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aDepartment of Mathematics and Computational Sciences
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Fuzzy cognitive maps (FCMs) are recurrent neural networks applied for modelling complex systems using weighted causal
relations. In FCM-based decision-making, the inference about the modelled system is provided by the behaviour of an
iteration. Fuzzy grey cognitive maps (FGCMs) are extensions of fuzzy cognitive maps, applying uncertain weights between
the concepts. This uncertainty is expressed by the so-called grey numbers. Similarly as in FCMs, the inference is determined
by an iteration process which may converge to an equilibrium point, but limit cycles or chaotic behaviour may also turn up.
In this paper, based on the grey connections between the concepts and the parameters of the sigmoid threshold function, we
give sufficient conditions for the existence and uniqueness of fixed points of sigmoid FGCMs.
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1. Introduction

Decision-making problems are often too complex to be
solved by classical methods, especially when several
uncertain or imprecise factors are present (Carlsson and
Fullér, 2011). A large number of successful techniques
are based on cognitive or fuzzy models (Papageorgiou
and Salmeron, 2014; Bartczuk et al., 2016), which are
extremely useful when a high number of interrelated
factors should be considered by the decision maker and
these factors form a complex system (Busemeyer, 2001).

Based on the pioneer work of Axelrod (1976),
fuzzy cognitive maps were introduced by Kosko (1986)
as a modelling method that can effectively represent
causal knowledge and uncertain information of complex
systems. The main characteristics of the systems are
represented by nodes in a graph, while causality and the
strength of the relationship are represented by weighted,
directed edges (Felix et al., 2017). Moreover, quick
simulation of complex models (Stylios and Groumpos,
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2004) is also possible. Applications of fuzzy cognitive
maps include a large variety of scientific and engineering
fields, such as social sciences (Carvalho, 2013), economic
problems (Ferreira et al., 2017), hydrology (Lorenz et al.,
2016), waste management (Buruzs et al., 2015) and
the complex problem of Brexit (Ziv et al., 2018), just
to mention a few examples. The diversity of these
examples verifies the wide range applicability of FCM
based modelling in cases where classical methods are
not able to provide satisfactory solutions. A review
of applications and trends of FCMs based modelling is
provided by Papageorgiou and Salmeron (2013).

The nodes of the graph represent specific
characteristics or subsystems of the original system,
and they are usually called ‘concepts’ in the FCM
based approach. The current states of the concepts are
represented by numbers from the interval [0, 1] (in some
cases the interval [−1, 1] is applied (Tsadiras, 2008)),
which are the so-called activation values. Concepts have
their initial activation values, but these change quickly
during the consecutive steps of the simulation. The limit
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of the iteration process is used in the representation of
the modelled system. Although the final conclusion relies
on the assumption that the iteration process converges to
an equilibrium point (fixed point), limit cycles or chaotic
behaviour may also occur. Consequently, it is essential to
know whether a certain FCM has a unique fixed point.

Fuzzy grey cognitive maps (FGCMs) are extensions
of fuzzy cognitive maps, designed for the case when only
imprecise information is provided about the relationships
between the specific factors of the system (Salmeron,
2010). Similarly to the classical FCMs, the iteration may
arrive at a fixed point or a limit cycle, or show chaotic
patterns. Therefore, the problem of fixed points plays a
crucial role in the case of FGCMs, too.

The rest of the paper is organized as follows.
Section 2 contains a short introduction of the basic
notions and behaviour of fuzzy cognitive maps. Section 3
presents the mathematical tools applied in the paper
and the notion of fuzzy grey cognitive maps. In
Section 4, various sufficient conditions are provided for
the existence and uniqueness of fixed points of FGCMs
with the log-sigmoid, hyperbolic tangent and arbitrary
sigmoid-like threshold functions. In Section 5, we briefly
summarize the results.

2. Basic notions of fuzzy cognitive maps

Fuzzy cognitive maps use directed graphs in which
constant weights are assigned to the edges from the
interval [−1, 1] to express the strength and direction of
causal connections. The nodes represent specific factors
of the modelled system and are called ‘concepts’ in
FCM theory. The current states of the concepts are also
characterized by numbers in the [0, 1] or [−1, 1] interval;
these are the ‘activation values.’

The system can be formally defined by a quadruple
(C,W,A, f), where C = {C1, C2, . . . , Cn} is the set of
n concepts, W : (Ci, Cj) → wij ∈ [−1, 1] is a function
which associates a causal value (weight) wij to each edge
connecting the nodes Ci and Cj , describing how strongly
concept Ci is influenced by concept Cj . The sign of wij

indicates whether the relationship between Cj and Ci is
direct or inverse. Thus the connection or weight matrix
W ∈ R

n×n gathers the system causality.
The function A : Ci → Ai(k) assigns an activation

value Ai(k) ∈ R to each node Ci at each time step k
(k = 1, 2, . . . ) during the simulation.

A transformation or threshold function f : R →
[0, 1] calculates the activation value of concepts and
keeps them in the allowed range. The most widely
used continuous threshold function is the log-sigmoid
(sometimes mentioned simply as sigmoid) function

f(x) =
1

1 + e−λx
. (1)

In some cases, the required range is the interval [−1, 1], so
a function f : R → [−1, 1] is applied, which is usually a
hyperbolic tangent function (f(x) = tanh(λx)). In both
cases the parameter λ influences the slope of the function:
the higher the value of λ, the steeper the transition phase
of the function.

The iteration which calculates the values of the
concept may or may not include self-feedback. In a
general form, it can be written as

Ai(k) = f

⎛
⎝

n∑
j=1,j �=i

wijAj(k − 1) + diAi(k − 1)

⎞
⎠ ,

(2)
where Ai(k) is the value of concept Ci at discrete time
k, wij is the weight of the connection from concept Cj to
concept Ci, and di expresses the possible self-feedback.
If we include the self-feedback in the weight matrix W ,
the equation can be rewritten in a simpler form (here wi

denotes the i-th row of W and A(k − 1) is the concept
vector after k − 1 iteration steps):

A(k) = [f (w1A(k − 1)) , . . . , f (wnA(k − 1))]
T
. (3)

Continuous FCMs (FCMs with the continuous
threshold function) may behave chaotically, produce limit
cycles or converge to a fixed point attractor (Tsadiras,
2008). Chaotic behaviour means that the activation vector
never stabilizes. If a limit cycle occurs, a specific number
of consecutive state vectors turn up repeatedly. In the case
of a fixed point attractor, the state vector stabilizes after a
certain number of iterations (Nápoles et al., 2017; 2016).

The behaviour of the iteration depends on the
threshold function applied and its parameter(s), the
elements (weights) of the extended weight matrix and the
topology of the map.

Example 1. Let us consider the following example
to demonstrate the behaviour of a fuzzy cognitive map.
The topology is shown in Fig. 1. The weights of the
connections are stored in matrix W :

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.1 0 0 0 −0.3
0 0 −0.7 0 0 0.1
0.6 0 0 −0.4 0 0
0.9 0 0 0 0 0
0 0 0.9 0 0 0
0 0.2 0 0.9 −0.9 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4)
The threshold function is the log-sigmoid function with
parameter λ = 5. The vector of the initial activation
values is the following:

A(0) =
[
0.5 0.5 0.5 0.5 0.5 0.5

]T
. (5)



On the convergence of sigmoidal fuzzy grey cognitive maps 455

Fig. 1. Graph of the example model. The weight of connection
from Cj to Ci is wij , stored in matrix W .

Fig. 2. Activation values of the concepts C1, . . . , C6 vs. the
number of iterations, λ = 5.

Fig. 3. Activation values of concept C1 after a large number of
iterations vs. parameter λ. Over a certain value of pa-
rameter λ, a limit cycle occurs.

As we can observe in Fig. 2, the activation values
converge quickly, in a reasonable number of iteration
steps. But, if we change the value of λ, the model
produces strange behaviour after a certain point (see
Fig. 3); namely, it produces a limit cycle (the concept
values oscillate between two values), instead of a fixed
point. �

3. Mathematical background

The problem of the existence and uniqueness of fixed
points of sigmoid fuzzy cognitive maps was first discussed
by Boutalis et al. (2009) for the case when the parameter
of the log-sigmoid threshold function is λ = 1 (so the
function was f(x) = 1/(1 + e−x)). The possible number
of fixed points was analysed by Knight et al. (2014).
The results of Boutalis et al. (2009) were generalized by
Harmati et al. (2018).

3.1. Contraction mapping. Since FCM based
decision-making relies on the assumption that the iteration
converges to an equilibrium point (fixed point), it
is straightforward to examine the question from the
viewpoint of the iteration function. Roughly speaking,
if the iteration function contracts the space, then it has a
unique fixed point. More precisely, we have the following.

Definition 1. (Contraction) Let (X, d) be a metric space.
A mapping f : X → X is a contraction mapping or con-
traction if there exists a constant c (independent from x
and y), with 0 ≤ c < 1, such that

d (f(x), f(y)) ≤ cd(x, y). (6)

We should note here that the notion of contraction
is related to the distance metric d. It may happen that
a function is a contraction with respect to one distance
metric but not with respect to another distance metric. Let
f : X → X ; then a point x∗ ∈ X such that f(x∗) = x∗

is a fixed point of f . The following theorem provides a
sufficient condition for the existence and uniqueness of a
fixed point.

Theorem 1. (Banach’s fixed point theorem) If f : X → X
is a contraction mapping on a nonempty complete metric
space (X, d), then f has only one fixed point x∗. More-
over, x∗ can be found as follows: start with an arbitrary
x0 ∈ X and define the sequence xn = f(xn−1); then
limn→∞ xn = x∗.

The following well-known statement and its
corollary play a crucial role in the proofs.

The derivative of the sigmoid function f : R → R,

f(x) =
1

(1 + e−λx)
,
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(λ > 0) is bounded by λ/4.

Moreover, the mean value theorem states that if a
function f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), then there exists
a point c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b − a).
This implies that for a log-sigmoid function f we have
|f(x)− f(y)| ≤ λ/4 · |x− y|.

In Section 4, sufficient conditions are provided for
the existence and uniqueness of fixed points of FGCMs.
These conditions are expressed by various norms of a
matrix. For convenience, we shortly summarize the matrix
norms applied.

Definition 2. The 1-norm (also know as the column
norm) of matrix M ∈ R

n×n is given by

‖M‖1 = sup

{‖Mx‖1
‖x‖1 : x ∈ R

n, x �= 0

}

= max
1≤j≤n

n∑
i=1

|mij |, (7)

which is the maximum absolute column sum of the matrix.
Here ‖x‖1 denotes the 1-norm of vector x, i.e., the sum of
the absolute values of its elements.

Definition 3. The ∞-norm (also know as the row norm)
of matrix M ∈ R

n×n is given by

‖M‖∞ = sup

{‖Mx‖∞
‖x‖∞ : x ∈ R

n, x �= 0

}

= max
1≤i≤n

n∑
j=1

|mij |, (8)

which is the maximum absolute row sum of the matrix.
Here ‖x‖∞ denotes the ∞-norm of vector x, i.e., the
maximum of the absolute values of its elements.

Definition 4. The Frobenius norm of matrix M ∈ R
n×n

is given by

‖M‖F =

⎛
⎝

n∑
i=1

n∑
j=1

m2
ij

⎞
⎠

1/2

. (9)

In our previous work (Harmati et al., 2018) the
following theorem was proved regarding the existence and
uniqueness of fixed points of FCMs. In Section 4 we will
show that for fuzzy grey cognitive maps a very similar
result can be derived. Moreover, this theorem is a special
case of the results presented in Section 4.

Theorem 2. Let W be the extended (including possible
feedback) weight matrix of an FCM, and let λ > 0 be the
parameter of the log-sigmoid function. If

‖W‖F <
4

λ
(10)

then the FCM has one and only one fixed point.

We should note that this is a sufficient but not
necessary condition. The fact that ‖W‖F < 4/λ implies
that there is one and only one fixed point, while if
‖W‖F ≥ 4/λ we do not know whether there are more
than one fixed point or limit cycle.

3.2. Fuzzy grey cognitive maps. In many real-life
problems, model parameters are based on estimations
of human experts; consequently, these estimations carry
built-in and unavoidable uncertainties. A possible way
of representing these uncertainties is applying intervals
instead of crisp numbers (Smoczek, 2013; Vidhya and
Hepzibah, 2017). In the field of fuzzy cognitive maps, a
similar approach was introduced (Salmeron, 2010) under
the name of fuzzy grey cognitive maps.

Fuzzy grey cognitive maps (FGCMs) are effective
problem-solving techniques within environments with
high uncertainty and imprecision, combining the findings
of grey systems theory (GST) and fuzzy cognitive maps
(Salmeron, 2010; Papageorgiou and Salmeron, 2012).
Further examples for applications of fuzzy grey cognitive
maps were introduced by Zanon and Carpinetti (2018).
FGCMs were designed to analyze small data samples with
poor information (Salmeron and Papageorgiou, 2012;
Salmeron and Gutierrez, 2012). The main difference
between the fuzzy and grey systems concepts arises in
the intension and extension of the modelled or analyzed
object. While grey systems theory focuses on objects with
clear extension and unclear intension, in most of the cases
fuzzy theory deals with objects with clear intension and
unclear extension.

FGCM based models unavoidably consist of
numerical operations on the so-called grey numbers. A
grey number (usually denoted by ⊗g) is the one whose
accurate value is unknown, but the range within which the
value is included is known. A grey number with both a
lower limit (g) and an upper limit (g) is called an interval
grey number (Liu and Lin, 2006), so ⊗g ∈ [g, g]. In
applications, a grey number is usually an interval. Basic
operations on grey numbers are the following:

1. ⊗g1 +⊗g2 ∈ [g1 + g2, g1 + g2];

2. −⊗ g ∈ [−g,−g];

3. ⊗g1 −⊗g2 ∈ [g1 − g2, g1 − g2];

4. ⊗g1 ×⊗g2 ∈ [min(S),max(S)];
where S =

{
g1 · g2, g1 · g2, g1 · g2, g1 · g2

}
;

5. if α > 0, α ∈ R, then α · ⊗g ∈ [αg, αg].

The following statement is straightforward and plays
an important role in our further investigations:

If f : R → R is a monotone increasing function, then
f(⊗g) ∈ [f(g), f(g)].
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A fuzzy grey cognitive map models causal but
uncertain knowledge through grey relationships (grey
numbers) between the concepts based on fuzzy cognitive
maps. FGCMs are a generalization of FCMs since
an FGCM with all the relations’ intensities represented
by exact numbers (in grey systems theory called white
numbers) would be a usual FCM. In general, the FGCM
represents human intelligence better than the FCM,
because it expresses unclear relations between factors
and models incomplete information better than the FCM
(Salmeron, 2010).

Example 2. Let us consider the FCM structure given in
Example 1, assuming that the weights are not determined
precisely, but the intervals containing them are known,
i.e., the weight matrix contains grey numbers. One
possible scenario is shown below:

⊗W =⎡
⎢⎢⎢⎢⎢⎢⎣

0 ⊗w12 0 0 0 ⊗w16

0 0 ⊗w23 0 0 ⊗w26

⊗w31 0 0 ⊗w34 0 0
⊗w41 0 0 0 0 0
0 0 ⊗w53 0 0 0
0 ⊗w62 0 ⊗w64 ⊗w65 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(11)

⊗w12 ∈ [0.01, 0.15], ⊗w16 ∈ [−0.1,−0.5],

⊗w23 ∈ [−0.8,−0.6], ⊗w26 ∈ [0.05, 0.15],

⊗w31 ∈ [0.5, 0.7], ⊗w34 ∈ [−0.6,−0.2],

⊗w41 ∈ [0.8, 1], ⊗w53 ∈ [0.8, 1],

⊗w62 ∈ [0.1, 0.3], ⊗w64 ∈ [0.8, 1],

⊗w65 ∈ [−1,−0.8]. (12)

�
The dynamics of an FGCM begin with the initial grey

vector state A(0), which represents initial uncertainty.
The elements of this vector are grey numbers, i.e.,
Ai(0) ∈ [Ai(0), Ai(0)] for every i. The updated nodes’
states are computed by an iterative process with an
activation function, resulting in grey numbers as concept
values:

Ai(k) ∈
[
f(wiA(k − 1)), f(wiA(k − 1))

]
. (13)

Similarly to the classical FCM, after a certain number of
iterations, an FGCM with a continuous threshold function
arrives at one of the following cases:

1. It settles down to the so-called grey fixed point
attractor. This means that the activation vector
reaches an equilibrium point; its coordinates become
stabilized.

2. The activation vector keeps cycling between several
states, which is known as a limit grey cycle.

3. The FGCM continues to produce different grey
vector states for each iteration; this is the grey chaotic
attractor.

4. Convergence of fuzzy grey cognitive
maps

In this section, we provide sufficient conditions for the
existence and uniqueness of fixed points of FGCMs.
These conditions are expressed by matrix norms and
derived applying the contraction mapping theorem with
suitable distance metrics. First, the case of a log-sigmoid
threshold function is discussed, then the hyperbolic
tangent is described and, finally, based on the previous
cases, the case of arbitrary sigmoid-like (S-shaped)
threshold function is examined.

The updating process (iteration) ensures that a fuzzy
cognitive map with grey weights (FGCM) has grey
concept values. We assume something about the grey
weights; namely, the assumption is that the human expert
or the training process assigns the proper signs to the
weights, so a weight is either positive or negative (more
exactly, nonnegative or nonpositive). This means that
the type of relationship (direct or inverse) between the
concepts is properly described by the fuzzy cognitive map,
so in most cases that seems to be a reasonable assumption.

Let ⊗wij be a weight describing the connection
between concepts Cj and Ci. Due to our assumptions,
⊗wij is a grey number and it is an element of a subset of
the interval [−1, 0] or the interval [0, 1], so

⊗ wij ∈ [wij , wij ] ⊂ [−1, 0] (14)

or

⊗ wij ∈ [wij , wij ] ⊂ [0, 1]. (15)

Let us introduce the following notation:

w∗
ij =

{ |wij | if ⊗wij ≤ 0,

wij if ⊗wij ≥ 0,
(16)

i.e., w∗
ij is the absolute value of the most extreme value of

the interval containing ⊗wij possible.

4.1. Log-sigmoid threshold function. In applications
of fuzzy cognitive maps, the most widely used threshold
function is the log-sigmoid (also known as sigmoid)
function, f(x) = 1/(1 + e−λx). The following three
theorems provide a sufficient condition for the existence
and uniqueness of a fixed point of FGCMs, when the
threshold function is the log-sigmoid function. Here fixed
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point ⊗A∗ is

⊗A∗ = [⊗A∗
1, . . . ,⊗A∗

n]
T

∈
[
[A∗

1, A
∗
1], . . . , [A

∗
n, A

∗
n]
]T

.

The grey fixed point is unique in the sense that the
endpoints of the intervals containing grey concept values
are unique, i.e., the values A∗

i and A∗
i are unique for

every i.

Theorem 3. Let ⊗W be the extended (including pos-
sible feedback) weight matrix of a fuzzy grey cognitive
map (FGCM), where the weights ⊗wij are nonnegative
or nonpositive grey numbers, and let w∗

ij be defined as in
Eqn. (16). Moreover, let λ > 0 be the parameter of the
sigmoid function f(x) = 1/(1 + e−λx) applied to the it-
eration. If ⎛

⎝
n∑

i=1

n∑
j=1

w∗
ij

2

⎞
⎠

1/2

<
4

λ
(17)

then the FGCM has one and only one grey fixed point,
regardless of the initial concept values.

Actually, the left handside term is the Frobenius
norm of a matrix whose entries are the w∗

ij values.

Proof. Let ⊗A be the vector of concept values:
⊗A = [⊗A1, . . . ,⊗An]

T , and let G be a function for the
iteration process:

⊗G(A) = G(⊗A)

= [G(⊗A)1, . . . , G(⊗A)n]
T

= [⊗G(A)1, . . . ,⊗G(A)n]
T . (18)

Here the elements of the vector are grey numbers, i.e.,

⊗G(A)i ∈
[
f(wiA), f(wiA)

]
, (19)

where wi is the i-th row of matrix ⊗W . We are going
to show that, for a suitable distance metric d and under
certain conditions, the inequality

d(⊗G(A),⊗G(A′)) ≤ c · d(⊗A,⊗A′) (20)

holds with 0 ≤ c < 1, so that mapping G is a contraction,
and consequently it has one and only one fixed point. For
metric d, we choose the following one:

d(⊗A,⊗A′) =

[
n∑

i=1

d2(⊗Ai,⊗A′
i)

]1/2
, (21)

where

d2(⊗Ai,⊗A′
i) =

(
Ai −A′

i

)2
+
(
Ai − A′

i

)2

2
. (22)

Note that, if Ai = Ai for ⊗A and ⊗A′ and for all of
the coordinates, then it becomes the ordinary Euclidean
metric. Now, we shall give an upper estimate of the
distance of ⊗G(A) and ⊗G(A′). According to the
definition of the distance metric, the square of the distance
of ⊗G(A) and ⊗G(A′) is the following:

d2(⊗G(A),⊗G(A′)

=

n∑
i=1

d2(⊗G(A)i,⊗G(A′)i)

=

n∑
i=1

(
G(A)i −G(A′)i

)2
+
(
G(A)i −G(A′)i

)2

2
.

(23)

Remember that the lower and upper terms can be
expressed by the threshold function (since the threshold
function is monotone increasing):

G(A)i = f(wiA) = f(wiA), (24)

G(A)i = f(wiA) = f(wiA). (25)

Moreover, the following inequalities hold:

(
G(A)i −G(A′)i

)2
=
(
f(wiA)− f(wiA

′)
)2

≤
(
λ

4

)2 (
wiA− wiA

′)2 , (26)

(
G(A)i −G(A′)i

)2
=
(
f(wiA)− f(wiA′)

)2

≤
(
λ

4

)2 (
wiA− wiA′)2 . (27)

The main problem is that the equations

wiA =

n∑
j=1

wij · Aj , (28)

wiA =

n∑
j=1

wij · Aj (29)

hold only in the case when all of weights are nonnegative.
In general,

⊗ wijAj ∈

⎧⎪⎪⎨
⎪⎪⎩

[
wij · Aj , wij · Aj

]
if ⊗wij ≥ 0,

[
wij · Aj , wij · Aj

]
if ⊗wij ≤ 0.

(30)

In the case when all of the weights are nonnegative
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we get the following upper estimate:
(
f(wiA)− f(wiA

′)
)2

≤
(
λ

4

)2 (
wiA− wiA

′)2

=

(
λ

4

)2
⎛
⎝

n∑
j=1

wij ·
(
Aj −A′

j

)⎞⎠
2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

wij
2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ , (31)

where the last row comes from applying the well-known
Cauchy–Schwarz inequality. A similar inequality is true
for the upper endpoints:
(
f(wiA)− f(wiA′)

)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

wij
2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ . (32)

Applying the definition ofw∗
ij , further upper estimates can

be given:
(
G(Ai)−G(A′

i)
)2

=
(
f(wiA)− f(wiA

′)
)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

w∗
ij

2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ , (33)

(
G(Ai)−G(A′

i)
)2

=
(
f(wiA)− f(wiA′)

)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

w∗
ij

2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ . (34)

Now we are ready to give an upper estimate for
the distance of ⊗G(A) and ⊗G(A′). From Eqn. (23),
applying the inequalities (33) and (34), and rearranging
and factorizing, we get

d2(⊗G(A),⊗G(A′))

=

n∑
i=1

d2(⊗G(A)i,⊗G(A′)i)

≤
(
λ

4

)2
⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij

2

⎞
⎠ · d2(⊗A,⊗A′). (35)

Finally, by taking the square root of each side, we get

d(⊗G(A),⊗G(A′))

≤ λ

4

√√√√
n∑

i=1

n∑
j=1

w∗
ij

2 · d(⊗A,⊗A′). (36)

By Banach’s fixed point theorem, if

λ

4

⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij

2

⎞
⎠

1/2

< 1,

then mapping G is a contraction, so it has one and only
one fixed point, which was the statement in Theorem 3.

Let us turn to the case when all of the weights are
nonpositive. The argument is similar to the previous one,
with a minor modification:
(
f(wiA)− f(wiA

′)
)2

≤
(
λ

4

)2 (
wiA− wiA

′)2

=

(
λ

4

)2
⎛
⎝

n∑
j=1

wij ·
(
Aj −A′

j

)⎞⎠
2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

wij
2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ . (37)

Similarly,
(
f(wiA)− f(wiA′)

)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

wij
2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ . (38)

Moreover, applying again the definition of w∗
ij , we can

state that
(
f(wiA)− f(wiA

′)
)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

w∗
ij

2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ (39)

(
f(wiA)− f(wiA′)

)2

≤
(
λ

4

)2
⎛
⎝

n∑
j=1

w∗
ij

2

⎞
⎠ ·
⎛
⎝

n∑
j=1

(
Aj −A′

j

)2
⎞
⎠ . (40)

From this point the proof goes on the same way as in
the previous case and we get the same inequality:

d(⊗G(A),⊗G(A′))

≤ λ

4
·
√√√√

n∑
i=1

n∑
j=1

w∗
ij

2 · d(⊗A,⊗A′), (41)

In the general case, when positive and negative
weights also occur in the weight matrix, in the
upper bound of

(
f(wiA)− f(wiA

′)
)2

terms like wij ·(
Aj −A′

j

)
and wij ·

(
Aj −A′

j

)
may occur. The

following facts come trivially from the two cases we have
discussed already:
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• If wij ·
(
Aj −A′

j

)
appears in the upper bound

of
(
f(wiA)− f(wiA

′)
)2

, then wij ·
(
Aj −A′

j

)

appears in the upper bound of
(
f(wiA− f(wiA′)

)2
.

• If wij ·
(
Aj −A′

j

)
appears in the upper bound

of the expression
(
f(wiA)− f(wiA

′)
)2

, then

wij ·
(
Aj −A′

j

)
appears in the upper bound of

(
f(wiA)− f(wiA′)

)2
.

Moreover, the following inequalities come from the
definition of w∗

ij :

∣∣wij ·
(
Aj −A′

j

) ∣∣ ≤ w∗
ij ·
∣∣Aj −A′

j

∣∣, (42)
∣∣wij ·

(
Aj −A′

j

) ∣∣ ≤ w∗
ij ·
∣∣Aj −A′

j

∣∣, (43)
∣∣wij ·

(
Aj −A′

j

) ∣∣ ≤ w∗
ij ·
∣∣Aj −A′

j

∣∣, (44)
∣∣wij ·

(
Aj −A′

j

) ∣∣ ≤ w∗
ij ·
∣∣Aj −A′

j

∣∣. (45)

Applying these upper estimates and then rearranging the
terms in the upper estimates of d2(⊗G(A),⊗G(A′)) by(
Aj −A′

j

)2
and
(
Aj −A′

j

)2
, we get

d2(⊗G(A),⊗G(A′))

≤
(
λ

4

)2 n∑
i=1

n∑
j=1

w∗
ij

2 ·
n∑

j=1

(
Aj −A′

j

)2
+
(
Aj −A′

j

)2

2

=

(
λ

4

)2
⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij
2

⎞
⎠ · d2(⊗A,⊗A′). (46)

Taking the square root of both the sides, we get the
same inequality as in the previous cases:

d(⊗G(A),⊗G(A′))

≤ λ

4

√√√√
n∑

i=1

n∑
j=1

w∗
ij

2 · d(⊗A,⊗A′). (47)

If

λ

4

⎡
⎣

n∑
i=1

n∑
j=1

w∗
ij

2

⎤
⎦
1/2

< 1,

then mapping G is a contraction, so according to Banach’s
fixed point theorem it has one and only one fixed point,
which completes the proof for the general case. �

Note that, if wij = wij for all the weights (i.e.,
the weights are numbers without uncertainty; in grey
systems theory these numbers are not called grey but
white numbers), then this condition is the same as in
Theorem 2.

Theorem 4. Let ⊗W be the extended (including possi-
ble feedback) weight matrix of a fuzzy grey cognitive map
(FGCM), where the weights ⊗wij are nonnegative or non-
positive grey numbers, and let λ > 0 be the parameter of
the sigmoid function f(x) = 1/(1 + e−λx) applied to the
iteration. Let w∗

ij be defined as in Eqn. (16). Moreover,
let W ∗ be a matrix defined by the w∗

ij values. If

‖W ∗‖1 <
4

λ
, (48)

then the FGCM has one and only one grey fixed point,
regardless of the initial concept values.

Proof. Just like in the proof of Theorem 3, we are going
to show that, for a suitable distance metric d and under
certain conditions, the inequality

d(⊗G(A),⊗G(A′)) ≤ c · d(⊗A,⊗A′) (49)

holds with 0 ≤ c < 1, so mapping G is a contraction and
it has one and only one fixed point. In this case, for metric
d we choose

d(⊗A,⊗A′) =
1

2

(‖A−A′‖1 +
∥∥A−A′∥∥

1

)
. (50)

Here ‖∗‖1 stands for the 1-norm of the vector, which is the
sum of the absolute values of its elements, so in another
form the distance metric is

d(⊗A,⊗A′) =
1

2

(
n∑

i=1

∣∣∣Ai −A′
i

∣∣∣+
n∑

i=1

∣∣∣Ai −A′
i

∣∣∣
)
.

(51)

Note that if Ai = Ai for A and A′ and for all of the
coordinates, then it becomes the so-called Manhattan (or
taxicab) metric. The distance of G(A) and G(A′) is

d(⊗G(A),⊗G(A′))

=
1

2

( n∑
i=1

∣∣∣G(A)i −G(A′)i
∣∣∣

+

n∑
i=1

∣∣∣G(A)i −G(A′)i
∣∣∣
)
. (52)

In the proof of Theorem 3 we saw that
∣∣∣G(A)i −G(A′)i

∣∣∣ ≤ λ

4

∣∣wiA− wiA
′∣∣ , (53)

∣∣∣G(A)i −G(A′)i
∣∣∣ ≤ λ

4

∣∣wiA− wiA′∣∣ . (54)

Applying these inequalities, we get an upper estimate for
the distance of ⊗G(A) and ⊗G(A′):

d(⊗G(A),⊗G(A′))

≤ λ

8

(
n∑

i=1

∣∣wiA− wiA
′∣∣ +

n∑
i=1

∣∣wiA− wiA′∣∣
)
. (55)
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Note that wiA =
∑n

j=1 wijAj and Eqn. (30) applies here
again. In the general case, when positive and negative
weights also occur, in the upper bound of

∣∣wiA− wiA
′∣∣

terms like wij ·
∣∣∣Aj − A′

j

∣∣∣ and wij ·
∣∣∣Aj −A′

j

∣∣∣ may

occur. We can observe and justify by simple algebraic
rearrangement that

• if
∣∣∣wij ·

(
Aj − A′

j

)∣∣∣ appears in the upper bound of
∣∣wiA− wiA

′∣∣, then
∣∣∣wij ·

(
Aj −A′

j

)∣∣∣ appears in

the upper bound of
∣∣wiA− wiA′∣∣;

• if
∣∣∣wij ·

(
Aj − A′

j

)∣∣∣ appears in the upper bound of
∣∣wiA− wiA

′∣∣, then
∣∣∣wij ·

(
Aj −A′

j

)∣∣∣ appears in

the upper bound of
∣∣wiA− wiA′∣∣.

Moreover, Eqns. (42)–(45) also hold here. This implies

d(⊗G(A),⊗G(A′))

≤ λ

8

( n∑
i=1

n∑
j=1

w∗
ij

∣∣∣Aj −A′
j

∣∣∣

+

n∑
i=1

n∑
j=1

w∗
ij

∣∣∣Aj −A′
j

∣∣∣ )

=
λ

8

(‖W ∗ · (A−A′)‖1 +
∥∥W ∗ · (A−A′)

∥∥
1

)
. (56)

Using the the definition of the 1-norm of a matrix, we
get

‖W ∗ · (A−A′)‖1 =
‖W ∗ · (A−A′)‖1

‖A−A′‖1
‖A−A′‖1

≤ ‖W ∗‖1 · ‖A−A′‖1 (57)

The inequality comes from the fact that ‖W ∗‖1 is defined
as the supremum of ‖W ∗x‖1/‖x‖1 (see Definition 2).
Applying this upper bound, we get the following
inequality for the distance of ⊗G(A) and ⊗G(A′):

d(⊗G(A),⊗G(A′))

≤ λ

4
‖W ∗‖1

1

2

(‖A−A′‖1 +
∥∥A−A′∥∥

1

)
. (58)

Here the last term, 1
2

(‖A−A′‖1 +
∥∥A−A′∥∥

1

)
, is the

distance between A and A′, i.e., it is d(⊗A,⊗A′).
According to Banach’s fixed point theorem, if the
coefficient of d(⊗A,⊗A′) is less than one, then mapping
G is a contraction. It is equivalent to the condition
‖W ∗‖1 < 4/λ in the theorem, which completes the proof.

�

Theorem 5. Let ⊗W be the extended (including possi-
ble feedback) weight matrix of a fuzzy grey cognitive map
(FGCM), where the weights⊗wij are nonnegative or non-
positive grey numbers, and let λ > 0 be the parameter of

the sigmoid function f(x) = 1/(1 + e−λx) applied to the
iteration. Let w∗

ij be defined as in Eqn. (16). Moreover,
let W ∗ be a matrix defined by the w∗

ij values. If

‖W ∗‖∞ <
4

λ
(59)

then the FGCM has one and only one grey fixed point,
regardless of the initial concept values.

Proof. Let the distance of grey concept vectors A and A′

be defined as

d(⊗A,⊗A′) = max
i

max
{∣∣∣Ai −A′

i

∣∣∣ ,
∣∣∣Ai −A′

i

∣∣∣
}
.

(60)
One can recognize that this is similar to the so-called
Hausdorff–Pompeiu distance. In the proof, we apply the
contraction mapping theorem using this distance metric:

d(⊗G(A),⊗G(A′))

= max
i

max
{∣∣∣G(A)i −G(A′)i

∣∣∣ ,
∣∣∣G(A)i −G(A′)i

∣∣∣
}

≤ max
i

max

{
λ

4

∣∣wiA− wiA
′∣∣ , λ

4

∣∣wiA− wiA′∣∣
}
.

(61)

For further upper estimation, we use the following
inequalities:

n∑
j=1

w∗
ij

∣∣∣Aj −A′
j

∣∣∣ ≤
n∑

j=1

w∗
ij max

j

∣∣∣Aj −A′
j

∣∣∣ , (62)

n∑
j=1

w∗
ij

∣∣∣Aj −A′
j

∣∣∣ ≤
n∑

j=1

w∗
ij max

j

∣∣∣Aj −A′
j

∣∣∣ . (63)

Thus we get

max
{∣∣wiA− wiA

′∣∣ , ∣∣wiA− wiA′∣∣}

≤
n∑

j=1

w∗
ij max

{∣∣∣Aj −A′
j

∣∣∣ ,
∣∣∣Aj −A′

j

∣∣∣
}
. (64)

Putting these altogether, we have

d(⊗G(A),⊗G(A′))

≤ λ

4
max

i
max

{∣∣wiA− wiA
′∣∣ , ∣∣wiA− wiA′∣∣}

≤ λ

4
max

i

⎧⎨
⎩

n∑
j=1

w∗
ij max

{∣∣∣Aj −A′
j

∣∣∣ ,
∣∣∣Aj −A′

j

∣∣∣
}
⎫⎬
⎭

≤ λ

4
max

i

⎧⎨
⎩

n∑
j=1

w∗
ij

⎫⎬
⎭

·max
j

max
{∣∣∣Aj −A′

j

∣∣∣ ,
∣∣∣Aj −A′

j

∣∣∣
}
. (65)
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From the fact that w∗
ij ≥ 0 and from the definition of

the distance applied, we get

‖W ∗‖∞ = max
i

⎧⎨
⎩

n∑
j=1

w∗
ij

⎫⎬
⎭ , (66)

d(⊗A,⊗A′) = max
j

max
{∣∣∣Aj −A′

j

∣∣∣ ,
∣∣∣Aj −A′

j

∣∣∣
}
.

(67)

Finally, we obtain

d(⊗G(A),⊗G(A′)) ≤ λ

4
‖W ∗‖∞d(⊗A,⊗A′). (68)

If the coefficient of the distance between A and A′ is
less than one, then this mapping is a contraction, and
consequently it has exactly one fixed point. This is
equivalent to the statement that ‖W ∗‖∞ < 4/λ, which
was the condition in the theorem. �

4.2. Hyperbolic tangent threshold function. In some
special cases, the activation values may have negative and
positive values, too, so the possible values come from the
interval [−1, 1] (instead of the interval [0, 1]). Since the
range of the log-sigmoid function is the interval (0, 1), it
is not applicable here as a threshold function. The most
widely used function in this situation is the hyperbolic
tangent, which has the range (−1, 1):

tanh(λx) =
e2λx − 1

e2λx + 1
. (69)

Here parameter λ is responsible for the steepness of the
function: the larger the value of λ, the steeper the function.

Theorem 6. Let ⊗W be the extended (including pos-
sible feedback) weight matrix of a fuzzy grey cognitive
map (FGCM), where the weights ⊗wij are nonnegative
or nonpositive grey numbers, and let w∗

ij be defined as in
Eqn. (16). Moreover, let λ > 0 be the parameter of the
hyperbolic tangent function

f(x) = tanh(λx) =
e2λx − 1

e2λx + 1

applied for the iteration. If

⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij

2

⎞
⎠

1/2

<
1

λ
(70)

then the FGCM has one and only one fixed point, regard-
less of the initial concept values.

Proof. The proof is similar to the case of the log-sigmoid
function (i.e., we prove that the mapping is a contraction
with a suitable distance metric), but there are some
differences:

1. The distance metric applied is the same as in the
proof of Theorem 3.

2. The maximal value of the derivative of the threshold
function tanh(λx) (λ > 0) is λ, and consequently
|f(x) − f(y)| ≤ λ · |x − y|. This inequality
introduces the term 1/λ instead of 4/λ.

3. Based on the previous statement, we have

(
G(A)i −G(A′)i

)2
≤ λ2

(
wiA− wiA

′)2 , (71)
(
G(A)i −G(A′)i

)2
≤ λ2

(
wiA− wiA′)2 . (72)

4. Since now the range of the activation values
A1, . . . , An is the interval [−1, 1], the upper
estimations of terms |wiA−wiA

′| and |wiA−wiA′|
become more tedious.

The coordinate ⊗wiA ∈ [wiA,wiA] is the sum of
grey numbers ⊗wijAj , j = 1, . . . , n, and for the
left and right endpoints of the containing intervals we
have wiA =

∑n
i=1 wijAj and wiA =

∑n
i=1 wijAj .

The grey number ⊗wijAj can be represented as an
element of one of the following intervals:

if ⊗wij ≥ 0,
[
wij · Aj , wij · Aj

]
if Aj < 0 and Aj > 0 ,

[
wij · Aj , wij · Aj

]
if ⊗Aj > 0,

[
wij · Aj , wij · Aj

]
if ⊗Aj < 0 ;

(73)

if ⊗wij ≤ 0,
[
wij · Aj , wij · Aj

]
if Aj < 0 and Aj > 0 ,

[
wij · Aj , wij · Aj

]
if ⊗Aj > 0,

[
wij · Aj , wij · Aj

]
if ⊗Aj < 0 .

(74)

5. Simple algebraic transformations show that

if ⊗wij ≥ 0,

|wijAj − wijA
′
j | ≤ w∗

ij |Aj −A′
j |, (75)

|wijAj − wijA′
j | ≤ w∗

ij |Aj −A′
j |; (76)

if ⊗wij ≤ 0,

|wijAj − wijA
′
j | ≤ w∗

ij |Aj −A′
j |, (77)

|wijAj − wijA′
j | ≤ w∗

ij |Aj −A′
j |. (78)
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Here the left and right endpoints wijAj and wijAj

are from the possibilities described in Eqns. (73) and
(74).

6. We can recognize that

• if w∗
ij |Aj − A′

j | appears in the upper estimate

of |wijAj−wijA
′
j |, then w∗

ij |Aj−A′
j | appears

in the upper estimate of |wijAj − wijA′
j |;

• if w∗
ij |Aj − A′

j | appears in the upper estimate
of |wijAj−wijA

′
j |, then w∗

ij |Aj−A′
j | appears

in the upper estimate of |wijAj − wijA′
j |.

This implies that (similarly to the proof of
Theorem 3) we can rearrange the terms in the upper
estimates of d2(⊗G(A),⊗G(A′)) by (Aj−A′

j)
2 and

(Aj −A′
j)

2.

Putting these together, we get

d2(⊗G(A),⊗G(A′))

=

n∑
i=1

(
G(A)i −G(A′)i

)2
+
(
G(A)i −G(A′)i

)2

2

≤
n∑

i=1

λ2
(
wiA− wiA

′)2 + λ2
(
wiA− wiA′)2

2

≤ λ2
n∑

i=1

n∑
j=1

w∗
ij
2
(Aj −A′

j)
2 + (Aj −A′

j)
2

2

= λ2
n∑

i=1

n∑
j=1

w∗
ij
2

n∑
j=1

(Aj −A′
j)

2 + (Aj −A′
j)

2

2

= λ2
n∑

i=1

n∑
j=1

w∗
ij
2d2(⊗A,⊗A′). (79)

By taking the square root of both the sides, we get

d(⊗G(A),⊗G(A′)) ≤ λ

√√√√
n∑

i=1

n∑
j=1

w∗
ij

2 · d(⊗A,⊗A′).

(80)

If
√∑n

i=1

∑n
j=1 w

∗
ij

2 < 1/λ, then the coefficient of

d(⊗A,⊗A′) is less then one, which implies that mapping
G is contraction, so it has exactly one fixed point. �

Theorem 7. Let ⊗W be the extended (including pos-
sible feedback) weight matrix of a fuzzy grey cognitive
map (FGCM), where the weights ⊗wij are nonnegative
or nonpositive grey numbers, and let w∗

ij be defined as in
Eqn. (16). Let λ > 0 be the parameter of the hyperbolic
tangent function f(x) = tanh(λx) applied for the iter-
ation. Moreover, let W ∗ be a matrix defined by the w∗

ij

values. If

‖W ∗‖1 <
1

λ
(81)

then the FGCM has one and only one fixed point, regard-
less of the initial concept values.

Proof. The proof follows from those of Theorems 4 and 6.
�

Theorem 8. Let ⊗W be the extended (including pos-
sible feedback) weight matrix of a fuzzy grey cognitive
map (FGCM), where the weights ⊗wij are nonnegative
or nonpositive grey numbers, and let w∗

ij be defined as in
Eqn. (16). Let λ > 0 be the parameter of the hyperbolic
tangent function f(x) = tanh(λx) applied to the itera-
tion. Moreover, let W ∗ be a matrix defined by the w∗

ij

values. If

‖W ∗‖∞ <
1

λ
(82)

then the FGCM has one and only one fixed point, regard-
less of the initial concept values.

Proof. The proof follows from those of Theorems 5 and 6.
�

Remark 1. A fuzzy cognitive map equipped with a
hyperbolic tangent threshold function always has a fixed
point, regardless of the parameter λ and the matrix W . If
A = [0, . . . , 0]T , then for every i ∈ {1, . . . , n} we have

f(wiA) = tanh(λ · wiA) = tanh(0) = 0, (83)

so A = [0, . . . , 0]T is always a fixed point. However, it is
not always a fixed point attractor, i.e., it is not always a
stable fixed point.

Since the equilibrium point (if it exists) of a fuzzy
cognitive map is determined by iteration, this point is
necessarily an attractor (but not necessarily unique; it may
depend on the initial guess of activation values). The
previous theorems provide sufficient conditions for the
existence and uniqueness of fixed points. The existence
is clear, as we have seen. The theorems tell us that, if
the conditions hold, then the FCM has exactly one fixed
point attractor (and we know that it is the crisp point
A = [0, . . . , 0]T ), regardless of the parameter λ and
weight matrix W .

The information provided for the decision-maker by
the theorems is that, under the conditions stated, the
FGCM will always converge to the zero equilibrium point.

4.3. Arbitrary sigmoid-like threshold function.
Although the most widely used continuous threshold
functions in FCM theory and applications are the
log-sigmoid and hyperbolic tangent functions, there are
other possibilities, too.

From a mathematical point of view, in the
general sense, a sigmoid function (S-shaped function)
is a bounded, monotone increasing and continuously
differentiable real function that is defined for all real
values. Some examples (besides the already discussed
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log-sigmoid and hyperbolic tangent) are the arctangent,
error function, cumulative distribution function (cdf) of
the normal distribution, Gompertz function, etc.

Let f be a sigmoid, continuously differentiable
function, and let K be the maximum value of its
derivative. This maximum exists, since f is bounded and
monotone increasing. From the mean-value theorem it
follows that, for every x and y, |f(x)− f(y)| ≤ K ·
|x− y|. If this sigmoid function is applied as an activation
(threshold) function for a fuzzy grey cognitive map, then
the following theorem provides sufficient conditions for
the existence and uniqueness of the fixed point of this
FGCM.

Theorem 9. Let ⊗W be the extended (including possi-
ble feedback) weight matrix of a fuzzy grey cognitive map
(FGCM), where the weights ⊗wij are nonnegative or non-
positive grey numbers, and let f(x) be a sigmoid function
applied for the iteration, let K be the maximal value of
f ′(x). Let w∗

ij be defined as in Eqn. (16). Moreover, and
W ∗ be a matrix defined by the w∗

ij values. If at least one
the inequalities

‖W ∗‖F <
1

K
, (84)

‖W ∗‖1 <
1

K
, (85)

‖W ∗‖∞ <
1

K
(86)

holds, then the fuzzy grey cognitive map has one and only
one grey fixed point, regardless of the initial concept val-
ues. This grey fixed point is unique in the sense that the
endpoints of the intervals containing grey concept values
are unique, i.e., the values A∗

i and A∗
i are unique for ev-

ery i.

Proof. The proof is a direct adaptation of those of
Theorems 3–8. �

Example 3. Consider the grey weight matrix, introduced
in Example 2. The matrix W ∗, formed by the w∗

ij values
(cf. Eqn. (16)), will be the following:

W ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.15 0 0 0 0.5
0 0 0.8 0 0 0.15
0.7 0 0 0.6 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0.3 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (87)

The matrix norms applied in the theorems are

‖W ∗‖F = 2.4238 ‖W ∗‖1 = 1.8 ‖W ∗‖∞ = 2.3.
(88)

This implies, for example, for the case of the log-sigmoid
threshold function, that if λ < 2.2222 then the FGCM has
exactly one grey fixed point in the sense that the endpoints
of the intervals containing grey concept values are unique.

�

5. Summary

Fuzzy grey cognitive maps are extensions of fuzzy
cognitive maps that are able to handle uncertainties in
the weight matrix. These uncertainties can express the
imprecision or incomplete information of human experts.

Similarly as in standard FCMs, the inference is
based on the long-term behaviour of an iteration process.
FGCMs may converge to an equilibrium point (fixed
point), produce limit cycles or show a chaotic pattern.
In this paper, we provided several sufficient conditions
for the convergence of FGCMs to a unique fixed point,
regardless of the initial concept values. The fixed
point is unique in the sense that the endpoints of the
intervals containing the so-called grey concept values
are unique. The cases of the log-sigmoid and the
hyperbolic tangent threshold functions were discussed in
detail. Moreover, the generalizations of the results to
arbitrary sigmoidal (S-shaped) threshold functions were
also given. The convergence conditions are expressed
by the elements of the weight matrix and the maximal
value of the derivative of the threshold function, which
can be easily expressed by its parameter(s) in most cases.
Consequently, these sufficient conditions can be easily
checked before simulations, providing assistance for the
design of FGCM-based decision support tools.
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Eötvös Lorand University 2001 in mathematics
and physics. He obtained his PhD from the Tech-
nical University of Budapest in 2009 and his ha-
bilitation in informatics from Széchenyi István
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