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A prominent characteristic of clinical data is their heterogeneity—such data include structured examination records and
laboratory results, unstructured clinical notes, raw and tagged images, and genomic data. This heterogeneity poses a
formidable challenge while constructing diagnostic and therapeutic decision models that are currently based on single
modalities and are not able to use data in different formats and structures. This limitation may be addressed using data fusion
methods. In this paper, we describe a case study where we aimed at developing data fusion models that resulted in various
therapeutic decision models for predicting the type of treatment (surgical vs. non-surgical) for patients with bone fractures.
We considered six different approaches to integrate clinical data: one fusion model based on combination of data (COD) and
five models based on combination of interpretation (COI). Experimental results showed that the decision model constructed
following COI fusion models is more accurate than decision models employing COD. Moreover, statistical analysis using
the one-way ANOVA test revealed that there were two groups of constructed decision models, each containing the set of
three different models. The results highlighted that the behavior of models within a group can be similar, although it may
vary between different groups.

Keywords: clinical data, data fusion, combination of data, combination of interpretation, prediction models, decision
support.

1. Introduction

Intuitively, data fusion can be illustrated by explaining
the working of the human brain system. To understand
and perceive the surrounding conditions, the human
brain initially gathers content or relevant information
from all senses such as sight, hearing, smell, taste, and
touch. It then performs integration (fusion) by bringing
together results that correspond to a conclusive output.
In other words, the conclusion extracted from the senses
is integrated together and with past data and experience,
and thus the brain generates actions accordingly. Another
biological example is the human visual perception system.
The field of view of each eye is limited, but their
combination provides us with an extended field view
of 210◦. From these examples, we can understand the
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importance of the data fusion concept. According to
a more technical definition, data fusion is described as
combination of information or data acquired from various
sources of diversified formats, structures and incremental
learning experiences (Mitchell, 2014).

There have been numerous successful applications
of data fusion in geospatial systems, intelligent services,
and surveillance systems (see the work of Castanedo
(2013) for a review). This increases the acceptability
and confidence in employing data fusion methods in
health care (Lahat et al., 2015), where they can provide
substantial help in constructing clinical decision support
systems (CDSSs) and smart patient monitoring systems.

Currently, decision models in most CDSSs make use
of a single kind of clinical data. However, they can
prove to be more efficient if we are able to combine
clinical data obtained from different sources and in
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different formats, i.e., patient demographics, images,
lab results or genomic data. Therefore, in order to
develop such an adequate decision model, information
from every heterogeneous source has to be transformed
into a common homogeneous space, which is one of the
major challenges that is associated with the process of data
fusion. Some of the other challenges linked with clinical
data fusion are the following:

1. extraction of relevant features from heterogeneous
data sources,

2. transformation of heterogeneous information into a
homogeneous format,

3. selection of an appropriate data fusion method,
i.e., combination of data (COD) or combination of
interpretation (COI).

The most prevalent data fusion methods are combi-
nation of data (COD) and combination of interpretation
(COI). Both the techniques are explained below.

COD assumes that in the first stage (also known
as the “aggregation phase”) all the extracted features
from given data sources are initially aggregated into a
uniform data space. A single classifier (base classifier)
is constructed from this space.

In COI, for every data source, a separate classifier is
constructed. All individual outcomes are then subject to
the aggregation phase carried out by a “combiner.” The
latter can be regarded as a base classifier that generates a
final decision or outcome. COI resembles an ensemble
of classifiers (Ponti, 2011) (in particular the stacking
scheme).

Unfortunately, none of these two techniques has
given a complete solution to the challenges indicated
above, and they both have their own inherent drawbacks.
The biggest drawback associated with COD is the curse
of dimensionality. In contrast, COI is subject to
sub-optimality as it cannot preserve the dependencies
between data from different sources. To address these
shortcomings, Lee et al. (2009) developed a general
fusion framework (GFF) where COI and COD are
considered two extremes of a continuous spectrum.

The GFF is illustrated in Fig. 1. It employs
multiple transformations which are applied to
selected data sources to bring the data into a
common space. In general, there are two types of
transformations: simple—aimed at data pre-processing,
and complex—aimed at constructing classifiers. In
the latter case classification outcomes become part of
the common space. Transformations are effectively
guided by data formats and characteristics—for example,
pre-processing transformations for clinical images employ
various feature extraction schemes, and transformations
for genetic data usually rely on dimensionality reduction

schemes like principal component analysis (PCA) (Lee
et al., 2009). If separate classifiers are constructed for
all sources, then we have COI. On the other hand, if all
transformations applied only pre-processes data, then the
GFF boils down to COD.

In this paper, we present our clinical case
study aimed at building a therapeutic decision model
(classifier) to suggest an appropriate treatment (surgical
or non-surgical) for patients with bone fractures.
Such decisions should be based on general patient
characteristics, the result of the physical examination
and laboratory results (i.e., non-image data) as well as
X-ray images. Given this, we apply data fusion—in
particular, we consider various data fusion models derived
systematically using the GFF and evaluate their impact on
the accuracy of resulting classifiers.

In this work, we significantly extend our previous
analysis (Haq and Wilk, 2017) by

1. increasing the amount of data used in experiments
from 103 to 210 patients;

2. considering five COI data fusion models in addition
to a COD model;

3. performing statistical analysis of performance
demonstrated by decision models constructed
according to specific data fusion models;

4. comparing the performance of the obtained decision
models with that of ensemble classifiers constructed
using bagging and boosting schemes.

Our goal was to examine not only the basic COD and
COI models, as suggested in previous studies (Rohlfing
et al., 2005), but also how varying complexity of COI

Fig. 1. Schema of GFF (Si: i-th data source, Ti: transforma-
tion applied to Si, F : common data space, CLB : base
classifier, pred: decision outcome of CLB).
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fusion models affects the performance of derived decision
models. Therefore, we considered three variants of
simple COI models and two variants of complex COI
models. According to the experimental results, the
COI fusion models proved to be more accurate decision
models than COD. This observation was further supported
by statistical tests with ANOVA. Moreover, decision
models created following COI were better in performance
than ensemble classifiers based on bagging and boosting
schemes. The proposed COI fusion models can be
applied to other problems where image and non-image
data need to be considered, in particular to clinical
ones. However, among the possible five versions of
COI models, those which have separate classifiers for
each data source (image and non-image) provide more
balance performance across classes. Therefore, in certain
circumstances they may be preferred by decision makers
(clinicians).

The rest of the paper is organized as follows. In
the next section, we present an overview of related work
on data fusion and its clinical applications. Then, in
Section 3, we introduce our case study and describe its
goals, available data sources, and the customized data
fusion process. Next, in Section 4, we report the results of
our analysis. Finally, in Section 5, we provide conclusions
and discuss future work.

2. Related work

CDSSs are mostly based on a single modality, i.e., they
process data coming from a single source and represented
in a single format (which can be an image, demographics
combined with examination and lab results, clinical notes
or genomic information). Image processing techniques
prove to be very effective for detecting abnormalities
in clinical images, and thus they are often employed in
image-based CDSSs. In such systems, various relevant
features describing the structure and texture of the
abnormality are extracted from images, and then learning
algorithms are used to build a decision model. Recent
developments in deep learning (in particular deep neural
networks) allow constructing accurate decision models
without explicit feature extraction phase (see the work
of de Bruijne (2016) for a review). However, deep
neural networks require a significant amount of learning
images, which may be not always available. Apart from
image-based CDSSs, there exist those that rely solely
on non-image clinical information. This group may
be represented by systems for diagnosing diabetes (Sim
et al., 2017). Finally, there is also a growing group of
CDSSs built using genomic data, thus providing support
for personalized medicine (Douali and Jaulent, 2012).

Specific individual modalities have proven to be
useful when building decision models for CDSSs.
Their further integration should allow obtaining a more

comprehensive description of patients, and thus result in
more accurate CDSSs (Viswanath et al., 2017).

Applications of the COD method are discussed in
detail by Lanckriet et al. (2004) and Kourou et al. (2015).
The former applied COD to develop a support vector
machine (SVM) for generating predictions of the yeast
proteins function. The proposed technique made use
of kernel sets to combine complex protein data, gene
expressions and, amino acids. The latter presented the
results obtained by applying COD to construct decision
models for detection and prognosis of various types of
cancers.

Selected applications of COI are presented in detail
by Ponti (2011), Jesneck et al. (2006) or Zorluoglu and
Agaoglu (2015). Jesneck et al. (2006) used this method to
combine objective findings obtained from mammograms,
radiologist-interpreted findings and patient history for
breast cancer diagnosis. The authors employed detection
theory to construct classifiers. Specifically, a distinct
binary classifier exploiting the concept of the likelihood
ratio was formulated for each set of sources. The outputs
of these classifiers were then combined using a base
classifier.

As already mentioned, COI is similar to constructing
ensembles of classifiers, more so in the case of the mixture
of experts (ME) (a brief overview of ME models is
presented by Yuksel et al. (2012)) and stacking schemes.
A model for breast cancer diagnosis was developed
by Zorluoglu and Agaoglu (2015) by making use of
the decision tree, support vector machines and neural
networks, along with the COI model of these three
techniques. The conclusion presented was based on
comparisons of individual classifiers’ performance with
the ensemble of these classifiers.

A functional comparison of COI and COD is
provided by Rohlfing et al. (2005). The aim of
that study was to demonstrate the importance of data
fusion in image processing. Since no ground truth was
available, performance evaluation of both techniques was
informal and based on subjective observations (visual
assessment). The experiment involved the development
of models for four different kinds of biomedical image
processing functions. These included segmentation of
atlas-based images, multi-spectral classification, average
image tissue based segmentation and deformation based
group morphometry. Performance of decision models
obtained with COI and COD was compared by the authors
based on the capacity of producing reliable and consistent
results along with versatility.

Viswanath et al. (2017) made a comparison of
various dimensionality reduction (DR) schemes when
applied in the context of data fusion. They considered
multiple data fusion approaches elaborated by Lee et al.
(2009) and Tiwari et al. (2011), applied to genomic
data and images, and concluded that the choice of the
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fusion scheme was dependent upon the type of data under
consideration. Also, diagnostic systems based on a single
modality were consistently less accurate as they ignore
other aspects of relevant patient information.

Except for our earlier research (Haq and Wilk, 2017),
there are no other papers discussing exactly the same
decision problem. However, several similar issues have
been considered. For example, Edward and Hepzibah
(2015) developed a system to identify the type of bone
fracture by first locating the fracture and then extracting
shape features (e.g., area, perimeter) from the identified
location. These features were then used to train a neural
network that achieved an overall accuracy of 90%. In the
work of Al-Ayyoub and Al-Zghool (2014), fractures in
long bones along with the type of fracture were detected
using image processing algorithms, and performance of
classifiers learned on the basis of extracted features was
evaluated. The best accuracy of 85% was demonstrated
by an SVM classifier.

3. Case study

3.1. Problem statement. From the clinical perspecti-
ve, it is important to distinguish between these patients
with bone fractures who require surgery and those who
can be managed non-surgically. Surgical treatment is not
only more expensive than a non-invasive one, but it is also
more painful. Several studies have shown that surgery is
not needed in every case (Hossain et al., 2008). Moreover,
there is a group of patients who may be not sufficiently
clinically fit for the surgery. Thus, the decision about
the type of treatment should be based not only on the
characteristics of a fracture captured on X-ray images, but
also on the patient’s “fitness”, and in order to develop
an appropriate therapeutic decision, model image and
non-image data should be fused together.

In this study, we respond to the challenge mentioned
above and use data fusion techniques to build a decision
model to support therapeutic decisions for the patient
with fractures. This decision model takes into account
complete characteristics of a patient involving both image
and non-image information (see the next section for a
detailed description of data sources) and suggests one of
two possible types of treatment: surgical and non-surgical.
Such a model could be integrated into computer-aided
diagnostic (CAD) tools that automatically identify the
presence and type (severity) of bone fracture (Khatik,
2017) in order to offer a comprehensive decision support
during subsequent stages of the management process.

3.2. Data sources. In this case study, we used
an educational registry of cases provided by the
Wielkopolska Center of Telemedicine (Brzezinski et al.,
2013)—a teleconsultation platform for patients with
multiple injuries. This data set is part of the vast teaching

resources provided by this platform (other resources
include video lectures and clinical algorithms), and it
includes 2030 patients with bone fractures: 1593 (78.5%)
underwent a surgery and the remaining 437 (21.5%)
were treated non-surgically. Patients are described
using 301 features capturing demographics (e.g., age
and gender), results of physical examinations and basic
laboratory tests (e.g., blood work), and detailed structured
characterization of injuries. For the sake of simplicity,
we will refer to these data and features as clinical data
and clinical features, respectively. Moreover, for nearly
every patient there is a collection of X-ray images (usually
between 2 and 4) of fractured bones.

From the available data set, we randomly selected
210 patients: 76 (36.2%) non-surgical and 134 (63.8%)
surgical cases. Such a distribution was established
following the suggestions by Dittman et al. (2014),
who advocate the 35:65 sampling ratio based on their
experiments with biomedical data. We changed the
distribution of classes in comparison with the entire set
to make the resulting classifiers less biased towards the
surgical class. While there are other more sophisticated
techniques to make the distribution of classes more
balanced than random resampling (e.g., Koziarski and
Woźniak, 2017), they often introduce synthetic examples
and such “artificial patients” may be questionable from
a clinical perspective; therefore, we did not consider such
methods in this study. Finally, for each patient considered,
we selected a single X-ray image showing the initial state
of the fractured bone—we will refer to these selected
images as image data.

3.3. Data fusion process. The overall goal of our
study was to build a therapeutic decision model to predict
the type of treatment for patients with fractures. When
achieving this goal, we wanted to demonstrate the benefits
of data fusion, in particular of combining both image and
clinical data. Our secondary specific goal was to apply,
evaluate and compare different variants of COD and COI
derived systematically from the GFF. Specifically, we
considered six different data fusion models (one COD
model and five COI models) presented in Fig. 2. They
are described in the latter part of this section.

All the fusion models considered rely on two data
sources, SC and SI , corresponding to clinical and image
data, respectively. Moreover, in all six models, the
same transformations TC and TI were applied to SC

and SI , respectively. These transformations employed
diversified techniques of feature extraction, construction,
and selection. The transformation TI was aimed at
extracting from an X-ray image two numerical features
(see the description below) indicating the “severity” of a
fracture (such information was not recorded explicitly in
the clinical data), and it included the following steps:



Fusion of clinical data: A case study to predict the type of treatment of bone fractures 55

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Data fusion models considered in our study: COD (a), S-COI-C (b), S-COI-I (c), S-COI-CI (d), C-COI-C (e), C-COI-CI (f).

1. noise removal with a median filter and contrast
adjustment;

2. bone edge detection with the Canny operator and
removal of disconnected components;

3. application of the Hough transform to detect the bone
fracture (see the work of Haq and Wilk (2017) for
details). The parameter values were set in such a
way that the transform produced two peak values
for minor fractures (see Fig. 3(a)) and multiple peak
values for significant fracture bones (see Fig. 3(b))

Application of TI to SI results in the data space
FI , where each patient was described with values of
two image-related features—the mean value and standard
deviation of peak points from the Hough transform.

The transformation TC applied to SC was less
complex and it involved the following steps:

1. discretization of numerical features capturing results
of laboratory tests using norms defined by clinical
experts;

2. introduction of additional features capturing
information about injuries at a lower granularity
level;

3. removal of “useless” features, e.g., those with the
majority of missing values (more than 90%), or
extremely low or high variance.

Some of the above steps may require additional
explanation. First, in preliminary experiments, we
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(a)

(b)

Fig. 3. Application of the Hough transform to an X-ray image and extraction of peak values: two peak values for a minor fracture (a)
and three peak values for a major fracture (b).

considered both continuous (original) and discretized
values of laboratory results. Since the latter improved
the classification performance of the tested classifiers,
we decided to apply expert-based norms as part of TC .
Second, the originally recorded information about injuries
was very detailed (e.g., it indicated their very precise
location, like a specific toe or finger), and thus it was
impossible to identify any strong patterns in the clinical
data. To address this issue, we introduced additional
variables that captured more general information (i.e.,
they indicated the number of injuries within a given body
section, like the upper limb). Finally, in Step 3, in
preliminary experiments we also considered other feature
selection techniques, such as Relief (see the work of
Kuhn and Johnson (2013) for a more detailed description).
However, we did not observe any additional benefits in
terms of performance and therefore these techniques were
not included in TC . Here we should also note that a
common dimensionality reduction technique employed
within data fusion is PCA (Viswanath et al., 2017). While
it was developed for numerical data, it can be also applied
to binary features. We used the one-hot encoding with
the data and then applied PCA to further reduce the
dimensionality, but similarly to feature selection, we did
not observe any benefits (more detailed results from our
attempts are reported in the next section).

Application of TC to SC results in the FC data
space, where each patient was described with values of
96 features (as compared to 301 features from SC ). These
are briefly summarized in Table 1.

Further processing (fusion) of FI and FC data spaces
was specific for each data fusion model and it is described
below:

1. COD model (see Fig. 2(a)): FC and FI were
combined (join operation) into the single FC,I data
space. This representation was then used to build
the base CLB classifier responsible for providing the
final therapeutic prediction.

2. Simple COI models—S-COI-C, S-COI-I, and
S-COI-CI (see Figs. 2(b), (c) and (d), respectively):
FC and FI were combined using transformations
that involved building intermediary classifiers at
level 0. For S-COI-C and S-COI-I, such classifiers
were constructed from a single data space, and their
outcomes were combined with the other space. For
S-COI-CI, two level-0 classifiers were built from
both data spaces and their outcomes were joined.
Here we need to explain that we combined numerical
“votes” provided by classifiers for specific classes
rather than binary outcomes, as the former allowed
us to capture “richer” information. The data spaces
obtained at level 0 (FCLC,FI , FFC ,CLI , FCLC ,CLI )
were finally used to construct the CLB classifier at
level 1.

3. Complex COI models—C-COI-C and C-COI-CI)
(see Figs. 2(e) and (f), respectively): FC was
split into two sub-spaces FC1 and FC2 that
captured transformed clinical data corresponding to
results of physical examinations (including injuries)
and laboratory tests, respectively. Values of
basic demographic features (age and gender) were
included in both spaces. FC1 and FC2 were used to
derive CLC1 and CLC2 classifiers at level 0. Then,
the outcomes of these two classifiers were fused
into the FCLC1,CLC2 space, further employed to
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Table 1. Clinical features considered in the study.
Group of features Number of features

Demographic information 2
Laboratory test results 22
Physical examination results 72

construct the CLC , classifier at level 1. In C-COI-C
the outcome (votes) from CLC was fused together
with FI to form a feature space of FCLC ,FI that
was finally used to build CLB . In C-COI-CI, we
also introduced the CLI classifier at level 0 and its
outcome was then combined with the outcome of
CLC . This resulted in FCLC ,CLI used to buildCLB .

3.4. Experimental design. In the experiments, we
applied the six data fusion models described in the
previous section to construct and combine different types
of classifiers into specific therapeutic decision models.
Classifiers employed in our study are described in Table 2;
the selection was based on our past experience with
analysis of clinical data (Wilk et al., 2016) and on results
of other studies related to data fusion (Tiwari et al.,
2011). All classifiers were implemented in WEKA (Hall
et al., 2009), and for most of the parameters, we used
default values (as they were performing well on default
parameter settings). The parameters that were modified
for our study are presented in Table 2. Such customization
was performed during a preliminary analysis limited to
individual data spaces and their combination according
to the COD model. Specifically, we used a grid search
over the possible values of the parameters considered and
selected those that resulted in the best performance. A
similar search was performed to analyze the values of
the parameters C (cost) and γ parameters for the SVM.
For the KNN classifier, we checked values of k ranging
from 3 to 19, and the best performance was observed for
7 neighbors. This range of the parameter k was defined
as arbitrary based on the literature and our previous
experience with other data sets (Wilk et al., 2016).

When evaluating the performance of classifiers,
we considered the following measures: classification
accuracy (or true-positive rate) for non-surgical and
surgical classes and the average accuracy over these two
classes (i.e., micro-average of accuracy). The latter
measure is often used in the context of imbalanced data
sets as a better alternative to overall accuracy (Ferri et al.,
2009). In order to obtain more reliable and statistically
sound results, the evaluation was performed according to
the 10-fold cross-validation scheme repeated 10 times.

The experimental design covered two phases. In
the first one, we evaluated decision models constructed
from a single data space—either FI or FC (i.e., without
data fusion). This allowed us to establish the baseline

performance for the second phase, where we applied
COD, S-COI-C, S-COI-I, S-COI-CI, C-COI-C, and
C-COI-CI data fusion models. To limit the number
of possible combinations of classifiers in C-COI-C and
C-COI-CI, we first evaluated possible combinations for
the CLC1, CLC2, CLI , and CLC classifiers and selected
the best performing (in terms of the average accuracy)
set of classifiers. Then, we considered different possible
classifiers for CLB and evaluated the performance of the
entire decision model.

4. Results

The results of the first phase of our experiment are given in
Table 3 and visualized in Fig. 4 (evaluation of the obtained
results from a practical perspective would depend upon
the type of fracture under consideration). In this stage
we employed all types of classifiers listed in Table 2 and
constructed 14 decision models either from the FI image
data space or FC clinical data space.

The most important observations from the first stage
are the following:

• Decision models constructed from the space FI

turned out to be more accurate than models derived
from FC (this is clearly visible in Fig. 4, where
the former models are concentrated in the top right
corner and dominate the latter). This confirms the
importance of image information for deciding about
the type of treatment.

• The highest average accuracy of 80.0% was achieved
by the FI-5 decision model (DT classifier), and it
can be characterized as a good result compared with
the decision model derived from clinical features FC

(KNN classifier)—its average accuracy was 72.6%.

• For the surgical class, the highest accuracy of 95.0%
was obtained by the FC-1 decision model (KNN
classifier). At the same time, the accuracy for
the non-surgical class demonstrated by this model
was one of the lowest. The best accuracy for
the non-surgical class was equal to 71.0% and it
was achieved by the FI-4 decision model (NB-D
classifier).

The non-surgical class is more diversified and scattered.
Thus it is more difficult to identify areas in data space
with a majority of examples from this class and to induce



58 A. Haq et al.

Table 2. Classifiers considered in the study and their parameters.
Symbol Description Parameters

KNN A k-nearest neighbor classifier with Euclidean
distance.

k = 7

NB, NB-K, NB-D A naı̈ve Bayes classifier where normal
distribution, kernel density estimator and internal
discretization were used for numerical values,
respectively.

default

DT A decision tree classifier constructed using the
C4.5 algorithm.

default

RF A random forest classifier. default
SVM An SVM classifier with a radial basis kernel

function.
C = 1000, γ = 0.0001 for FI

(SVM as CLI), 0.01 for FC (SVM
as CLC), and 0.001 otherwise

Table 3. Performance of decision models constructed from a single data space (standard deviation given in brackets, ID = identifier of
a decision model).

Accuracy [%]
ID CLB Data space Average Non-surgical Surgical

FI-1 KNN FI 78.0 (12.5) 68.0 (16.0) 88.0 (9.0)
FC-1 KNN FC 72.6 (9.5) 50.2 (13.0) 95.0 (6.0)
FI-2 NB FI 78.0 (11.5) 67.0 (15.0) 89.0 (8.0)
FC-2 NB FC 65.5 (14.0) 43.0 (19.0) 88.0 (9.0)
FI-3 NB-K FI 78.5 (11.5) 68.0 (15.0) 89.0 (8.0)
FC-3 NB-K FC 70.5 (13.0) 53.0 (17.0) 88.0 (9.0)
FI-4 NB-D FI 79.6 (11.5) 71.0 (15.0) 88.0 (8.0)
FC-4 NB-D FC 60.0 (11.5) 28.0 (15.0) 92.0 (8.0)
FI-5 DT FI 80.0 (12.0) 70.0 (17.0) 90.0 (7.0)
FC-5 DT FC 65.5 (14.5) 52.0 (18.0) 80.0 (11.0)
FI-6 RF FI 76.0 (13.5) 68.0 (18.0) 84.0 (9.0)
FC-6 RF FC 72.0 (13.5) 57.0 (19.0) 87.0 (8.0)
FI-7 SVM FI 78.5 (10.5) 65.0 (14.0) 92.0 (7.0)
FC-7 SVM FC 65.5 (14.0) 56.0 (16.0) 75.0 (12.0)

stronger patterns capturing this class. Having said this, the
FC-1 model relies on KNN—such a classifier is sensitive
to noisy or rare cases and it may be biased towards the
class that is more uniform (i.e., forms more uniform
clusters). Specifically, when predicting the class for a
non-surgical case, the classifier may easily focus on the
neighborhood with the majority of surgical patients and
thus establish an incorrect outcome, which results in a
higher accuracy value for the majority class (i.e., 95%).

The second phase started with developing decision
models following the COD scheme. The results obtained
for this fusion model are reported in Table 4 and
summarized visually in Fig. 5. The most important
observations from this analysis are as follows:

• For decision models with DT, RF and SVM
classifiers (COD-3, COD-4, and COD-5,
respectively), fusion of data spaces resulted in
improved average accuracy in comparison with the

decision models derived from single spaces. This
confirms the benefits of data fusion techniques, even
when using a simple scheme such as COD.

• In the case of the COD-4 decision model, fusion
improved also accuracy in each class in comparison
to the baseline results. Moreover, for the COD-3
and COD-5 models we observed increased accuracy
for the non-surgical class (with gains up to 5%);
however, there was a decrease (2%) in the accuracy
for the surgical class.

• Although the COD fusion model turned out to be
beneficial, we still need to emphasize high accuracy
of decision models constructed in the first phase from
the FI image data space and importance of features
from that space.

At this point, we also examined the impact of
dimensionality reduction on the performance of decision



Fusion of clinical data: A case study to predict the type of treatment of bone fractures 59

Table 4. Performance of decision models constructed following the COD models (standard deviation given in brackets, ID = identifier
of a decision model).

Accuracy [%]
ID CLB Average Non-surgical Surgical

COD-1 KNN 56.5 (9.0) 17.0 (12.0) 96.0 (6.0)
COD-2 NB-K 76.5 (12.0) 60.0 (17.0) 93.0 (7.0)
COD-3 DT 80.0 (12.0) 72.0 (16.0) 88.0 (8.0)
COD-4 RF 81.5 (11.5) 73.0 (15.0) 90.0 (8.0)
COD-5 SVM 80.5 (11.0) 71.0 (15.0) 90.0 (7.0)
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Fig. 4. Decision models constructed from a single data space
(average accuracy given in brackets).

models. Specifically, we applied PCA to the FC,I data
space (with categorical features encoded using the one-hot
technique) and preserved top 50 principal components
capturing 95% of the variance. Then, the reduced data
space was used to build possible classifiers. The obtained
results are listed in Table 5. Since accuracy deteriorated
in comparison with the decision models constructed
following COD, we decided not to use PCA.

In the third phase, we explored the COI fusion
models. We started with the simple models—S-COI-C,
S-COI-I, and S-COI-CI—and then proceeded with the
complex ones—C-COI-C and C-COI.

In S-COI-C we applied various classifiers to FC .
Specifically, we focused on RF and KNN as CLC as these
classifiers performed best in the first stage when applied
to clinical data space. As previously, we tried multiple
classifiers as CLB and the results are reported in Table 6
and Fig. 6. The key observations are the following:

• The S-COI-C-11 decision model with KNN at both
levels, i.e., CLC and CLB , provided the highest
average accuracy. Similar performance was achieved
using the combination with KNN at the CLC level

Surgical [%]

N
on

−
su

rg
ic

al
 [%

]

87.0 89.0 91.0 93.0 95.0 97.0

16
.0

28
.0

40
.0

52
.0

64
.0

COD−2 (76.5)

COD−3 (80.0)COD−5 (80.5)

COD−1 (56.5)

COD−4 (81.5)

Fig. 5. Decision models constructed following the COD model
(average accuracy given in brackets).

and with RF at the CLB level (S-COI-C-9).

• Decision models with RF as CLC demonstrated
lower average accuracy then models with KNN. For
the former models, the average accuracy did not
exceed 77% and accuracy for the non-surgical class
was low.

• Overall, S-COI-C proved to be a less accurate model
as compared to COD.

In S-COI-I we applied different classifiers to FI .
In the first the stage we tried DT and SVM as CLI .
However, DT demonstrated the highest average accuracy
when applied to image data. Moreover, we tried multiple
classifiers as CLB and only the best ones are reported in
Table 7 and Fig. 7. The most important observations are
the following:

• The highest accuracy was achieved for the S-COI-I-2
decision model (DT as CLI and NB-D as CLB).
Similar performance was also demonstrated by other
decision models with DT as CLI , except for these
where SVM, RF, and KNN were used as CLB .
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Table 5. Performance of decision model using feature transformation with PCA scheme using top 50 features capturing 95% of variance
(standard deviation given in brackets, CL = applied classifier).

Accuracy [%]
CL Average Non-Surgical Surgical

KNN 65.5 (13.0) 41.0 (18.0) 90.0 (8.0)
NB 65.5 (13.0) 42.0 (17.0) 89.0 (9.0)
NB-K 63.0 (13.0) 36.0 (18.0) 90.0 (8.0)
NB-D 69.0 (16.5) 55.0 (21.0) 83.0 (12.0)
DT 67.0 (16.0) 57.0 (20.0) 77.0 (12.0)
RF 73.0 (14.0) 56.0 (19.0) 90.0 (9.0)
SVM 78.0 (12.5) 67.0 (17.0) 89.0 (8.0)

Table 6. Performance of decision models constructed following the S-COI-C model (standard deviation given in brackets, ID = iden-
tifier of a decision model).

Accuracy [%]
ID CLC CLB Average Non-surgical Surgical

S-COI-C-1 RF DT 72.1 (10.1) 59.9 (18.4) 84.3 (9.1)
S-COI-C-2 RF RF 71.9 (9.8) 57.4 (18.2) 86.4 (8.1)
S-COI-C-3 RF SVM 75.7 (9.3) 63.9 (17.0) 87.9 (8.6)
S-COI-C-4 RF KNN 76.6 (7.9) 69.2 (15.2) 84.0 (11.3)
S-COI-C-5 RF NB 74.0 (9.9) 64.7 (17.7) 83.3 (9.5)
S-COI-C-6 RF NB-K 73.0 (9.9) 59.4 (18.1) 86.5 (8.2)
S-COI-C-7 RF NB-D 72.0 (9.9) 57.4 (18.2) 86.4 (8.1)
S-COI-C-8 KNN DT 71.5 (1.3) 87.3 (9.4) 79.4 (8.1)
S-COI-C-9 KNN RF 81.4 (8.1) 77.1 (13.5) 85.7 (9.7)
S-COI-C-10 KNN SVM 75.7 (9.3) 68.5 (17.2) 83.3 (12.3)
S-COI-C-11 KNN KNN 83.9 (6.7) 78.7 (12.9) 89.2 (8.3)
S-COI-C-12 KNN NB 79.9 (8.8) 76.2 (13.9) 83.8 (10.5)
S-COI-C-13 KNN NB-K 77.9 (9.6) 67.0 (15.4) 88.9 (9.5)
S-COI-C-14 KNN NB-D 77.8 (9.1) 68.2 (15.8) 87.3 (9.6)

• In the case of SVM as CLI , the average accuracy did
not exceed 80%. However, the highest accuracy for
the surgical class was reported using SVM as CLI

and NB as CLB .

For the S-COI-CI fusion model, we constructed a
series of decision models where we applied different
classifiers to FI and FC data spaces. The results obtained
by applying the S-COI-CI fusion model are given in
Table 8 and Fig. 8. They can be summarized as follows:

• For several decision models, there was a large
increase in the accuracy for the non-surgical class in
comparison to the COD approach. It was especially
evident for the S-COI-CI-8 model, which attained
85.0%. However, it was associated with the decrease
in accuracy for the surgical class, and thus the
average accuracy for the best decision models was
comparable to the performance of the best models
from the previous step (84.2% for S-COI-CI-8 vs.
81.5% for COD-4). The S-COI-CI-8 model was also
the one that demonstrated the most even performance
across both decision classes.

• The trade-off between both decision classes was also
clearly visible for decision models that demonstrated
the best accuracy for the surgical class, e.g.,
S-COI-CI-3 or S-COI-CI-8. These models were
relatively weaker in recognizing the non-surgical
class. Nevertheless, their performance for this class
was usually better than that of decision models
following the COD approach.

As already mentioned, we divided the construction
of decision models following C-COI-I and C-COI-CI into
two steps in order to minimize the number of possible
combinations of classifiers to consider. In the first step, we
focused on the CLC1 and CLC2 classifiers derived from
data sub-spaces capturing various aspects of a patient’s
clinical image (physical examinations vs. laboratory
results) and on the CLC classifier derived from their
fused outcomes (see Figs. 2(e) and (f)). The performance
of the discussed combinations of classifiers is given in
Table 9. In comparison with the baseline results for FC

given in Table 3, one could notice the benefits of splitting
the FC space into two sub-spaces—the performance for
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Table 7. Performance of decision models constructed following the S-COI-I model (standard deviation given in brackets, ID = identi-
fier of a decision model).

Accuracy [%]
ID CLI CLB Average Non-surgical Surgical

S-COI-I-1 DT NB 80.1 (8.7) 70.6 (16.3) 89.7 (7.2)
S-COI-I-2 DT NB-D 80.3 (8.8) 70.6 (16.3) 90.1 (7.1)
S-COI-I-3 DT NB-K 80.2 (9.1) 70.3 (17.0) 90.1 (7.1)
S-COI-I-4 DT SVM 78.6 (8.4) 65.6 (15.1) 91.7 (7.9)
S-COI-I-5 DT RF 75.9 (8.9) 67.3 (17.5) 84.7 (9.2)
S-COI-I-6 DT DT 80.2 (9.1) 70.3 (17.0) 90.1 (7.1)
S-COI-I-7 DT KNN 78.6 (8.9) 71.7 (17.4) 85.5 (8.5)
S-COI-I-8 SVM NB 78.9 (8.6) 65.5 (15.9) 92.3 (6.7)
S-COI-I-9 SVM NB-D 78.7 (8.3) 66.5 (15.2) 90.9 (7.2)
S-COI-I-10 SVM NB-K 78.7 (8.3) 65.1 (15.5) 92.3 (6.7)
S-COI-I-11 SVM SVM 78.8 (8.3) 65.2 (14.8) 92.3 (7.8)
S-COI-I-12 SVM RF 75.6 (8.8) 66.7 (16.9) 84.4 (8.6)
S-COI-I-13 SVM DT 77.9 (8.9) 65.2 (15.9) 90.7 (7.0)
S-COI-I-14 SVM KNN 77.1 (8.4) 66.5 (16.2) 87.7 (8.9)

Table 8. Performance of decision models constructed following the S-COI-CI model (standard deviation given in brackets, ID =
identifier of a decision model).

Accuracy [%]
ID CLC CLI CLB Average Non-surgical Surgical

S-COI-CI-1 NB-K NB-D KNN 81.0 (12.5) 75.0 (15.0) 87.0 (10.0)
S-COI-CI-2 NB-K NB-D NB 82.8 (9.7) 84.0 (12.0) 81.7 (7.4)
S-COI-CI-3 NB-K RF KNN 80.5 (11.5) 71.0 (15.0) 90.0 (8.0)
S-COI-CI-4 NB-K RF NB 80.7 (10.5) 80.0 (13.0) 81.4 (7.9)
S-COI-CI-5 NB-K RF NB-K 81.0 (10.5) 75.0 (15.0) 87.0 (6.0)
S-COI-CI-6 NB-K RF RF 79.5 (13.0) 72.0 (16.0) 87.0 (10.0)
S-COI-CI-7 NB-K SVM KNN 83.0 (11.0) 77.0 (14.0) 89.0 (8.0)
S-COI-CI-8 NB-K SVM NB 84.2 (9.2) 85.0 (11.0) 83.4 (7.3)
S-COI-CI-9 NB-K SVM NB-K 83.0 (12.0) 82.0 (13.0) 84.0 (11.0)
S-COI-CI-10 RF NB SVM 83.3 (10.0) 83.0 (13.0) 83.6 (6.9)
S-COI-CI-11 RF NB-D NB-K 80.0 (13.5) 73.0 (17.0) 87.0 (10.0)
S-COI-CI-12 RF RF KNN 80.5 (13.5) 73.0 (18.0) 88.0 (9.0)
S-COI-CI-13 RF RF NB 80.5 (11.5) 79.0 (15.0) 82.1 (7.9)
S-COI-CI-14 RF RF NB-K 81.5 (12.5) 77.0 (16.0) 86.0 (9.0)
S-COI-CI-15 RF SVM NB-K 82.5 (13.0) 81.0 (15.0) 84.0 (11.0)

the non-surgical class was improved and the accuracy
for the surgical class in most cases was preserved at the
same level. To further proceed with the C-COI-CI model,
we selected the classifiers resulting in the best average
accuracy of 74.0%, i.e., NB-K as CLC1 and CLC and
RF as CLC2.

Performance of decision models constructed
following the C-COI-C fusion model is reported in
Table 10 and Fig. 9. The most important observations
from this part of the analysis are as follows:

• The highest accuracy of 78.6% was achieved by the
C-COI-C-5 model with NB-K as CLC and SVM at
CLB .

• average accuracy reported by the C-COI-C model is
quite similar to the ones reported in the S-COI-I and
S-COI-C models.

• performance of the C-COI-C is relatively low as
compared to the performance of decision models
following S-COI-CI (see Table 8). Moreover, the
complexity of the C-COI-C model is much higher
than that of S-COI-CI.

The results obtained for the C-COI-CI fusion model
are reported in Table 11 and Fig.10. The most important
observations from this analysis are as follows:

1. Similarly to the COD approach, also C-COI-CI



62 A. Haq et al.

Table 9. Internal performance at level 2 in decision models constructed following the C-COI-C and C-COI-CI models (standard devi-
ation given in brackets).

Accuracy [%]
CLC1 CLC2 CLC Average Non-surgical Surgical

NB-K RF NB 72.0 (14.0) 56.0 (18.0) 88.0 (10.0)
NB-K RF NB-K 74.0 (13.0) 63.0 (16.0) 85.0 (10.0)
NB-K RF NB-D 73.0 (14.5) 63.0 (17.0) 83.0 (12.0)
NB-K RF RF 66.0 (14.5) 53.0 (17.0) 79.0 (12.0)
RF NB-K NB 72.0 (13.0) 64.0 (16.0) 80.0 (10.0)
RF NB-K NB-K 73.0 (13.5) 67.0 (16.0) 79.0 (11.0)
RF NB-K NB-D 71.0 (16.5) 66.0 (19.0) 76.0 (14.0)

Table 10. Performance of decision models constructed following the C-COI-C model (standard deviation given in brackets, ID =
identifier of a decision model).

Accuracy [%]
ID CLC CLB Average Non-surgical Surgical

C-COI-C-1 NB-K RF 70.2 (9.7) 57.8 (17.8) 82.6 (9.9)
C-COI-C-2 NB-K NB-K 71.1 (9.8) 61.2 (17.5) 80.9 (10.5)
C-COI-C-3 NB-K DT 69.9 (10.1) 59.1 (18.7) 80.8 (10.7)
C-COI-C-4 NB-K 7NN 71.6 (9.9) 60.8 (17.5) 82.4 (10.7)
C-COI-C-5 NB-K SVM 78.6 (7.5) 72.8 (14.3) 84.4 (10.1)

Table 11. Performance of decision models constructed following the C-COI-CI model (standard deviation given in brackets, ID =
identifier of a decision model).

Accuracy [%]
ID CLC CLI CLB Average Non-surgical Surgical

C-COI-CI-1 NB-K NB-D KNN 82.0 (10.5) 76.0 (13.0) 88.0 (8.0)
C-COI-CI-2 NB-K NB-D NB-K 83.0 (11.0) 78.0 (14.0) 88.0 (8.0)
C-COI-CI-3 NB-K DT KNN 82.0 (12.0) 75.0 (15.0) 89.0 (9.0)
C-COI-CI-4 NB-K DT NB-K 83.0 (11.5) 78.0 (15.0) 88.0 (8.0)
C-COI-CI-5 NB-K RF KNN 83.5 (11.5) 76.0 (15.0) 91.0 (8.0)
C-COI-CI-6 NB-K RF NB-K 84.5 (11.0) 79.0 (14.0) 90.0 (8.0)
C-COI-CI-7 NB-K RF RF 81.0 (11.5) 74.0 (14.0) 88.0 (9.0)
C-COI-CI-8 NB-K SVM KNN 81.5 (11.0) 73.0 (14.0) 90.0 (8.0)
C-COI-CI-9 NB-K SVM NB-K 84.0 (11.5) 80.0 (14.0) 88.0 (9.0)

results in decision models biased toward the surgical
class. The best accuracy for this class was equal
to 91.0% and it was achieved for the C-COI-CI-5
model.

2. The attained accuracy for the non-surgical class was
in the range from 73.0% to 80.0%, thus it was better
than for models constructed according to COD.

3. The best average accuracy of 84.5% was reported
by the C-COI-CI-6 model. It is also the best value
attained by any of the decision models considered in
the experiment approach.

To provide a concise summary of our experiments,
we selected the most promising decision models (both
baseline ones from the first phase and the ones established

according to various fusion approaches in the second
phase) and presented them in Fig. 11. However,
evaluation of the obtained results from a practical
perspective would depend upon the type of fracture. The
most important observations are the following:

• While decision models based on the FI data space
performed surprisingly well, the analysis revealed
benefits of fusing images with clinical data—the FI-5
model was dominated by several other models based
on fused data spaces (e.g., COD-4 and C-COI-CI-5).

• Decision models constructed according to the COI
approach turned out to be more accurate than those
derived using COD—this emphasizes the benefits of
applying different classifiers to specific data spaces.
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Fig. 6. Decision models constructed following the S-COI-C
model (average accuracy given in brackets).

• Decision models based on S-COI and C-COI
demonstrated different “classification biases.”
The S-COI models were more accurate for the
non-surgical class, while the C-COI ones were
focused on the surgical class. Thus they could
be seen as complementary in terms of captured
expertise.

• Results reported for decision models constructed
with S-COI-CI model (and also C-COI-CI) provide
better accuracy for the non-surgical class by
using various variants of the naı̈ve Bayes (NB)
classifier as the base classifier (CLB). In such a
situation, also accuracies across classes are more
balanced. This indicates that NB is better able to
estimate probabilities when it is built from a data
space combing outcomes of classifiers operating on
individual data sources.

To perform statistical analysis of decision models
constructed according to different fusion models, we
applied a one-way ANOVA test (Salzberg and Fayyad,
1997). For each fusion model, we selected the best
performing (in terms of the average accuracy) decision
model, and the purpose of this test was to report whether
there were statistically significant differences between
these models. The findings are reported in Table 12 and
their graphical representation is shown in Fig. 12. It
indicates that there are two groups of decision models
(and thus underlying fusion models), with statistical
differences between these groups and no differences
inside groups. However, if you focus on each group (in
Figs. 12(a) and (b)) individually, you will observe that
group (a) contains those COI models which have balanced
class accuracies, whereas the models mentioned in group
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Fig. 7. Decision models constructed following the S-COI-I
model (average accuracy given in brackets).

(b) are more biased towards the majority class.
As we have already mentioned, there is a similarity

between data fusion and ensemble classifiers. To further
explore it, we applied two popular approaches to building
such classifiers—boosting and bagging (see Kuhn and
Johnson, 2013). We combined these schemes with
classifiers considered in our study and applied them to the
combined FC,I data space, also used by the COD fusion
model.

Results obtained for the bagging scheme are reported
in Table 13. We briefly summarize them as follows:

• The highest accuracy obtained is 82.0% and it was
attained for a DT classifier.

• Bagging provided similar performance to the COD
and S-COI-C models for the average class accuracy
and also for individual class accuracies. The highest
accuracy obtained using bagging for the surgical
class is 92.0%.

Performance achieved by boosted classifiers is given
in Table 14. It is close to that of decision models based on
the S-COI-I, S-COI-C and C-COI-C fusion models. The
summary of the obtained results in is as follows:

• The highest average accuracy using boosting was
82.0% obtained using the RF classifier.

• Similarly to bagging, boosting was also more biased
towards the surgical class which may have been
caused by many factors such as class imbalance,
non-surgical class capturing more rare cases and thus
being possibly more diversified (it is more difficult to
find stronger patterns), with the surgical class being
more uniform and thus easier to learn.
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Table 12. Result of statistical testing performed using a one-way ANOVA test (p-value < α = 0.05 is highlighted in boldface).

S-COI-I S-COI-C S-COI-CI C-COI-C C-COI-CI

COD 9.00E-06 4.60E-02 1.81E-01 5.00E-03 7.13E-01
S-COI-I - 4.50E-01 2.50E-08 1.39E-01 3.70E-06
S-COI-C - - 6.24E-04 4.63E-01 2.20E-02
S-COI-CI - - - 1.65E-05 3.67E-01
C-COI-C - - - - 2.20E-02

Table 13. Performance of decision models constructed following bagging scheme (standard deviation given in brackets, CL = applied
classifier).

Accuracy [%]
CL Average Non-surgical Surgical

KNN 57.5 (10.0) 19.0 (15.0) 96.0 (5.0)
NB 76.0 (13.5) 61.0 (16.0) 91.0 (8.0)
NB-K 80.0 (11.5) 69.0 (15.0) 91.0 (8.0)
NB-D 76.0 (13.5) 61.0 (18.0) 91.0 (9.0)
DT 82.0 (11.0) 75.0 (15.0) 89.0 (7.0)
RF 81.0 (12.0) 70.0 (16.0) 92.0 (8.0)
SVM 81.0 (13.0) 73.0 (17.0) 89.0 (9.0)

Table 14. Performance of decision models constructed following the boosting scheme (standard deviation given in brackets, CL =
applied classifier).

Accuracy [%]
CL Average Non-surgical Surgical

KNN 64.0 (13.5) 51.0 (16.0) 77.0 (11.0)
NB 77.0 (13.0) 68.0 (17.0) 86.0 (9.0)
NB-K 77.0 (12.5) 66.0 (16.0) 88.0 (9.0)
NB-D 75.5 (14.5) 65.0 (19.0) 86.0 (10.0)
DT 79.5 (12.0) 71.0 (16.0) 88.0 (8.0)
RF 82.0 (11.0) 73.0 (14.0) 91.0 (8.0)
SVM 80.0 (12.5) 71.0 (17.0) 89.0 (8.0)

5. Conclusions

In this paper, we presented the concept of data fusion
and described its application in a case study aimed at
developing a therapeutic decision model to predict the
type of treatment (surgical vs. non-surgical) for patients
with bone fractures. While such decision should be based
on the characteristics of a fracture, it should also consider
the overall state or “fitness” of the patient. Thus, a
comprehensive decision model should be based on both
image and non-image patient data.

In our case study, we considered six models of
data fusion: a simple COD and five variants of COI
with increasing degree of complexity. The first model
fused various data sources into a single space, while
the latter combined outcomes of multiple classifiers. To
obtain a baseline, we also checked decision models
constructed from single data sources. The results clearly
demonstrated the benefits of data fusion, in particular
of COI models. Moreover, we performed an ANOVA

test and the results revealed that COI models offer
complementary performance for specific decision classes.
In particular, decision models following the most complex
variant of COI (S-COI-CI and C-COI-CI) demonstrated
the best performance for the non-surgical class and
the most balanced accuracy across classes, while other
decision models were biased towards the surgical class.
Since the acceptable decision bias may be dependent on a
specific problem (e.g., in the case of hip fracture a delayed
surgery may serious consequences (Cha et al., 2017),
while in the case of many hand fractures surgeries do
not improve the outcomes (Giddins, 2015)), in clinical
practice it may be reasonable to use decision models from
both groups and let the clinician make the final decision.

For a more comprehensive evaluation, we also
compared the performance of the obtained decision
models with ensemble classifiers constructed according
to bagging and boosting schemes. This analysis further
confirmed the benefits of more complex data fusion
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Fig. 8. Decision models constructed following the S-COI-CI
model (average accuracy given in brackets).

models, which resulted in better accuracy of the oncoming
decision models than the ensembles considered. In a
comparative analysis of complex COI and PCA (used in
combination with COD), COI tends to perform better and
is higher accuracy.

6. Future work

Our study has several limitations. The size of the analyzed
data (in terms of the number of patients and their images)
was limited. We also focused only on image-based
features extracted through custom transformation and did
not apply deep learning techniques that may have been
able to discover relevant features automatically (giving up
deep learning was in fact related to the limited amount of
data). All of these shortcomings will be addressed in the
future work. We also plan to develop a control mechanism
for data fusion that would recommend transformations
appropriate for specific data sources and their sequence.
This involves constructing transformations to deal with
data difficulty factors such as the overlapping of decision
boundaries, rare cases, outliers, and noise (Wilk et al.,
2016). Our ultimate goal is to construct a comprehensive
data fusion framework for clinical data, and we believe
this study constitutes a relevant step towards this end.
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