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This paper proposes a new method for the analysis of continuous and periodic event-based state-feedback plus static feed-
forward controllers that regulate linear time invariant systems with time delays. Measurable disturbances are used in both
the control law and triggering condition to provide better disturbance attenuation. Asymptotic stability and L2-gain distur-
bance rejection problems are addressed by means of Lyapunov–Krasovskii functionals, leading to performance conditions
that are expressed in terms of linear matrix inequalities. The proposed controller offers better disturbance rejection and a
reduction in the number of transmissions with respect to other robust event-triggered controllers in the literature.
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1. Introduction

Traditionally, control systems in digital platforms are
implemented following a periodic control paradigm, that
is, signals are sent with a fixed sampling period. However,
periodic control may lead to an unnecessary waste of
resources, and some forms of aperiodic control have
emerged lately to overcome this drawback (Tabuada,
2007; Lunze and Lehmann, 2010). In self-triggered
control (see, e.g., Velasco et al., 2003; Wang and
Lemmon, 2008; Mazo et al., 2010) a prediction of the
evolution of the system is used to determine the instances
of time in which the control loop is closed. The main
problem of this paradigm is that, since the sensors are
not monitored during the inter-event time, conservative
sampling intervals may be necessary to properly address
unknown phenomena such as disturbances. On the
contrary, in event-based control, the control loop is closed
when a triggering condition based on the current value
of the system state is satisfied. The triggering condition
can be checked continuously (Lunze and Lehmann, 2010;
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Lehmann and Lunze, 2011; Dimarogonas et al., 2012),
leading to the so-called continuous event-triggered control
(CETC), or at prefixed instances of time (Heemels et al.,
2013; Peng and Han, 2013; Aranda-Escolástico et al.,
2016; Ma et al., 2018), i.e., periodic event-triggered
control (PETC). The analysis of PETC controllers is
closely related to the study of networked control systems,
in which an unreliable communication network is usually
treated as a time-variable dead time (Yue et al., 2005;
2013; Millán et al., 2010).

Even though the benefits of event-triggering have
been demonstrated, it might occur that an event-triggered
control system that performs properly in the absence of
disturbances becomes rather ineffective in the presence
of disturbances, even if these are small (Borgers and
Heemels, 2013). Hence, the design of control schemes
that take into account disturbances and deal with them
effectively is one of the open problems in event-based
control.

Traditionally, three control strategies are used to
reduce the effects of disturbances: local feedback, direct
feedforward and prediction-based feedforward (Åström

mailto:{carlos,earandae}@bec.uned.es
mailto:{mguinald,sdormido}@dia.uned.es
mailto:joguzman@ual.es


542 C. Rodrı́guez et al.

and Wittenmark, 1997). The last two require precise
information on the process. The direct feedforward
strategy consists in supplying a complementary control
signal that is computed from the current measured value
of the disturbance. The prediction-based feedforward
strategy estimates the value of the disturbance using
an internal model. The choice of the most convenient
technique depends on the process characteristics, e.g.,
whether the disturbance can be measured or is affected
by a dead time.

In general, feedforward control has proved to
improve the performance, especially in process control
regarding chemical or agricultural systems, but also in
robotic manipulators, servo systems or disk drive systems;
see, e.g., the works of Chen (2004), Guzmán and
Hägglund (2011), Li et al. (2016), and the references
therein. Note that event-based control has itself a
feedforward control aspect in the sense that the feedback
control is closed only at event times while remaining open
between consecutive events (Miskowicz, 2015). In spite
of that, the response against the disturbance normally
relies on feedback, that is, until there is not a change in
the output due to the disturbance, the information is not
transmitted and no new input signals are computed. In
our work, we use information on measurable disturbances
in order to reduce their effect over the system in advance,
and this is done by considering also an event-triggering
mechanism to decide whether or not there is a significant
change in the disturbance.

Several strategies have been proposed in the
literature to improve the disturbance rejection in the
context of event-triggered control. In the work of
Lehmann and Lunze (2011), a disturbance estimation is
proposed. The disturbance is estimated based on the
difference between the measured state and the predicted
state given by a model. Though the number of events can
be reduced by this approach, the effect of the disturbance
over the system cannot be anticipated. Several works (see,
e.g., Peng and Han, 2013; Yue et al., 2013; Orihuela et al.,
2014; Heemels et al., 2016) propose robust controllers
to guarantee a certain level of disturbance rejection.
Recently, event-triggered sliding mode control has been
studied (Wu et al., 2017; Behera and Bandyopadhyay,
2017; Behera et al., 2018; Chu and Li, 2018). However,
none of the works employs disturbance measurements
in order to improve the system’s performance. In this
paper, the effect of disturbances is addressed by a novel
event-based feedforward strategy. To the best of our
knowledge, the analysis of direct feedforward control
of dead-time systems within an event-based control
paradigm has not been treated in the literature, remaining
an interesting open line of research (Lunze, 2015).

Asymptotic stability and L2-gain disturbance
rejection conditions are ensured for an event-based
state-feedback plus static feedforward controller.

Specifically, given feedback and feedforward gains with
a desired disturbance attenuation level, the proposed
approach, which is based on linear matrix inequalities
(LMIs), provides a trigger function design that guarantees
the L2 stability of the system. In addition, a joint method
for the design of the feedback and feedforward gains with
time-varying delays and the proposed event-triggering
mechanism is developed. That is, the use of a time-delay
system framework (see, e.g., Zhang et al., 2013; 2015;
Qi et al., 2018) allows, in one step, the inference
of the most adequate design of the triggering policy
and the controller depending on the networked system
characteristics (maximum delay) and desired performance
(attenuation level). Additionally, when compared with
other robust event-triggered control strategies (Peng
and Han, 2013; Yue et al., 2013) in an example, the
proposed design allows a further reduction in the number
of transmissions as well as a reduced integral square
error (ISE). The proposed controller also performs better
than conventional feedback CETC or PETC, as expected.
Another contribution of this work is the joint analysis for
PETC and CETC, which has not been addressed before.
Indeed, the solution in terms of LMIs holds for both
strategies by just redefining few parameters.

The remainder of the paper is organized as follows.
Section 2 is devoted to stating the control problem,
the proposed control law, and triggering condition. In
Section 3 the main results are presented. Asymptotic
stability and L2-gain disturbance rejection conditions of
the CETC and PETC systems are guaranteed through a
set of LMIs, and the method to design the feedback and
feedforward gains is provided. Section 4 describes a case
study to prove the effectiveness of the proposed controller.
Finally, Section 5 contains the main conclusions of the
work.

2. Preliminaries

2.1. Notation. Throughout this paper a scalar is
denoted by italic letters (x ∈ R), a vector by bold italic
letters (x ∈ R

n) and a matrix by upper-case italic letters
(A ∈ R

n×m). The notation ‖·‖ stands for the Euclidean
vector norm or the induced matrix 2-norm, appropriately.
xT and AT denote the transpose of a vector and a matrix,
respectively. ‖·‖p refers to the Lp-norm. The maximum
and minimum eigenvalues of a symmetric real matrix A
are denoted by λM (A) and λm(A) , respectively. For an
arbitrarily real matrix B and two real symmetric matrices
A and C, ( A �

B C ) denotes a real symmetric matrix, where
� stands for the entries implied by symmetry. For a
symmetric positive-definite matrix A ∈ R

n×n we write
A > 0, whereas A ≥ 0, A < 0 and A ≤ 0
refer to symmetric positive-semidefinite, negative-definite
and negative-semidefinite matrices, respectively. Finally,
Cn,τ = C([−τ, 0],Rn) denotes the Banach space of
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continuous vector functions mapping the interval [−τ, 0]
into R

n with the topology of uniform convergence and
with the norm ‖·‖∞ of an element φ ∈ C([−τ, 0],Rn) as
‖φ‖∞ = supθ∈[−τ,0] ‖φ(θ)‖.

2.2. Past results. Time-delay systems are
traditionally studied considering two different
approaches based on Lyapunov–Razumikhin functions
or Lyapunov–Krasovskii functionals, respectively. The
former exploits the knowledge of the current state whereas
the latter proposes the use of functionals that divide the
delay interval into segments. In general, the application
of Lyapunov–Krasovskii functionals usually leads to
less conservative results (Jiang and Han, 2006) and is
more suited for the study of event-based control systems.
Throughout this paper, the Lyapunov–Krasovskii theorem
is used to prove the stability and performance properties
of the proposed control strategies.

Lyapunov–Krasovskii theorem. (Krasovskii, 1956)
Consider the system ẋ(t) = f(t,xt(t)), where xt(t) de-
notes x in the interval [t− δ, t], δ being the delay. Define
xt(θ) = φ(t+ θ), ∀θ ∈ [−δ, 0]. Let f : R+×Cn,δ → R

n

map bounded sets of Cn,δ in bounded sets of Rn and let
α, β, χ : R → R be continuous non-decreasing functions,
where additionally α(s) and β(s) are positive for s > 0,
and α(0) = β(0) = 0. If there exists a continuous differ-
entiable functional V : R× C → R such that

α(‖φ(0)‖) ≤ V (t, φ) ≤ β(‖φ‖∞)

and
V̇ (t, φ) ≤ −χ(‖φ(0)‖),

then the trivial solution of the system is uniformly stable.
If χ(s) > 0 for s > 0, then it is uniformly asymptotically
stable.

In addition, if lims→∞α(s) = ∞, then it is globally
uniformly asymptotically stable.

A drawback of using Lyapunov–Krasovskii
functionals is that some unknown terms usually appear in
their time derivatives. A common solution to this problem
is to upper bound them using some inequalities, e.g.,
Jensen’s inequality, which is stated below.

Jensen’s inequality. (Gu et al., 2003) Let M ∈ R
n×n be

a symmetric positive-definite matrix, γ > 0 a scalar and
ω : [0, γ] → R

n a vector function. Then

γ

∫ γ

0

ωT (β)Mω(β) dβ

≥
(∫ γ

0

ω(β) dβ

)T

M

∫ γ

0

ω(β) dβ.

Furthermore, the use of a periodic event-triggered
mechanism together with a control law that makes use

of an exogenous signal, i.e., the measurable disturbance,
leads to the appearance of some terms that we upper
bounded using the Hardy inequality.

Hardy inequality. (Kufner et al., 2007) Let f : (0,∞) →
R

n be in Lp. Let F (x) = 1
x

x∫
0

f(α) dα. Then F ∈ Lp

and
‖F ‖p ≤ p

p− 1
‖f‖p .

2.3. Problem statement. Consider the LTI system
given by

ẋ(t) = Ax(t) +Bu(t− δu(t)) +Bdd(t), (1)

y(t) = Cx(t), (2)

x(t) = φ(t), t ∈ [t0 − δ̄u, t0], (3)

where x(t) ∈ R
nx and u(t) ∈ R

nu are the system state
vector and the control input, respectively, d(t) ∈ R

nd are
the measurable disturbances, δu(t) is a time-variable dead
time for u(t) such that 0 ≤ δu(t) ≤ δ̄u, A,B,Bd and
C are the parameter matrices with appropriate dimensions
such that the pair (A,B) is assumed to be controllable,
and φ(t) denotes the initial conditions.

Hereafter, an event-based state-feedback plus static
feedforward controller is considered:

u(t) = Kx(tk) +Kdd(tk),

for t ∈ [tk + δu(tk), tk+1 + δu(tk+1)), k ∈ N0, where tk
are the transmission instants.

In discrete-time control, every sampling time is
computed from the previous one in accordance with,
tk+1 = tk + h, where h > 0 is the sampling
time. On the contrary, in event-based control, an
event-triggering condition determines when the control
signal is updated. In this paper, the transmission instants
{tk}k∈N are determined recursively by tk+1 = inf{t :
t > tk, f(e(t), s(t)) > 0}, where f(e(t), s(t)) is an
event-triggering condition, which depends on eT (t) =
[eTx (t) eTd (t)], ex(t) = x(tk) − x(t), ed(t) = d(tk) −
d(t), sT (t) = [xT (t) dT (t)]. Specifically, we consider
a quadratic triggering condition in the form

f(e(t), s(t)) = eT (t)Ωe(t)− σ2sT (t)Ωs(t) (4)

with σ > 0 and

Ω =

(
Ω1 �
Ω2 Ω3

)
> 0.

Thus, the error remains bounded as eT (t)Ωe(t) ≤
σ2sT (t)Ωs(t).

Next the main characteristics of the proposed
controller are discussed.
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3. Main results

In this section, for a given disturbance attenuation level
γ for d(t), we design an event-based state-feedback plus
static-feedforward controller such that the closed-loop
system meets the following requirements:

1. The closed-loop system is asymptotically stable with
d(t) = 0.

2. Under zero initial conditions, the controlled output
y(t) satisfies ‖y(t)‖2 ≤ γ ‖d(t)‖2 for any nonzero
d(t) ∈ L2[t0,∞).

Let us consider a PETC paradigm such that the
triggering condition (4) is only satisfied at fixed instances
of time, i.e., 0, h, 2h, . . . , for a given sampling time h > 0.
The results obtained in this framework will also hold for
the continuous case (CETC) with a slight modification, as
remarked below.

Thus, let us define the discretized error as

e(lh) = s(tk)− s(lh),

lh being the last sampling time such that

δ(t) = t− lh

for t ∈ [lh+ δu(lh), (l+1)h+ δu((l+1)h)). Obviously,

0 ≤ δ(t) ≤ h+ δ̄u � δ̄. (5)

Consequently, we modify the triggering condition (4)
as follows:

f(e(lh), s(lh)) =eT (lh)Ωe(lh)

− σ2sT (lh)Ωs(lh).
(6)

We further define the difference of the delayed
disturbance signals

dΔ(t) = d(t− δ(t))− d(t). (7)

In addition, we make the following assumption.

Assumption 1. The L2-norm of the difference of the
delayed disturbance signals dΔ(t) is bounded,

‖dΔ(t)‖2 ≤ β ‖d(t)‖2 , (8)

with β > 0.
Assumption 1 basically implies that ‖dΔ(t)‖2 should

be finite, i.e., ‖dΔ(t)‖2 < ∞. However, it may be difficult
to find an analytically a value of β.

For some types of disturbances, the following
proposition can be stated.

Proposition 1. If the disturbance d(t) applied to the
plant is bounded as

‖ḋ(t)‖ ≤ β̃ ‖d(t)‖
for some β̃ > 0, then Assumption 1 is satisfied for β =
2δ̄β̃.

Proof. Equation (7) can be written as

dΔ(t) = −
t∫

t−δ(t)

ḋ(α) dα.

Consequently,

dΔ(t)

δ(t)
= − 1

δ(t)

t∫

t−δ(t)

ḋ(α) dα.

Applying the Hardy inequality and (5), we obtain

‖dΔ(t)‖2
δ̄

≤ 2β̃ ‖d(t)‖2 ,

and the proposition is proved. �

Finally, the continuous system (1)–(3) is replaced by

ẋ(t) = Ax(t) +BKx(t− δ(t))

+BKex(t− δ(t)) + (Bd +BKd)d(t)

+BKddΔ(t) +BKded(t− δ(t)), (9)

y(t) = Cx(t), (10)

x(t) = φ(t), t ∈ [t0 − δ̄, t0]. (11)

Asymptotic stability and L2 disturbance rejection
of (9)–(11) with the triggering condition (6) can be
guaranteed with the following theorem.

Theorem 1. For given σ, γ, δ̄, state-feedback gain K
and static-feedforward gain Kd, the system described by
(9)–(11) with the triggering condition (6) is asymptoti-
cally stable with the H∞ norm bound γ for d(t) if there
exist matrices P > 0, Q > 0, R > 0, Ω1 > 0, Ω2 and
Ω3 > 0 of appropriate dimensions and a scalar n > 0
such that (

Ω1 �
Ω2 Ω3

)
> 0, M < 0,

where M is given by (12).

Proof. Construct a Lyapunov–Krasovskii functional as

V (t) =xT (t)Px(t)

+

∫ t

t−δ̄

xT (α)Qx(α) dα

+ δ̄

∫ t

t−δ̄

∫ t

α

ẋT (θ)Rẋ(θ) dθ dα

(13)

where P , Q and R are symmetric positive-definite
matrices. Taking the time derivative of V (t) yields

V̇ (t) = 2ẋT (t)Px(t) + xT (t)Qx(t)

− xT (t− δ̄)Qx(t− δ̄) + δ̄2ẋT (t)Rẋ(t)

− δ̄

∫ t

t−δ̄

ẋT (θ)Rẋ(θ) dθ.

(14)
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 � � � � � �
0 M22 � � � � �

M31 0 M33 � � � �
M41 0 M43 M44 � � �
M51 0 M53 M54 M55 � �
M61 0 M63 M64 M65 M66 �
M71 0 M73 M74 M75 M67 M77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

M11 = ATP + PA+Q+ δ̄2ATRA M61 = KTBTP + δ̄2KTBTRA,

−R + CTC,

M22 = −Q−R, M63 = δ̄2KTBTRBK,

M31 = KTBTP + δ̄2KTBTRA+R, M64 = δ̄2KTBTR(Bd +BKd),

M33 = δ̄2KTBTRBK − 2R+ σ2Ω1, M65 = δ̄2KTBTRBKd,

M41 = (BT
d +KT

d B
T )PA M66 = δ̄2KTBTRBK − Ω1,

+ δ̄2(BT
d +KT

d B
T )R,

M43 = δ̄2(BT
d +KT

d B
T )RBK + σ2Ω2, M71 = KT

d B
TP + δ̄2KT

d B
TRA,

M44 = δ̄2(BT
d +KT

d B
T )R(Bd +BKd) M73 = δ̄2KT

d B
TRBK,

− γ2 (1− n) I + σ2Ω3,

M51 = KT
d B

TP + δ̄2KT
d B

TRA, M74 = δ̄2KT
d B

TR(Bd +BKd),

M53 = δ̄2KT
d B

TRBK + σ2Ω2, M75 = δ̄2KT
d B

TRBKd,

M54 = δ̄2KT
d B

TR(Bd +BKd) + σ2Ω3, M76 = δ̄2KT
d B

TRBK − Ω2,

M55 = δ̄2KT
d B

TRBKd − γ2nI + σ2Ω3, M77 = δ̄2KT
d B

TRBKd − Ω3.

We define the extended state

ξT = [xT (t) xT (t− δ̄) xT (t− δ(t))

dT (t) dT
Δ(t) eTx (t− δ(t)) eTd (t− δ(t))]

of dimension nξ � 4nx + 3nd, such that

ẋ(t)

=
(
A 0 BK Bd +BKd BKd BK BKd

)
ξ.

We need to bound the integral term in (14). To this
end, we separate it into two intervals

−δ̄

∫ t

t−δ̄

ẋT (θ)Rẋ(θ) dθ =− δ̄

∫ t−δ(t)

t−δ̄

ẋT (θ)Rẋ(θ) dθ

− δ̄

∫ t

t−δ(t)

ẋT (θ)Rẋ(θ) dθ

and then we apply Jensen’s inequality to both terms
(taking into account (5)), such that

−δ̄

∫ t−δ(t)

t−δ̄

ẋT (θ)Rẋ(θ) dθ

≤ (
x(t− δ(t)) − x(t− δ̄)

)T
R
(
x(t− δ(t))

− x(t− δ̄)
)

and

−δ̄

∫ t

t−δ(t)

ẋT (θ)Rẋ(θ) dθ

≤ (x(t)− x(t− δ(t)))T R (x(t)− x(t− δ(t))) ,

and, consequently,

−δ̄

∫ t

t−δ̄

ẋT (θ)Rẋ(θ) dθ

≤ ξT

⎛
⎜⎜⎝
−R � � �
0 −R � �
R R −2R �
0 0 0 0

⎞
⎟⎟⎠ ξ.

(15)

We now introduce in (14) the null terms

0 = γ2ndT
Δ(t)dΔ(t)− γ2ndT

Δ(t)dΔ(t),

0 = γ2
(
1− nβ2

)
dT (t)d(t)

− γ2
(
1− nβ2

)
dT (t)d(t),

0 = xT (t)CTCx(t)− yT (t)y(t),

0 = eT (t− δ(t))Ωe(t− δ(t))

− eT (t− δ(t))Ωe(t− δ(t)),
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and use the inequalities (15) and

eT (t− δ(t))Ωe(t− δ(t))

≤ σ2sT (t− δ(t))Ωs(t− δ(t)),

for t ∈ [lh+ δu(lh), (l + 1)h+ δu((l + 1)h)). Then

V̇ (t) ≤ξTMξ + γ2
(
1− nβ2

)
dT (t)d(t)

+ γ2ndT
Δ(t)dΔ(t)− yT (t)y(t).

(16)

If M is negative definite, the following inequality
holds trivially:

V̇ (t) ≤γ2
(
1− nβ2

)
dT (t)d(t) + γ2ndT

Δ(t)dΔ(t)

− yT (t)y(t).

Integrating both the sides, provided that V (t) is
continuous in t since ∪∞

k=0[tk, tk+1) = [t0,∞), we obtain

V (t) ≤ V (t0) +

∫ t

t0

γ2
(
1− nβ2

)
dT (α)d(α) dα

+

∫ t

t0

γ2ndT
Δ(α)dΔ(α) dα −

∫ t

t0

yT (α)y(α) dα.

Then, letting t → ∞, introducing the upper bound
(8) for ‖dΔ(t)‖2, and taking into account the zero initial
condition V (t0) = 0 and the positive definitiveness of the
functional (Millán et al., 2010), it can be shown that∫ ∞

t0

yT (α)y(α) dα ≤
∫ ∞

t0

γ2dT (α)d(α)dα, (17)

i.e., ‖y(t)‖2 ≤ γ ‖d(t)‖2.
Note that, with d(t) = 0 (and γ = 0), we obtain

V̇ (t) ≤ ξTMξ − yT (t)y(t),

i.e., V̇ (t) ≤ −ρ ‖ξ(t)‖ ≤ −ρ ‖x(t)‖ for a sufficiently
small ρ > 0. Thus, the asymptotic stability of the system
(9)–(11) is ensured in the absence of disturbances. �

Remark 1. The same LMI system is obtained for the
CETC case if it is noted that, if h = 0, then δ(t) = δu(t),
i.e., δ̄ = δ̄u.

Remark 2. For simplicity, we only consider the existence
of delays in the input signal. However, it is possible to
take into account intrinsic delays of the system expanding
the construction of the Lyapunov function (13) with new
integral terms corresponding to these delays.

Remark 3. Observe that the feasibility of the LMI
conditions in Theorem 1 depends on σ, γ and δ̄. Hence,
there is a trade-off between the event-triggering condition,
the disturbance attenuation level, the sampling period
and the delay. If time delays are large, either the
event-triggering condition or the sampling period must
be conservative to guarantee stability. Analogously, the
disturbance attenuation level which can be guaranteed is
limited by the input delay.

Naturally, the LMIs conditions proposed in
Theorem 1 are more easily solvable for a smaller
sampling period, delays and event-triggering parameter.
This limit case of feasibility is described in the following
corollary.

Corollary 1. For sufficiently small sampling period h,
delay δ̄u and event-triggering parameter σ, as well as a
sufficiently large γ and in the absence of disturbances,
Theorem 1 is feasible if

(A+ BK)TP + P (A+BK) + CTC < 0. (18)

Proof. Assume no disturbance and δ̄ → 0 and σ →
0. Suppose that Q and Ω2 approach the zero matrix, i.e.,
λM (Q) → 0 and λM (Ω2) → 0. Then

M → G =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 � � � � � �
0 −R � � � � �

KTBTP + R R −2R � � � �
(BT

d +KT
d B

T )P 0 0 G44 � � �
KT

d B
TP 0 0 0 −γ2nI � �

KTBTP 0 0 0 0 −Ω1 �
KT

d B
TP 0 0 0 0 0 −Ω3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with G11 = ATP + PA − R + CTC, G44 =
−γ2

(
1− nβ2

)
I . We explore the conditions for G < 0.

Applying the Schur complement iteratively,

−G > 0 ⇔−ATP − PA− CTC +R

− P (Bd +BKd)(Bd +BKd)
TP

γ2(1− nε2)

+
PBKdK

T
d B

TP

γ2n
− PBKΩ−1

1 KTBTP

− PBKdΩ
−1
3 KT

d B
TP −R− PBK

− PBKR−1KTBTP −KTBTP > 0

and other trivial constraints. Since we can take R, Ω1 and
Ω3 as large as we need, the condition can be reduced to
proving that

(A+BK)TP + P (A+BK) + CTC < 0.

�
With this information, we are in a position to design
the state feedback and feedforward controller for the
closed-loop system (9).

Theorem 2. For a given σ, γ, the system described
by (9)–(11) with the triggering condition (6) is asymp-
totically stable with the H∞ norm bound γ for d(t), the
feedback gain K = Y X−1, and the static-feedforward
gain Kd, if there exist matrices X > 0, Q̃ > 0, R̃ > 0,
Ω1 > 0, Ω2 and Ω3 > 0 of appropriate dimensions and a
scalar n > 0 such that(

Ω1 �
Ω2 Ω3

)
> 0, M̃ < 0,
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̃11 � � � � � � � �

0 M̃22 � � � � �

M̃31 0 M̃33 � � � � � �

M̃41 0 M̃43 M̃44 � � � � �

M̃51 0 M̃53 M̃54 M̃55 � � � �

M̃61 0 0 0 0 M̃66 � � �

M̃71 0 0 0 0 M̃76 M̃77 � �

M̃81 0 0 0 0 0 0 M̃88 �

M̃91 0 M̃93 M̃94 M̃95 M̃96 M̃97 0 M̃99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

M̃11 = AX +XAT + Q̃− R̃, M̃71 = −(BKd)
T ,

M̃22 = −Q̃− R̃, M̃76 = −Ω̃21,

M̃31 = −Y − R̃, M̃77 = −Ω3,

M̃33 = R̃, M̃81 = CX,

M̃41 = BT
d − (BKd)

T , M̃88 = −I,

M̃43 = σ2Ω̃21, M̃91 = δ̄AX,

M̃44 = −γ2(1 − nβ2)I − σ2Ω3, M̃93 = δ̄BY,

M̃51 = −(BKd)
T , M̃94 = δ̄Bd + δ̄BKd,

M̃53 = σ2Ω̃21, M̃95 = δ̄BKd,

M̃54 = σ2Ω3, M̃96 = δ̄BY,

M̃55 = −γ2nI + σ2δ̄2I, M̃97 = δ̄BKd,

M̃61 = −Y BT , M̃99 = −μ−1X,

M̃66 = −Ω̃11.

where M̃ is given by (19).

Proof. Define X = P−1, K = Y X−1, Q̃ = XQX ,
R̃ = XRX , Z = R−1, and assume that R̃ < μX for
μ > 0. Then

−XR̃−1X < − 1

μ
. (20)

Applying the Schur complement three times
to (12), pre- and post-multiplying the result by
diag(X,X,X, I, I, I, I, Z, Z) and using (20), the
inequality (19) is obtained. �

4. Illustrative examples

Example 1. (Comparison of periodic control, CETC and
PETC with and without feedforward control) Consider
the SISO system of two interconnected tanks that is
depicted in Fig. 1. Its state-space representation around
a desired operating point is given by (Lehmann and
Lunze, 2011)

Fig. 1. Diagram of the SISO system of two interconnected
tanks.

ẋ(t) =

(−0.1 0.1
1
12

−1
8

)
x(t) +

(
0.1
0

)
u(t− 10)

+

(
0.1
0

)
d(t), (21)

y(t) =
(
0 0.5

)
x(t), (22)
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where x1(t), x2(t) are the difference between the
operating point xr and the level of the first and second
tank, respectively, which are assumed small in order to
maintain the validity of the linear model, y(t) is the
outflow of the second tank, and u(t) is the difference
between the inlet flow and the reference input ur, i.e.,
the necessary inlet to maintain the stationary state at
the operating point. Thus, we assume that this steady
state set point of the stirred tank system corresponds
to the positive constant inflow through the control input
and the null inflow through the disturbance input, and
results in positive constant water levels. Note that u(t)
is affected by a constant time delay that is considered
for demonstrative purposes. A time delay may appear in
practical applications if a fluid has to be transported from a
distant source or if control signals are transmitted through
a communication network. This implies that the reaction
against disturbances is applied later to the process and,
consequently, the process returns to the operating point
later. Besides, if the value of the disturbance changes
too quickly, then the reaction might be “outdated”, and
consequently, the benefits of feedforward control are
reduced.

Consider a disturbance d1(t) = aebt, with a = 1 and
b = −0.01, such that Proposition 1 can be applied with
β̃ = 0.01, a sampling time of 1 [s] and a maximum dead
time of 10 [s], which gives the upper bound ‖d1Δ(t)‖ ≤
0.22 ‖d(t)‖ (see Fig. 2). Then, solving the LMI system
of Theorem 1, a feedback gain K = −[0.64 0.41], a
feedforward gain Kd = −0.75, and an event-triggering
matrix

Ω =

⎛
⎝0.0224 � �
0.0234 0.0343 �
0.0019 0.0023 1.1337

⎞
⎠ (23)

are obtained for σ = 0.3 and γ = 0.35.1

The state response of the plant, control signals and
events generated are depicted in Figs. 3 and 4. Both CETC
and PETC approaches yield a significant reduction in the
number of events with respect to the periodic controller
with the same sampling time (see Table 1). Furthermore,
the proposed controllers keep the Euclidean norm of the
state lower than the pure feedback controller most of the
time, as shown in Fig. 5 and Table 1. In Table 1, the results
are also compared with the classical feedback controller
based on the Lyapunov–Krasovskii method described by
Fridman (2014, Proposition 5.3)). Finally, note that a
greater value of σ can be considered with the CETC
controller, i.e., it may be possible to reduce even more
the number of events with this approach.

In the case of a disturbance which does not satisfy
the assumptions of Proposition 1, the value of β can

1Note that in the CETC case a different result may be obtained but
the performance condition is also guaranteed with the chosen value of Ω.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Fig. 2. Evolution of the disturbance signals considering a fixed
input delay of 10 [s] and a sampling period of 1 [s].

be numerically computed. Consider, for example, the
disturbance presented in Fig. 6. The value of β for that
disturbance is β = 0.8. The behavior of the system under
this disturbance can be observed in Figs. 7–9. Similarly to
the first example, the feedforward control allows reducing
the effect of the disturbance. The number of transmissions
is also clearly reduced in the CETC and PETC cases in
comparison with the periodic control (Table 2). �
Example 2. (Comparison of the prosed method and other
robust controllers in the literature) Consider the inverted
pendulum system proposed by Wang and Lemmon (2009)
and used as an example in different robust controllers
(e.g., Peng and Han, 2013; Yue et al., 2013). The plant
state-space representation is given by the matrices

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/l 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0
1/M
0

−1/Ml

⎞
⎟⎟⎠ ,

BT
d = C =

(
1 1 1 1

)
,

where M = 10 is the cart mass and m = 1 is the mass of
the pendulum, l = 3 is the length of the pendulum link and
g = 10 is the gravitational acceleration. The four states
of the system are the cart position, the cart velocity, the
pendulum angle and the pendulum angular velocity. The
eigenvalues of the system matrix are (0, 0,±1.8257), so
the system is clearly unstable.

Let us consider also the disturbance d(t) =
sgn (sin t) if t ∈ [0, 10], otherwise d(t) = 0 as proposed
by Yue et al. (2013). For a sampling period h = 0.01 s,
γ = 200, σ = 0.1, applying Theorem 2, we obtain the
feedback gain K =

(
3.29 12.93 317.33 177.16

)
,

the feedforward gain Kd = 9.80 and

Ω = 104·

⎛
⎜⎜⎜⎜⎝

0.02 0.05 1.35 0.75 −0.06
0.05 0.16 4.19 2.33 −0.22
1.35 4.19 115.05 64.08 −1.10
0.75 2.33 64.08 35.70 −0.66
−0.06 −0.22 −1.10 −0.66 34.14

⎞
⎟⎟⎟⎟⎠ .

�
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Table 1. Comparison of event parameters between the CETC and PETC controllers with disturbance d1(t).

Controller
Number of

events
Average inter-

event time
ISE of
‖x(t)‖

Periodic (Fridman, 2014) (Kd = 0) 400 1.00 [s] 451.71
Periodic (Theorem 2)

(Kd = −0.75)
400 1.00 [s] 146.90

CETC (Kd = 0) 17 23.52 [s] 173.62
CETC (Kd = −0.75) 18 22.22 [s] 164.33
PETC (Kd = −0.75) 18 22.22 [s] 157.27

Table 2. Comparison of event parameters between the CETC and PETC controllers with disturbance d2(t).

Controller
Number of

events
Average inter-

event time
ISE of
‖x(t)‖

Periodic (Fridman, 2014) (Kd = 0) 400 1.00 [s] 2.13·104

Periodic (Theorem 2)
(Kd = −0.75)

400 1.00 [s] 1.51·103

CETC (Kd = 0) 23 17.39 [s] 1.26·104

CETC (Kd = −0.75) 22 18.18 [s] 2.80·103

PETC (Kd = −0.75) 20 20.00 [s] 2.97·103
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Fig. 3. Evolution of the states of the system (21)–(22) with the
proposed CETC and PETC controllers and with distur-
bance d1(t).
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Fig. 4. Control signals and events produced by the event gener-
ator for the system (21)–(22) with the proposed CETC
and PETC controllers and with disturbance d1(t).
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0 100 200 300 400
0

1

2

3

Fig. 5. Evolution of the Euclidean norm of the state for the sys-
tem (21)–(22) with the proposed CETC and PETC con-
trollers and with disturbance d1(t).
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Fig. 6. Evolution of the disturbance signal d2(t).

If we compare the positions of the pendulum and
the arm in the different schemes (Fig. 10), we observe
that the use of the feedforward controller can improve the
response against disturbance. We can measure the ISE of
the output and we obtain an improvement of 15% with
respect to Peng and Han (2013), of 21% with respect to
Yue et al. (2013) but, in addition, we obtain it by reducing
the transmitted information by 16% with respect to Peng
and Han (2013) and by 22% with respect to Yue et al.
(2013), as can be observed in Table 3.

Besides, in Fig. 10, we can observe the effect of
minimizing γ. If we maintain the rest of the parameters
but we choose γ = 80, then the feedback and feedforward
gains are K =

(
8.34 25.59 417.20 234.93

)
, with a

feedforward gain of Kd = 45.65. Naturally, this implies
better disturbance attenuation, but also faster changes in
the state of the process and, consequently, more events
triggered, as shown in Table 3.

5. Conclusions

In this paper, a novel approach to the analysis of dead-time
linear systems controlled by means of state-feedback plus
static feedforward controllers was introduced. The criteria
for both, the CETC and PETC paradigms with quadratic
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0 50 100 150 200 250 300 350 400
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Fig. 7. Evolution of the states of the system (21)–(22) with the
proposed CETC and PETC controllers and with distur-
bance d2(t).
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Fig. 8. Control signals and events produced by the event gener-
ator for the system (21)–(22) with the proposed CETC
and PETC controllers and with disturbance d2(t).
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Table 3. Comparison with other robust controllers.

Controller
Number of

events
Average inter-

event time
ISE of y(t)

Controller by Peng and Han (2013) 249 0.12 [s] 1.59·104

Controller by Yue et al. (2013) 270 0.11 [s] 1.69·104

Proposed controller with γ = 200 209 0.14 [s] 1.34·104

Proposed controller with γ = 80 271 0.11 [s] 6.88·103
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Fig. 9. Evolution of the Euclidean norm of the state for the sys-
tem (21)–(22) with the proposed CETC and PETC con-
trollers and with disturbance d2(t).
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Fig. 10. Evolution of the positions of the cart and the pendulum.

event-triggering conditions. Were derived making use
of the same LMI system. It was shown that the use
of an event-based feedforward action can improve the
disturbance response even under the presence of dead

times. Furthermore, synthesis of controllers was also
addressed.

Future works will include extending the proposed
approach to cope with additional phenomena, e.g.,
parametric uncertainties and unmeasurable states
or disturbances, and to other control laws, e.g.,
output-feedback plus feedforward.
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Åström, K.J. and Wittenmark, B. (1997). Computer-controlled
Systems: Theory and Design, 3rd Edn., Prentice Hall,
Upper Saddle River, NJ.

Behera, A.K. and Bandyopadhyay, B. (2017). Robust sliding
mode control: An event-triggering approach, IEEE Trans-
actions on Circuits and Systems II: Express Briefs
64(2): 146–150.

Behera, A.K., Bandyopadhyay, B. and Yu, X. (2018).
Periodic event-triggered sliding mode control, Automatica
96: 61–72.

Borgers, D.P. and Heemels, W.P.M.H. (2013). On minimum
inter-event times in event-triggered control, 52nd IEEE
Conference on Decision and Control (CDC), Florence,
Italy, pp. 7370–7375.

Chen, W.-H. (2004). Disturbance observer based control for
nonlinear systems, IEEE/ASME Transactions on Mecha-
tronics 9(4): 706–710.

Chu, X. and Li, M. (2018). H∞ observer-based event-triggered
sliding mode control for a class of discrete-time nonlinear
networked systems with quantizations, ISA Transactions
79: 13–26.

Dimarogonas, D.V., Frazzoli, E. and Johansson, K.H.
(2012). Distributed event-triggered control for multi-agent
systems, IEEE Transactions on Automatic Control
57(5): 1291–1297.



552 C. Rodrı́guez et al.

Fridman, E. (2014). Introduction to time-delay and sampled-data
systems, European Control Conference (ECC), Stras-
bourg, France, pp. 1428–1433.

Gu, K., Kharitonov, V. and Chen, J. (2003). Stability of
Time-Delay Systems, Springer Science & Business Media,
Boston, MA.
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