX} = 0,
i.e. E{X̂ −WHX} = 0. Then X̂ is unbiased if WH = I .

of the fused estimate X̂ .
The mean square error matrices Ri of the local

estimates, Ri = E{EiE
�
i }, are assumed to be known

and invertible. The cross-correlations Ri,j of the local
estimation errors are defined as Ri,j = E{EiE

�
j } for

i = 1, . . . , N , j = 1, . . . , N , i �= j. Let R denote a
matrix with diagonal blocks Ri and off-diagonal blocks
Ri,j . The mean square error matrix P of the fused
estimate X̂ is given by P = E{(X − X̂)(X − X̂)�},
where the dependence of P on W is not denoted explicitly,
and P = WRW�. The mean square error matrix P
is optimised in classical fusion problems, where some
strictly monotonically increasing cost functions J(P ),
e.g., the trace or the determinant, are used. The optimal
fusion weight W ∗(R) is given by

W ∗(R) = argmin
W:WH=I

J(P ) (2)

in such a case. However, the cross-correlations Ri,j have
to be known for the optimisation.

If the cross-correlations Ri,j are assumed to be
unknown, the minimisation with respect to the worst case
is considered. Now, the optimal weight W ∗ is given by

W ∗ = argmin
W: WH=I

(
min

B: B≥WAW�
J(B)

)
, (3)

with A being a family of admissible matrices R, i.e., of
positive semi-definite matrices with the known blocks Ri

on the diagonal and arbitrary off-diagonal blocks Ri,j .
The inequality B ≥ WAW� means that for a selected
weight W, the difference B − WAW� is a positive
semi-definite matrix for all matrices in the family A. That
is, B is an upper bound of all admissible P . The optimal
weight W ∗ optimises the best upper bound.2

Besides providing the bound-optimal estimate X̂∗,
which is given by (1) for the optimal choice W = W ∗,
fusion rules evaluate the quality of the provided estimate
X̂ . If the cross-correlations Ri,j are assumed to be
unknown, the mean square error matrix P cannot be
computed. Hence, an upper bound of P is provided
instead. The best upper bound corresponding to the
selected fusion weight W is a natural choice, see the inner
minimum term in the definition (3) of W ∗, and will be
denoted as B∗(W),

B∗(W) = argmin
B: B≥WAW�

J(B). (4)

The optimal fusion rule computes the optimal weight W ∗

exactly and provides the best achievable upper bound,
which will be denoted shortly as B∗, B∗ = B∗(W ∗).

2If an upper bound B of all admissible P is not required for a further
processing, the worst case can be defined in a weaker sense. Gao et al.
(2016) use the constraint J(B) ≥ J(WAW�) for tuning the weights
instead of the constraint B ≥ WAW� in (3).
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2.2. State of the art.

Lemma 1. (Chen et al., 2002) A family of upper bounds
of the fused mean square error matrixP for a given weight
W, i.e., a subset of {B : B ≥ WAW�}, is given by

B(W,ω) =

N∑

i=1

1

ωi
WiRiW

�
i , (5)

where ωi are free parameters given by a standard simplex,
0 < ωi < 1,

∑N
i=1 ωi = 1, and ω = [ω1, . . . , ωN ].

Proof. Uhlmann (2003, Appendix A) provides an
alternative derivation. An upper bound Q of A (i.e., of
all matrices in the family A) is constructed first, Q ≥ A.
Here, Q is a block-diagonal matrix with the blocks 1

ωi
Ri.

Since B is designed as B = WQW�, it is an upper bound
of WAW�. Further comments can be found in the work
of Ajgl and Straka (2017, Theorem 6). �

Remark 1. If the local mean square error matrices Ri are
replaced by their upper bounds, a family of upper bounds
B(W,ω) of P is still obtained.

Lemma 2. (CI fusion) Consider a family of weights
W(w) which satisfies

Wi(w) = (
N∑

j=1

wjH
�
j R−1

j Hj)
−1wiH

�
i R−1

i , (6)

where wi are free parameters given by a probability sim-
plex, 0 < wi < 1,

∑N
i=1 wi = 1, and w = [w1, . . . , wN ].

For a selected w, an upper bound of P is given by

B(w) = (
N∑

j=1

wjH
�
j R−1

j Hj)
−1. (7)

Proof. Choose ω = w in the family (5). Denoting
the upper bound Q for the choice ω = w as Q(w), we
have W(w) = (H�(Q(w))−1H)−1H�(Q(w))−1 and
B(w) = W(w)Q(w)W(w)� = (H�(Q(w))−1H)−1.
In fact, B(w) is a short notation of B(W(w), w). Various
derivations of the lemma can be found in the works of
Julier and Uhlmann (1997), Chen et al. (2002), Ajgl and
Šimandl (2014) or Reinhardt et al. (2015), among others.

�

The optimal CI weight WCI, WCI = W(w∗) uses
w∗ given by

w∗ = argmin
w: w1N=1, 0≤wi

J(B(w)), (8)

where 1N is a column vector of ones and length N ,
1N = [1, . . . , 1]�. The corresponding upper bound BCI,
BCI = B(w∗), is the best matrix from the family B(w)
of particular bounds corresponding to different weights
W(w).
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Fig. 1. Illustration of a necessary condition on B: Local ellip-
soids εRi (dashed ellipses) and selected admissible op-
timal ellipsoids for different weights W ∗(A) (solid el-
lipses).

2.3. Visualisation of the matrices. A symmetric
positive semi-definite matrix R defines a 1-σ ellipsoid εR

(Kurzhanski and Vályi, 1997, Section 2.1) as

εR = {x| ∀v : v�x ≤ (v�Rv)
1
2 }, (9)

where x and v have compatible dimensions. For positive
definite matrices R, an equivalent definition can be stated
as εR = {x|x�R−1x ≤ 1}.

CI was proposed by Julier and Uhlmann (1997)
as a rule based on a geometrical concept, that can be
paraphrased as “the intersection of εR1 and εR2 has
to be a subset of εB”. In fact, the argument is only
a necessary condition for B being an upper bound
of WAW� for a selected weight W. The reason is
that the intersection describes the set of all admissible
optimal (under known correlations) fused mean square
error matrices, each of which is based on a different
weight W ∗(A). Figure 1 illustrates that the union of the
admissible optimal ellipsoids is equal to the intersection of
the ellipsoids εR1 , εR2 . The parametrisation of the used
matrices can be found in Appendix A.

The rule involving the family of weights (6) and
the selected matrices (7) was proved to fulfil the
upper bounding property of B(w) already by Julier and
Uhlmann (1997). Later on, it has been shown that
the optimal CI is family-optimal for J(B) being trace
(Chen et al., 2002), family-optimal for general J(B)
(Ajgl and Šimandl, 2014) and, for the fusion of two
estimates (Reinhardt et al., 2015), even optimal in the
general sense of (3), (4), i.e., W ∗ = WCI, B∗ = BCI.
Figure 2 illustrates the upper bounding ellipsoids given
by (5) for a fixed weight, namely W = W([1/2, 1/2]),
and the ellipsoids corresponding to the admissible mean
square error matrices WAW�. The necessary condition
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Fig. 2. Examples of B. Local ellipsoids εRi (dashed ellipses),
four selected admissible ellipsoids (dotted ellipses) for a
fixed weight W, bounding loop σ (bold solid) and three
important upper bounding ellipsoids εB (solid ellipses,
dash-dotted ellipse εCI for B = B([1/2, 1/2])).

from Fig. 1 is fulfilled, i.e., the ellipsoids εB cover the
intersection of εRi , nevertheless, it is evident that the
intersection itself is not sufficient to describe the union of
the admissible ellipsoids. The parametrisation of the used
matrices can be found in Appendix A.

Besides showing the optimality in the sense of (3),
(4) of the fusion of two estimates by the rule (6), (7),
Reinhardt et al. (2015) question the optimality of the
fusion of multiple estimates. Ajgl and Straka (2017,
Section IV.B) show that the CI rule is indeed not optimal
for the fusion of multiple estimates, at least in the sense of
the bound (4); it may happen that no parameter ω satisfies
the equality B∗(W(w)) = B(W(w), ω). However,
the weight optimality (3) has not been treated and no
guideline on improving the fusion rule has been provided.

2.4. Problem delimitation. A necessary condition for
the weight optimality (3) is that the bound B inspected in
(3) and (4) is minimal in some sense. A weak and a strong
senses are defined as follows.

Definition 1. (Tangent bound) A bound B is tangent if
no matrix βB, 0 < β < 1, is a bound.

Definition 2. (Tight bound) A tangent bound B is tight if
no matrix S, S �= B, B ≥ S, is a bound.

Problem 1. (CI optimality) Does W ∗ = WCI hold also
for N > 2?

Problem 2. (Optimal fusion of multiple estimates) Are
there simple families of tight upper bounds B of the fused
mean square error matrix P for N > 2?

3. Discussion and examples

The linear fusion of estimates has been formulated in
Section 2.1 in the logical order. That is, the fusion weight
W is optimised first and an upper bound B of the mean
square error of the fused estimate is constructed after the
fused estimate has been defined.

The fusion problem can be approached jointly (see,
e.g., Reinhardt et al., 2015),

(W ∗, B∗) = argmin
(W,B): WH=I, B≥WAW�

J(B). (10)

Instead of dealing with bounds B of fused matrices, the
optimal solution (W ∗, B∗) can be found via proposing
upper bounds Q of the family A of all admissible global
mean square error matrices R,

(W ∗, Q∗) = argmin
(W,Q): WH=I, Q≥A

J(WQW�), (11)

B∗ = W ∗Q∗(W ∗)� (12)

(see, e.g., Hanebeck et al., 2001; Uhlmann, 2003). The
solution can be found via minimising a minimum, Q∗ =
argminQ: Q≥A minW: WH=I J(WQW�). That is, the
optimal fusion weight for each given bound W ∗(Q)
is found in the inner minimum and the bounds Q are
optimised in the outer minimum. Since W ∗(Q) is given
by a standard result as

W ∗(Q) = (H�Q−1H)−1H�Q−1, (13)

the optimal bound Q∗ is given by

Q∗ = argmin
Q: Q≥A

J((H�Q−1H)−1). (14)

That is, the search for the optimal fusion weight W ∗

can be replaced by the search for the optimal global
bound Q∗. The optimal weight W ∗ is then given by
W ∗ = W ∗(Q∗) and the optimal fused bound B∗ by
B∗ = (H�(Q∗)−1H)−1.

The CI fusion uses a specific block-diagonal family
of upper bounds Q instead of considering all upper
bounds of A. Although the bounds from the family are
tight, this does not imply that the matrices WQW� are
tight bounds of WAW�; see Fig. 5 and the comments
in Section 4.1. Also, the family of Q does not contain all
tight upper bounds ofA. Based on the explicit formulation
of the fusion under unknown correlations, it is thus easy
to see that

J(BCI) ≥ J(B∗(WCI)) ≥ J(B∗). (15)

Reinhardt et al. (2015) show that the family contains the
optimal bound Q∗ in the fusion of two estimates, i.e.,
equalities replace both inequalities in (15) for N = 2. On
the other hand, the family may fail to contain the optimal
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boundQ∗ in the fusion of multiple estimates, N > 2. This
paper confirms the possibility of the failure and evidences
that both inequalities in (15) can be strict.

The possible suboptimality of the weight WCI (and
bound BCI) has not been evidenced before. The routinely
referred suboptimality of CI (see, e.g., Bar-Shalom
et al., 2011, Section 9.3.7), points to the comparison
with the mean square error of the fused estimate,
BCI ≥ WCIR(WCI)�, or even to the comparison
with the optimal value for known correlations, BCI ≥
W ∗(R)R(W ∗(R))�. This paper does not point to the
price of unavailability of correlations given by J(BCI) −
J(W ∗(R)R(W ∗(R))�), but it does point to the price
J(B∗(WCI)) − J(B∗) of the naivety of fusion weight
that follows from using a family of bounds that is not rich
enough to contain the optimal bound.

Before showing that both inequalities in (15) can be
strict, a lemma enabling a visual comparison will be given.

Lemma 3. (Ajgl and Straka, 2017) The union of all ad-
missible fused ellipsoids εWRW�

is equal to the Minkow-
ski sum σ of the ellipsoids εWiRiW

�
i .

3.1. Fusion of three partial estimates. The following
example is purely academic. Its purpose is to show that
there exists a case such that the first inequality in (15)
can be strict, while the equality holds in the second one.
The example also offers a simple visualisation and the
possibility to verify the results by hand calculation.

Let the local mean square error matrices be equal and
unit, Ri = 1, and the local matrices Hi be given by

H1 = [0, 1], H2 = H1T
−1, H3 = H1T, (16)

where T is a rotation matrix for the angle π divided by the
number of estimates,

T =

[
cos π

3 − sin π
3

sin π
3 cos π

3

]
=

[
1
2 −

√
3
2√

3
2

1
2

]
. (17)

Using the rotational symmetry of the setting (16) (see
εRi in Fig. 3), it can be shown that the determinant cost
function, J(B) = det(B), leads to the weight W ∗ given
by W ∗

2 = TW ∗
1 and W ∗

3 = T−1W ∗
1 , i.e., the optimal

weightsW ∗
i are related by the rotation (17). The condition

W ∗H = I then leads to W ∗
1 = [0, 2/3]�. It also holds

that WCI is given by w∗
1 = w∗

2 = 1/3 and that it is equal
to W ∗. Since the weights are equal, the second inequality
in (15) reduces to equality.

Figure 3 illustrates the fusion that applies the optimal
weight W ∗. The local estimates Zi use general Hi, which
does not allow a direct comparison with the fused estimate
X̂ . Ellipsoids corresponding to local mean square error
matrices Ri will therefore be defined alternatively as
εRi = {x|x�H�

i R−1
i Hix ≤ 1}. Here, the ellipsoids
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Fig. 3. Suboptimality of the family of fused bounds B(W,ω):
local ellipsoids εRi (dashed parallel lines), ellipsoids

εWiRiW
�
i (dotted line segments; denoted shortly as εi)

and their Minkowski sum σ (thick hexagon), CI ellipsoid
εCI (dash-dotted circle) and tangent ellipsoids ε[0,1],
ε[1,0] (solid ellipses).

εRi degenerate to parallel lines. The matrices WiRiW
�
i

dealt with in Lemma 3 are positive semi-definite and the
corresponding ellipsoids degenerate to line segments in
this example. The Minkowski sum σ circumscribes the
intersection of the ribbons delimited by the parallel lines
εRi . Thus, the necessary condition of a fusion rule that εB

has to circumscribe the intersection is clearly not sufficient
in the fusion of multiple estimates.

Further, Fig. 3 visualises three fused bounds B.
Two of them are given by choosing the normal vector u
from Lemma B1 in Appendix B as [1, 0]� and [0, 1]�,
respectively. The ellipsoid denoted as ε[1,0] degenerates
to parallel lines, since ω1 = 0 holds and the division
by zero (in the limit sense) produces an infinite element,
B(W, [1, 0]�) = diag(4/3,∞). The bound is tight only
in the limit sense and leads to ignoring the second compo-
nent. The ellipsoid denoted as ε[0,1] is evidently not
tight, B(W, [0, 1]�) = diag(8/3, 16/9), and touches the
hexagon σ in two opposite vertices.

Since the points of tangency lie on the lines given by
the choices [1, 0]� and [0, 1]� of the vector u, it is easy to
compute the matrices corresponding to the inscribing and
circumscribing circles of the Minkowski sum σ. They are
given by ([1, 0]B(W, [1, 0]�)[1, 0]�)I , i.e., (4/3)I , and
([0, 1]B(W, [0, 1]�)[0, 1]�)I , i.e., (16/9)I .

The third fused bound visualised in Fig. 3 is given by
the CI fusion, ω = w, and it is even not tangent, BCI =
2I , since the radius of the εCI circle is

√
2, whereas the

hexagonσ can be circumscribed by a circle with the radius
4/3, B∗ = (16/9)I . By showing the suboptimality of the
CI bound, it has been verified that the first inequality in
(15) can be strict.
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3.2. Suboptimality of CI weight. The following
example evolves from the preceding one. It shows that
both inequalities in (15) can be strict. Again, the results
can be verified by hand calculations.

Let the local mean square error matrices Ri be equal
for i = 1, 2, 3, and

Ri =

[
5 0
0 1

]
,

H1 = I, H2 = T−1, H3 = T,

(18)

where T is given by (17). Consider a family of fusion
weights W parametrised by θ, 0 ≤ θ ≤ 2/3,

W1 =

[
θ 0
0 2

3 − θ

]
,

W2 = TW1, W3 = T�W1.

(19)

For the determinant cost function J(B), the optimal
bound within the family (5) is given by ω1 = ω2 = 1/3
here and we have

B(W,ω) =
9

2

(
5θ2 +

(2
3
− θ
)2)

I

for such ω and W (19). The optimal bound B∗(W) for the
given weight corresponds (in this example) to the circle
that circumscribes the Minkowski sum σ. Lemma B1 can
again be used for u = [0, 1]�, u = [1, 0]�, although care
must be taken regarding which matrix (u�B(W,u)u)I
corresponds to the circumscribing circle. For

θ ≤
√
5− 1

6
,

the circle εB
∗(W) circumscribing σ is given by

B∗(W) =

((
2

3
− θ

)
+

(
3 · 5θ2 +

(
2

3
− θ

)2) 1
2
)2

I,

for

θ ≥
√
5− 1

6
,

we have

B∗(W) =

(√
5θ +

(
3

(
2

3
− θ

)2

+ 5θ2

) 1
2
)2

I.

The optimal CI weight WCI is given by w∗
1 = w∗

2 =
1/3 and it can be found within the family (19) for θ = 1/9.
The CI bound is given by BCI = (5/3)I , which is also
the optimal bound within B(W,ω), and is greater than
B∗(WCI),

B∗(WCI) =
65 + 20

√
10

81
I ≈ 1.5833I.
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Fig. 4. Comparison with Fig. 3: the dash-dotted circle now cor-
responds to the optimal bound within the family (5), the
other lines have the same meaning.

Further, the optimal bound within B∗(W) is achieved for
the weight (19) given by θ = 1/12 and we have

B∗ =
25

16
I = 1.5625I.

That is, a weight that is not a member of the CI family
(6) has been found such that a better fused upper bound B
can be found. The strictness of the inequalityB∗(WCI) >
B∗ ultimately proves that both inequalities in (15) can be
strict.

The question posed in Problem 1 has a negative an-
swer; W ∗ �= WCI holds in this example.

Figure 4 illustrates the optimal fusion given by θ =
1/12. A graphical comparison with the example from the
preceding section can be made, since the fusion given by
θ = 0 is illustrated by Fig. 3 in fact (with the exception of
different local ellipsoids εRi). Note also that no ellipsoid
degenerates for 0 < θ < 2/3.

4. Extension of the family of upper bounds

The examples in Sections 3.1 and 3.2 have shown that
the block-diagonal family of global bounds Q(w) used
by the CI fusion can fail to contain the optimal bound Q∗

in the fusion of multiple estimates. That means that the
fusion can be improved by enlarging the family. Note that
an enlarging neither guarantees that it contain Q∗ nor it
guarantees any improvement. The following lemma will
be used for an analysis.

Lemma 4. (Ajgl and Straka, 2017) The union of all ad-
missible ellipsoids εR is equal to the Minkowski sum of the
ellipsoids εMiRiM

�
i , where the matrices Mi have dimen-

sions (
∑N

j=1 nj) × ni and all their nj × ni dimensional
blocks except for the i-th one are zero, while the i-th block
is given by the identity matrix I of the size ni.
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4.1. Analysis of the existing family of upper bounds.
The simplest case of the fusion of multiple estimates is
the fusion of three scalar estimates.3 Without a loss of
generality, it is possible to assume that the local mean
square error matrices are unit, Ri = 1, i = 1, 2, 3.
Otherwise, the local estimates Zi and the measurement

matrices Hi can be formally pre-multiplied by R
1
2

i to
satisfy the assumption. That is, the family A of the
admissible matrices is the same as in the example in
Section 3.1. With respect to Lemma 4, the union of all
admissible εR is the cube with the vertices [±1,±1,±1].

Figure 5 draws selected upper bounds Q of A.
The ellipsoid for the choices Q = Q(w) with
w = [1/3, 1/3, 1/3], w = [1/2, 1/4, 1/4] and
w = [0, 1/2, 1/2] are denoted as εCI, ε[0,1] and ε[1,0],
respectively. The chosen global bounds Q(w) are tight,
since the ellipsoids touch the cube at all its vertices. The
correspondence with the bounds B(W,ω) of the fused
mean square error matrix for the given weight W ∗ is
visible from the comparison with Fig. 3 after applying
the following two steps. An orthogonal projection of the
cube and ellipsoids onto a plane containing the origin of
the coordinates and having a normal vector [1,−1,−1] is
made first. New coordinates are introduced then in order
to arrive at Fig. 3. Note that whereas all global bounds Q
considered in Fig. 5 are tight, some fused bounds in Fig. 3
are not; see εCI and ε[0,1]. The reason is that the existence
of R in A such that Q − R is rank deficient (this is a
necessary condition on tangent Q; see Definition 1) does
not imply rank deficiency of the difference WQW� −
WRW� (i.e., the null space of Q −R need not lie in the
row space of W).

Further, Fig. 5 shows an ellipsoid that does not
have its axis aligned with the coordinate system. The
ellipsoid ε∗ is a cylinder with the axis given by the vector
[1,−1,−1], which is orthogonal to the weight W ∗ used
in the example in Section 3.1. The cylinder circumscribes
the cube tightly, although it does not touch the cube at all
its vertices. The cylinder touches only the vertices that are
projected to the hexagon in Fig. 3 and corresponds to the
optimal bound Q∗, which is given as the limit case of Qγ ,

Qγ =
8

9γ

⎡

⎣
2 1 1
1 2 −1
1 −1 2

⎤

⎦

+
1

9(1− γ)

⎡

⎣
1 −1 −1
−1 1 1
−1 1 1

⎤

⎦ .

(20)

with the parameter γ, 8/9 < γ < 1, approaching 1.

3The regularity condition that H is of full column rank implies that
the dimension n of the estimated vector X can be 1, 2 or 3. The global
bounds are not related to n, but usefulness of an extensions of the ex-
isting family depends on n significantly in the fusion problem. Namely,
the extension proposed in Section 4.2 can be useful for n = 2, but not
for n = 1.
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Fig. 5. Examples of global bounds Q: union of all admissible
εR (white cube), global ellipsoids εCI (sphere), ε[0,1]

(spheroid), ε[1,0] (cylinder with axis [1, 0, 0]) and ε∗

(cylinder with axis [1,−1,−1]). The corresponding
fused bounds can be found in Fig. 3.

Alternatively, the optimal bound Q∗ can be described by
the inverse, which is directly needed in (13), (14) anyway.
The inverse (Qγ)

−1,

(Qγ)
−1 =

γ

8

⎡

⎣
2 1 1
1 2 −1
1 −1 2

⎤

⎦

+ (1− γ)

⎡

⎣
1 −1 −1
−1 1 1
−1 1 1

⎤

⎦ ,

(21)

is a positive semi-definite matrix for γ = 1. That
is, the optimal global bound Q∗ is improper (infinite).
Nevertheless, the optimal fused bound B∗ is finite.

Finally, it has to be noted that the way to meet the
assumption of unit Ri is not unique. If the local estimates
Zi and the measurement matrices Hi are pre-multiplied by

−R
1
2

i instead of R
1
2

i , the family A of admissible matrices
R remains the same. However, the parametrisation of
the family changes signs. As a result, the elements of
the corresponding row and column of the resulting bound
Qγ change their signs as well (the corresponding diagonal
element changes its sign twice, i.e., remains positive).
Therefore, it is proposed to extend the family Q(w)
of block-diagonal upper bounds of A by non-diagonal
matrices in the way that is described in the following
section.
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4.2. Extension of the family for a special case. For
the case N = 3, ni = 1, it is proposed to extend
the block-diagonal family Q(w) by four improper upper
bounds Qj , j = 1, . . . , 4, the inverses of which are
non-diagonal and given by

Q−1
1 =

1

8

⎡

⎣
2 1 1
1 2 −1
1 −1 2

⎤

⎦ ,

Q−1
2 =

1

8

⎡

⎣
2 1 −1
1 2 1
−1 1 2

⎤

⎦ ,

Q−1
3 =

1

8

⎡

⎣
2 −1 1
−1 2 1
1 1 2

⎤

⎦ ,

Q−1
4 =

1

8

⎡

⎣
2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ . (22)

As a weighted harmonic mean of upper bounds is another
upper bound, the family can be further extended by any
such a combination, e.g., by

Q = (δQ−1
j + (1 − δ)(Q(w))−1)−1, (23)

where δ, 0 ≤ δ ≤ 1, is a parameter. Note also that Qγ is
actually given by

(
δQ−1

1 + (1− δ)
(
Q
([1

3
,
1

3
,
1

3

]))−1)−1

,

where δ is given by δ = 9(γ − 8/9).
The larger the family of Q, the bigger the chance

to contain the optimal bound Q∗. Nevertheless, it is
useless to inspect all combinations of all Q−1

j , j =
1, . . . , 4, with all Q(w). For example, the combination
(
∑4

j=1(1/4)Q
−1
j )−1 gives Q = 4I , i.e., a bound

larger than Q([1/3, 1/3, 1/3]), which is equal to 3I .
Unfortunately, there is no guideline for constructing a
useful family that is guaranteed to contain Q∗ and smaller
than the set of all matrices Q fulfilling Q ≥ A.

4.3. Comments to a general case. It is also not clear
how to propose improper upper bounds Q for ni ≥ 1 with
at least one i such that ni > 1. Some remarks are given
below.

Since the dimension of the global mean square error
matrix R is at least four, visualisation of the global upper
bounds Q is not tractable. If the case n1 = 2, n2 = n3 =
1 is considered, different families of bounds are needed
for n = 4, n = 3 and n = 2. A general guideline is
that the rank of the inverses Q−1 of the improper upper
bounds Q should be equal to n, as well as the rank of
H�Q−1H. However, the design of the range of such Q−1

is equivalent to the design of weight W and the design of

a particular Q−1 with the given range is equivalent to the
design of upper bounds of WAW�. That is, the boundsQ
to be inspected in (13), (14) are designed by the complete
search for (3), (4). Although the family is smaller than the
set of all matrices Q fulfilling Q ≥ A, it is not simple,
since the complete search has to be done.

As the extension of the Q(w) family for a general
case is either not guaranteed to contain the optimal Q∗ or
is equivalent to the complete search over all weights W
and bounds B, it is not dealt with here. Since the global
bounds Q generate the fused bounds B, the following
conclusion is made.

The question posed in Problem 2 has a negative an-
swer; the families are either not simple (brute force design
has to be adopted), or not tight.

5. Summary

Fusion of estimates has been discussed under the assump-
tion that the cross-correlations of the estimation errors
are unknown. An explicit expression for the union of all
admissible fused ellipsoids has been used to demonstrate
that the CI fusion of multiple estimates is suboptimal
in the sense of the provided upper bounds as well as
in the quality of the weights of the linear combination.
An analysis has shown the reason for the suboptimality:
the existing family of tight upper bounds of the global
mean square error matrices does not contain all tight
upper bounds. A remedy has been indicated next. Four
improper non-diagonal bounds have been presented for a
special case and the extension by combining the bounds
has been proposed. Since the candidate bounds for the
optimal fusion are based on the direct solution to the
fusion problem, no simple family of bounds can be given
for a general case. The search for suboptimal solutions
has been left for the future.
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Appendix A

The matrices used to generate Figs. 1 and 2 are described
below.

The classic full-state estimation problem is consid-
ered, H1 = H2 = I . The local mean square error matrices
Ri are given as

R1 =

[
16 0
0 1

]
, R2 =

[
4 4
4 9

]
. (A1)
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The generalised eigenvalue decomposition of the matrix
pair (R1, R2) is used, i.e., a diagonal matrix D and an
invertible matrix V are computed such that, R1V =
R2V D. The diagonal elements dj , j = 1, . . . , n, are
sorted in the descending order and the columns of V are
permuted correspondingly. The local matrices Ri can then
be expressed as

R1 = (V −1)�DV −1, R2 = (V −1)�IV −1 (A2)

and the optimal processing of hypothetical variables can
be considered as follows.

The mean square error matrix Rc of a hypothetical
common prior estimate (measurement) is given by

Rc = (V −1)� max{D, I}V −1, (A3)

where the maximum is meant element-wise. Hypothetical
individual measurement matrices Ca, Cb are given by the
j-th rows of V �, where j are given by dj < 1 and by
dj > 1, respectively. Hypothetical individual mean square
error matrices Ra, Ra are introduced as diagonal matrices
with elements dj(1−dj)

−1 selected for j given by dj < 1
and elements dj(dj−1)−1 selected for j given by dj > 1,
respectively. Hypothetical cross-correlations Rc,a, Rc,b

are assumed to be zero. Then, we have

R−1
1 = R−1

c + C�
a R−1

a Ca,

R−1
2 = R−1

c + C�
b R−1

b Cb.
(A4)

If a hypothetical cross-correlation Ra,b is assumed to be
arbitrary, it can be parametrised as

Ra,b = R
1
2
aΩR

1
2

b , (A5)

where the square roots (of the diagonal matrices Ra,
Rb) are meant component-wise and Ω is any matrix of
appropriate dimensions satisfying I ≥ ΩΩ�.

Thus, the selected admissible cross-correlations R1,2

are parametrised as

R1,2 = R1(R
−1
c + C�

a R
− 1

2
1 ΩR

− 1
2

2 Cb)R2 (A6)

and in Fig. 1, the values Ω = −0.999,−0.5, 0, 0.5, 0.999
are used.

In Fig. 2, the weights W(w) (6) are used with
w1 = 1/2 and the upper bounds B(W(w), ω) (5) with
ω1 = 0.271, 0.5, 0.751; see the work of Ajgl and Straka
(2017, Theorem 6). The illustrated admissible fused mean
square error matrices are given by cross-correlations R1,2

parametrised as

R1,2 = R
1
2
1 Ω(R

1
2
2 )

�,

Ω =

[
cos(α) sin(α)
sin(α) − cos(α)

]
,

(A7)

where the square roots of Ri are the lower triangular
matrices obtained by the Cholesky decomposition and the
angles α are selected as α = 0, π/2, π, 3π/2; see also the
work of Ajgl and Straka (2017, Section IV.A).

The choice of Ω in (A7) is based on experiments
wherein only several structures were considered. Note,
however, that other choices can also be used. For example,
an n-dimensional column vector v can be chosen first
(without a loss of generality as a unit vector) and an ad-
missible fused mean square error matrix can be searched
next, such that the boundary of the Minkowski sum σ is
tangent to the corresponding admissible fused ellipsoid
and v is a normal vector at a point of tangency. That
is, elements of argmaxΩ:I≥ΩΩ�(v�WA(Ω)W�v) are
sought. It can be shown that

Ω =
(R

1
2
1 )

�W�
1 vv�W2R

1
2
2

(v�W1R1W�
1 v)

1
2 (v�W2R2W�

2 v)
1
2

(A8)

is such an element. The parametrisation (A8) of Ω can,
therefore, be chosen for an illustration instead of (A7).

Appendix B

Lemma B1. (External ellipsoidal approximation) Let u
be a unit column vector of length n. If the parameter ω of
the family (5) is chosen according to

ωi ∝ (u�WiRiW
�
i u)

1
2 , (B1)

where ∝ means equality up to a multiplicative constant
guaranteeing

∑N
i=1 ωi = 1, the corresponding upper

bound B(W,u) of WAW� is tangent. Further, a point
on the boundary of the ellipsoid εB(W,u) exists such that
it is a point of the boundary of the Minkowski sum σ from
Lemma 3 and u is a normal vector of the ellipsoid at that
point.

Proof. Lemma 3 links matrices with geometrical objects.
Seeger (1993, Theorem 2.3) provides a relation of the
family (5) with the Minkowski sum σ, while Kurzhanski
and Vályi (1997, Section 2.2) give details about the
parametrisation. The lemma describes the geometrical
interpretation of tangency; see also the work of Ajgl and
Straka (2017, Lemma 5). �
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