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Rough set theory is an important tool to extract knowledge from relational databases. The original definitions of approxima-
tion operators are based on an indiscernibility relation, which is an equivalence one. Lately, different papers have motivated
the possibility of considering arbitrary relations. Nevertheless, when those are taken into account, the original definitions
given by Pawlak may lose fundamental properties. This paper proposes a possible solution to the arising problems by
presenting an alternative definition of approximation operators based on the closure and interior operators obtained from an
isotone Galois connection. We prove that the proposed definition satisfies interesting properties and that it also improves
object classification tasks.
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1. Introduction

Rough set theory was introduced by Pawlak (1982)
as a formal tool to acquire and model knowledge
from the information contained in databases. Due
to its capability of dealing with uncertainty, it has
been successfully applied to solve practical tasks
related to medical diagnosis (Varma et al., 2015),
pattern recognition (Hassanien et al., 2009) and image
processing (Hassanien et al., 2010), among others.
Moreover, it has been related to other areas of
knowledge such as fuzzy sets (Yao, 1998a), mathematical
morphology (Bloch, 2000), the theory of evidences (Tan
et al., 2018), belief functions (Yao and Lingras, 1998) and
formal concept analysis (Medina, 2012b). For a wider
compendium of applications and related areas of rough
set theory, we refer to the reader to Zhang et al. (2016).

The original goal of this theory was the definition
of vague concepts by means of the construction of
two approximation operators. The essence of the
construction of those approximation operators lies of
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the idea of distinguishing objects according to a set
of attributes. Keeping up with this idea, several
extensions of the original rough set theory have already
been published. Specifically, we can distinguish four
main classes of generalized rough sets: those based
on the combination of rough set theory with different
areas such as fuzzy set theory (Cornelis et al., 2014)
or probability theory (Ziarko, 2008); those based on
granularity or coverings (Couso and Dubois, 2011;
Han, 2019; Yao, 1998; 2018), those based on
degrees of inclusion (Skowron et al., 2004), and those
based on neighbourhood operators or arbitrary binary
relations (Slowinski and Vanderpooten, 1997; Yao and
Yao, 2012).

As for the latter class, we focus on the generalized
rough sets introduced by Yao (1996). In this paper,
the author presents an interesting generalization of
approximation operators considering arbitrary relations,
which has widely been referred to in the literature.
However, the examination of the approximation operators
of Yao (1996) may lead to the following drawback: the
lower one might not be contained in the original set and
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the upper approximation might not contain the original
set (see Yao and Yao, 2012, Theorem 1). Moreover,
Zhu (2007) proves that some restrictions on the relations
should be imposed, in order to obtain some desirable
properties for the approximation operators given by Yao
(1996). However, the consideration of restrictions on the
relations might be a strong assumption in some cases,
in view of the current trends in information processing,
leading to the management of imperfect information (i.e.,
incomplete and/or inconsistent information) (Grant and
Hunter, 2006; Madrid and Ojeda-Aciego, 2011a; Pawlak,
1991). For that reason, instead of imposing restrictions on
the relations, we propose to overcome those drawbacks
making use of the theory of Galois connections (Birkhoff,
1967; Davey and Priestley, 2002).

Two dual versions of the notion of the Galois
connection exist: an antitone Galois connection (or simply
Galois connection) and an isotone Galois connection (or
adjunction); both are composed of a pair of mappings and
used in multiple areas of computer science, such as fuzzy
logic (Hajek, 1998; Novák et al., 1999; Medina et al.,
2004; Cornejo et al., 2018a; Madrid and Ojeda-Aciego,
2011b), fuzzy sets (Bustince et al., 2015; Madrid and
Ojeda-Aciego, 2017), formal concept analysis (Wille,
1982; 2005; Ganter and Wille, 1999; Medine et al., 2009),
fuzzy transforms (Perfilieva, 2006; Madrid, 2017), fuzzy
relation equations (Sanchez, 1976; Di Nola et al., 1989;
Cornejo et al., 2017a; Dı́az-Moreno et al., 2017; Medina,
2017), mathematical morphology (Ronse and Heijmans,
1991; Alcalde et al., 2017; Madrid et al., 2019) and the
geometry of approximation (Pagliani and Chakraborty,
2008). In this paper, we will consider the so-called isotone
Galois connection. The composition of both mappings
appearing in the Galois connection gives rise to an interior
operator and a closure operator, which are suitable to play
the roles of the lower and upper approximation operators,
respectively. In fact, the original approximation operators
of Pawlak (1982) form an isotone Galois connection, and
also are an interior operator and a closure operator, due
to the consideration of equivalence relations. Moreover,
rough set theory has been related to many of the above
mentioned theories based on Galois connections (Bloch,
2000; Dı́az-Moreno and Medina, 2013; Medina, 2012b;
Perfilieva et al., 2017; Yao, 1998a, 2004; Yao and Chen,
2006; Benı́tez-Caballero et al., 2020)

In this work, we modify slightly the definition given
by Yao (1996) to define two Galois connections which
are used later to introduce two different lower and upper
approximations motivated by the previously mentioned
approaches. Specifically, the proposed approximation
operators are the interior and closure operators obtained
from the composition of operators in an isotone Galois
connection. As a result, we solve the above-mentioned
drawbacks, that is, the lower approximation is always
contained in the original set and the upper approximation

always contains the original set, independently of the
properties satisfied by the relation considered. This is
not the first time some authors consider this possibility
to define approximation operators.

In particular, concept-forming operators, which
form Galois connections, have been considered to
define approximation operators within formal concept
analysis (Shao et al., 2007) or to study the lattice
of rough sets (Järvinen et al., 2009). In the work
of Pagliani (2016) approximation operators based on
the composition of operators in the Galois connection
are dismissed in favor of the definition given by Yao
(1996) because of topological properties of the latter.
Nevertheless, Pagliani manifests the importance of the
dismissed definition and focuses on determining cases
where both definitions coincide. In contrast to Pagliani,
we opt for the composition of operators because it
increases the granularity, that is, the number of classes in
which the set of objects is split into. Hence, we show
that the obtained approximations are more accurate and,
in classification tasks, the number of objects that can
be classified increases. Providing a better classification
for objects when the relation has no restrictions is
fundamental for real applications, since general relations
arise in different real problems when, for example, the
notion of indiscernible objects needs to be relaxed. In this
paper, we will also present and analyze a possible relaxed
definition of the indiscernibility relation.

The structure of the paper is the following. Some
preliminary notions are recalled in Section 2. The
proposed definitions of approximation operators based
on isotone Galois connections and different properties
are presented in Section 3. In Section 4, we propose
a tolerance relation that models conveniently the notion
of indiscernibility, and then we apply the proposed
approximation operators to decision systems, showing
some examples and more properties. The work ends in
Section 5 with some conclusions and prospect for future
work.

2. Preliminaries

2.1. Rough set theory. First of all, we recall some
notions related to rough set theory.

Definition 1. An approximation space is a pair (U,R),
where U is a set (called universe) and R is a binary
relation over U .

The previous definition was introduced by Yao
(1996) as a generalization of the original definition given
by Pawlak (1982). Specifically, when the given relationR
is an equivalence one, the approximation space is called
the Pawlak approximation space. Moreover, depending
on the nature of the relation R, we obtain different kinds
of approximation spaces. For example, when R is a
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tolerance relation (reflexive and symmetric), then we have
the approximation space given by Zakowski (1983), or
if R is reflexive and transitive the approximation space
derives in a topological space (Kortelainen, 1994).

In the following, we recall the definition of the upper
and lower approximations of a set. These definitions are
given in a general environment when the relation R is an
arbitrary one.

Definition 2. (Yao, 1996) Let (U,R) be an approximation
space and A ⊆ U . The lower approximation and the up-
per approximation of A are defined respectively as

R↓ A = {y ∈ U | Ry ⊆ A} (1)

and
R↑ A = {y ∈ U | Ry ∩ A �= ∅}, (2)

where Ry is a set defined as Ry = {x ∈ U | (x, y) ∈ R},
which is called the R-foreset.

In the literature, we can find equivalent ways of
defining R ↓ A and R ↑ A (Cornelis et al., 2014; Stell,
2007; Yao, 2004). Once we have recalled the previous
notions, we can introduce the definition of a rough set.

Definition 3. Let (U,R) be an approximation space and
A ⊆ U . The rough set associated with A is defined as the
pair (R↓ A,R↑ A).

Let us recall some interesting properties:

1. R↓ (A ∩B) = R↓ A ∩R↓ B.

2. R↑ (A ∪B) = R↑ A ∪R↑ B.

3. R↓ (U) = U .

4. R↑ (∅) = ∅.

5. If A ⊆ B, then R↓ A ⊆ R↓ B.

6. If A ⊆ B, then R↑ A ⊆ R↑ B.

WhenR is reflexive, the following properties are also
satisfied:

7. R↓ A ⊆ A ⊆ R↑ A.

8. R↓ A ⊆ R↑ (R↓ A).
9. R↓ (R↑ A) ⊆ R↑ A.

10. R↓ (R↓ A) ⊆ R↓ A.

11. R↑ A ⊆ R↑ (R↑ A).
When R is symmetric, we have that

12. R↑ (R↓ A) ⊆ A ⊆ R↓ (R↑ A).
Moreover, when R is an equivalence relation, the

following equalities hold:

13. R↑ (R↓ A) = R↓ A.

14. R↓ (R↑ A) = R↑ A.

In addition, the accuracy of the approximations of a
finite set A, in an approximation space, can be measured
as follows.

Definition 4. An accuracy measure of the finite set A ⊆
U in the approximation space (U,R) is defined as

μR(A) =
Card(R↓ A)
Card(R↑ A) , (3)

where Card(A) represents the cardinality of the set A.
Data rarely appear as approximation spaces. Instead,

they are usually structured from tables that relate objects
to attributes; this kind of structure is called an information
system.

Definition 5. An information system (U,A) is
a tuple such that U = {x1, x2, . . . , xn} and A =
{a1, a2, . . . , am} are finite, non-empty sets of objects and
attributes, respectively. Each a ∈ A is associated with a
mapping ā : U → Va, where Va is the value set of a over
U .

If Va = {0, 1} for each a ∈ A, we say that (U,A) is
a Boolean information system.

There are different ways of defining approximation
spaces from a given information system. The standard
procedure to obtain an approximation space from an
information system is defining an indiscernibility relation
over the set of objects. Given a subset B of A, the in-
discernibility relation with respect to B, IndB , is defined
as

IndB={(x, y) ∈U×U | for all a∈B, ā(x)= ā(y)}.
(4)

Observe that IndB is an equivalence relation and,
consequently, we can consider the equivalence classes
which are written as [x]B = {y | (x, y) ∈ IndB}.
In addition, IndB produces a partition on U denoted as
U/ IndB = {[x]B | x ∈ U}.

The obtained approximation space (U, IndB) will be
called the induced approximation space from the informa-
tion system (U,A) and used to discern elements. In this
way, when (x, y) ∈ IndB , we say that x and y are indis-
cernible in B, otherwise we say that they are discernible.

In this paper, we also consider a special kind of
information system called a decision system.

Definition 6. A decision system (U,A∪{d}) is a kind of
information system in which d �∈ A is called the decision
attribute.

The equivalence classes obtained from the relation
shown in Eqn. (4), with respect to {d}, are called decision
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classes and are denoted as [x]d. The standard task in
decision systems is to describe the decision classes from
the attributes in A in order to classify objects abroad
U . Definition 6 has been straightforwardly extended in
different papers to consider a non-singleton set of decision
attributes (Luo et al., 2018; Yang et al., 2017).

Given a subset of attributes B ⊆ A, the B-positive
region is formed by those equivalence classes, induced
by IndB , with the same decision value. In addition, the
dependency ofB over the decision attribute d is defined in
order to determine how well classification of objects can
be performed according to the decision attribute d, taking
into account the information of B.

Definition 7. Let (U,A∪ {d}) be a decision system, and
B ⊆ A and (U, IndB) its induced approximation space.
The B-positive region, denoted as POSB , is defined as

POSB =
⋃

x∈U

IndB ↓ [x]d,

and the degree of dependency of d over B, γB , as

γB =
Card(POSB)

Card(U)
,

where [x]d represents the equivalence class of the object
x ∈ U with respect to the indiscernibility relation Indd of
Eqn. (4).

2.2. Galois connections and adjunctions. There
exist two dual versions of the notion of the Galois
connection (Birkhoff, 1967; Davey and Priestley, 2002).
In this work we consider only one of those, the so-called
isotone Galois connection. For more detailed information
about isotone and antitone Galois connections, we refer
the reader to Denecke et al. (2004) or Davey and Priestley
(2002).

Definition 8. Let (P,≤P ) and (Q,≤Q) be posets. A
pair (ϕ, ψ) of mappings ϕ : P → Q, ψ : Q → P is
called an isotone Galois connection between P and Q if
the following equivalence is satisfied, for all p ∈ P and
q ∈ Q:

ϕ(p) ≤Q q if and only if p ≤P ψ(q).

This notion is also called adjunction. The mapping ϕ is
called a lower (or left) adjoint of ψ and the mapping ψ an
upper (or right) adjoint of ϕ.

The definition of an isotone Galois connection has
the following characterization, which plays a key role in
our approach.

Proposition 1. Let ϕ : P → Q and ψ : Q → P be two
maps between the posets (P,≤P ) and (Q,≤Q). The pair
(ϕ, ψ) is an isotone Galois connection if and only if

• ψ and ϕ are order-preserving;

• p ≤P ψ (ϕ(p)), for all p ∈ P ;

• ϕ (ψ(p)) ≤Q q, for all q ∈ Q.

Galois connections are very much related to the
interior and closure operators. In order to analyze
such a relationship, let us introduce formally the proper
definitions.

Definition 9. A map Γ: P → P defined on a poset
(P,≤P ) is called a closure operator if the following
properties are satisfied:

• Γ (Γ(p)) = Γ(p) (idempotent);

• if p1≤P p2 then, Γ(p1)≤P Γ(p2) (order-preserving);

• p ≤P Γ(p) (extensive)

for all p, p1, p2 ∈ P . Similarly, a map Θ: Q → Q
on a poset (Q,≤Q) is called an interior operator if the
following properties are satisfied:

• Θ(Θ(q)) = Θ(q) (idempotent);

• if q1≤Q q2 then, Θ(q1)≤QΘ(q2) (order-preserving);

• Θ(q) ≤Q q (anti-extensive)

for all q, q1, q2 ∈ Q.
Note that Proposition 1 encourages us to link Galois

connections with the interior and closure operators.
Specifically, the following results shows that we
can construct a closure and an interior operator by
composition of mappings in every Galois connection.

Proposition 2. Let (ϕ, ψ) be an isotone Galois connec-
tion between the posets (P,≤P ) and (Q,≤Q). Then ϕ◦ψ
and ψ◦ϕ form an interior operator and a closure operator
in P and Q, respectively.

The following result provides other useful properties
of isotone Galois connections.

Theorem 1. Let (P,≤P ) and (Q,≤Q) be ordered sets.
Then the following statements hold:

(i) If ϕ : P → Q, ψ : Q → P form an isotone Galois
connection (ϕ, ψ), then ϕ preserves suprema and ψ
preserves infima.

(ii) If (P,≤P ) is a complete lattice and ϕ : P → Q pre-
serves suprema, then the function ψ : Q → P , de-
fined as

ψ(q) =
∨

{p ∈ P | ϕ(p) ≤Q q}

for all q ∈ Q, is the unique right adjoint of ϕ.
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(iii) If (Q,≤Q) is a complete lattice and ψ : Q→ P pre-
serves infima, then the function ϕ : P → Q, defined
as

ϕ(p) =
∧

{q ∈ Q | p ≤P ψ(q)}
for all p ∈ P , is the unique left adjoint of ψ.

Remark 1. In Properties 5, 6, 12, 13 and 14,
Definition 3, and Proposition 1, the reader can observe
a direct relationship between isotone Galois connections
and approximation operators of rough sets, when R is
an equivalence relation. Moreover, by these properties
and Definition 9, the notions of the closure and interior
operators are also related to approximation operators.
Specifically, in the original approach of Pawlak, thanks to
the consideration of equivalence relations, approximation
operators, R ↑ and R ↓, are the closure and interior
operators which form an isotone Galois connection.
Hence, approximation operators in the original approach
of Pawlak have both roles, although the idea underlying
the lower and upper operators in rough set theory is closer
to the interior and closure operators than to isotone Galois
connections.

However, the properties mentioned above do not
need to be satisfied for arbitrary relations. Specifically,
only Properties 1–6 hold. Therefore, when U is finite and
R is arbitrary, by Theorem 1, we only have that R ↑ and
R ↓ determine a left and right adjunction, although they
may not be adjunctions of the same Galois connection (for
that the symmetry of R is needed). Moreover, R ↑ and
R ↓ are neither closure nor interior operators, in general,
which also weakens the justification of usingR ↓ andR ↑
as the lower and upper operators. Thus, there exists a
shortcoming of the definition given by Yao (1996) when
arbitrary relations are considered. The following section
proposes a solution to this problem.

3. Approximation operators based on the
Galois connection

The original idea of Pawlak is to represent sets by pairs of
a lower and an upper approximation. The consideration
of equivalence relations in the original definition (Pawlak,
1982; 1991) was crucial for a coherent definition of such
approximations. Subsequently, Yao (1996) defined a
lower and an upper approximation for the case of arbitrary
relations (recalled in Definition 2), which coincide
with the usual ones when the relation is an equivalence
one. However, such definitions have two noteworthy
shortcomings, which are summarized below:

• When the relation R is not reflexive, the lower
approximation of a set A ⊆ U may not be contained
in A. Similarly, the upper approximation may not
contain A. In this case, the obtained approximations
are senseless.

• If there exists an object x ∈ U such that (x, y) /∈ R
for all y ∈ U , i.e., x is not related to any object, then
x ∈ R ↓ A and x /∈ R ↑ A for all subset A ⊆ U . In
this case, lower approximations are not contained in
upper approximations.

Despite the previous items being certainly inconceivable
when R is an indiscernibility relation, they may be
feasible when R represents another relation between
objects. For example, on a Boolean information system
we define the relation R given as follows: an object x is
related to an object y (xRy) if the number of attributes of
x is strictly greater than that of attributes of y. Then, R
is not reflexive and there is at least an object which is not
related to any object (the ones with the least number of
attributes).

The following example illustrates both of the
previous questions.

Example 1. Consider U = {x1, x2, x3} and the binary
relation R on U given by the table

R x1 x2 x3

x1 ×
x2 ×
x3

.

Setting A = {x1}, we have that R ↓ A = {x2, x3} and
R↑ A = {x2}. Then

R↓ A � A and A � R↑ A and R↓ A � R↑ A.
Therefore,R↓ andR↑ cannot be considered a lower or an
upper approximation, respectively. �

In order to overcome the previously mentioned issues
and provide convenient definitions of the lower and upper
approximations, the first step is to generalize the definition
of the R-foreset, in order to distinguish such a set when
the relation does not satisfy the symmetry.

Definition 10. Let (U,R) be an approximation space; the
sets defined as

xR={y ∈ U |(x, y)∈R}
and

Ry={x ∈ U |(x, y)∈R}
are the R-right-foreset of x ∈ U and the R-left-foreset of
y ∈ U , respectively.

Taking into consideration the two generalizations of
the R-foreset, we can define four different approximation
operators.

Definition 11. Let (U,R) be an approximation space and
A ⊆ U . We define the following operators:

• R↓r A = {x ∈ U | xR ⊆ A},
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• R↑r A = {x ∈ U | xR ∩ A �= ∅},
• R↓� A = {y ∈ U | Ry ⊆ A},
• R↑� A = {y ∈ U | Ry ∩ A �= ∅}.

It is convenient to note that R ↓� and R ↑� coincide
with the approximation operators given by Yao (1996),
i.e., with R ↓ and R ↑ given in Definition 2. Moreover,
when the relation is symmetric, also the equalities R ↓r=
R ↓�= R ↓ and R ↑r= R ↑�= R ↑ hold. From now
on, for the sake of simplicity, in the case of considering
a symmetric relation, we will write R ↓ and R ↑ instead
of R ↓r, R ↓� and R ↑r, R ↑�, respectively. Before
introducing generalized rough sets, it is convenient to
recall that the pairs (R ↑r, R ↓�) and (R ↑�, R ↓r) are
isotone Galois connections (Yao, 1998a; Medina, 2012b).
As a consequence, the operators R ↑r and R ↑� preserve
the empty set, and R↓r and R↓� preserve the universe U .

The following example shows that, in general, the
pairs of operators given by Yao (1996) (i.e., (R ↑�, R ↓�)
and (R↓�, R↑�)) are not isotone Galois connections.

Example 2. Consider the approximation space (U,R),
where U = {x1, x2} and the relation R is given in the
following table:

R x1 x2

x1 × ×
x2 ×

.

Let us show that there exist A,B,A′, B′ ⊆ U such that
none of the following equivalences hold:

R↑� (A) ⊆ B if and only if A ⊆ R↓� (B).

R↓� (A′) ⊆ B′ if and only if A′ ⊆ R↑� (B′).

Consequently, according to Definition 8, neither the pair
(R ↑�, R ↓�) nor (R ↓�, R ↑�) is an isotone Galois
connection.

On the one hand, we consider the subsets A = B =
{x2}. In this way we have that

R↓� {x2} = {y ∈ U | Ry ⊆ {x2}} = ∅

and

R↑� {x2} = {y ∈ U | Ry ∩ {x2} �= ∅} = {x2}

since Rx1 = {x1} and Rx2 = {x1, x2}. In other words,
R ↑� {x2} ⊆ {x2} = B, but A = {x2} � R ↓� {x2}.
Therefore, we can assert that the pair (R ↓�, R ↑�) is not
an adjunction.

On the other hand, we consider the subsets A′ =
{x1, x2} and B′ = {x1}. Then, we have that

R↑� {x1} = {y ∈ U | Ry ∩ {x1} �= ∅} = {x1, x2}

and

R↓� {x1, x2} = {y ∈ U | Ry ⊆ {x1, x2}} = {x1, x2}.

In this way, A′ = {x1, x2} ⊆ R ↑� {x1} but R ↓�
{x1, x2} � {x1} = B′. Consequently, the pair (R ↑�
, R↓�) is not an adjunction either. �

An advantage of considering isotone Galois
connections is that we can define the interior and closure
operators from them, which can be used to generalize
the original definition of a rough set given by Pawlak. In
the rest of this section, we prove that the approximations
given by Yao (1996) can be improved considering these
operators, namely, R ↑r (R ↓�), R ↓� (R ↑r), R ↑� (R ↓r)
and R ↓r (R ↑�). Note that they always define a lower or
an upper approximation for any set. Specifically, given
a relation R and a set A ⊆ U , the following chains
are satisfied because the two pairs (R ↑r, R ↓�) and
(R↑�, R↓r) are isotone Galois connections:

R↑r (R↓� (A)) ⊆A ⊆ R↓� (R↑r (A)), (5)

R↑� (R↓r (A)) ⊆A ⊆ R↓r (R↑� (A)). (6)

In other words, the notion of a rough set is extended
to arbitrary relations by using the following definition.

Definition 12. Let (U,R) be an approximation space and
A ⊆ U . The lower approximations of A are defined as

R↑r (R↓� (A)) and R↑� (R↓r (A))

and the upper approximations of A are defined as:

R↓� (R↑r (A)) and R↓r (R↑� (A)).

A set A ⊆ U is called a generalized rough set if is
different from the two lower approximations and from the
two upper approximations.

Recall that the operators in Definition 11 coincide
with the approximation operators provided by Yao (1996)
whenR is symmetric. However, it is interesting to remark
that our approach is different from that of Yao (1996) even
when R is symmetric, because here we do not consider
the operators given in Definition 11 that of approximation
operators, but their composition.

The use of the interior and closure operators does
not only guarantee the construction of lower and upper
approximations for any set and any relation R. Moreover,
the following properties are directly obtained by the
theory of the Galois connection.

Theorem 2. Let (U,R) be an approximation space and
A,B ⊆ U , then

• If A ⊆ B then R↑r (R↓� (A)) ⊆ R↑r (R↓� (B));

• If A ⊆ B then R↑� (R↓r (A)) ⊆ R↑� (R↓r (B));
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• If A ⊆ B then R↓� (R↑r (A)) ⊆ R↓� (R↑r (B));

• If A ⊆ B then R↓r (R↑� (A)) ⊆ R↓r (R↑� (B));

• R↑r (R↓� (A)) ⊆ A ⊆ R↓r (R↑� (A));
• R↑r (R↓� (A)) ⊆ A ⊆ R↓� (R↑r (A));
• R↑� (R↓r (A)) ⊆ A ⊆ R↓� (R↑r (A));
• R↑� (R↓r (A)) ⊆ A ⊆ R↓r (R↑� (A));
• R↑r (R↓� (R↑r (R↓� (A)))) = R↑r (R↓� (A));
• R↑� (R↓r (R↑� (R↓r (A)))) = R↑� (R↓r (A));
• R↓� (R↑r (R↓� (R↑r (A)))) = R↓� (R↑r (A));
• R↓r (R↑� (R↓r (R↑� (A)))) = R↓r (R↑� (A)).

Proof. The previous items are direct consequences of the
fact that R↑r (R↓� (A)) and R↑� (R↓r (A)) are interior
operators, and R ↓r (R ↑� (A)) and R ↓� (R ↑r (A)) are
closure operators (Definition 9). �

The following result shows that the lower and upper
approximations are related also through the complement
of sets. Specifically, the following proposition shows that
they are dual with respect to the complement.

Theorem 3. Let (U,R) be an approximation space and
A ⊆ U . Then

• R↑� (R↓r (A)) =
(
R↓� (R↑r (Ac))

)c
,

• R↑r (R↓� (A)) = (R↓r (R↑� (Ac)))c,

where Xc is the complement of any subset X in U .

Proof. Let us prove firstly that R ↓r (Ac) = (R↑r A)c
and R↓� (Ac) = (R↑� A)c. Given A ⊆ U , we have that

R↓r (Ac) ={x ∈ U | xR ⊆ Ac}
={x ∈ U | xR ∩A = ∅}
= {x ∈ U | xR ∩A �= ∅}c = (R↑r A)c ,

and similarly R ↓� (Ac) = (R↑� A)c. As a consequence,
the following equalities are satisfied:

R↑� (R↓r (A)) =
(
R↓� (R↑r (Ac))

)c

R↑r (R↓� (A)) = (R↓r (R↑� (Ac)))c .

�

Note that Definition 12 generalizes the original
definition given by Pawlak (1982) since, for any
equivalence relation R, the following equalities hold:

R↓ (A) = R↑r (R↓� (A)) = R↑� (R↓r (A))

R↑ (A) = R↓� (R↑r (A)) = R↓r (R↑� (A)).

In addition, whenR is reflexive, the following chains
are satisfied for all A ⊆ U :

R↓� (A) ⊆ R↑r (R↓� (A)) ⊆ A (7)

A ⊆ R↓r (R↑� (A)) ⊆ R↑� (A). (8)

Consequently, the approximation operators
in Definition 12 provide closer approximations to
the original set than the approximation operators of Yao
(1996), since the latter coincide with R ↓� (A) and
R ↑� (A). Notice that, when the relation R is not
reflexive, the inequality R↓� (A) ⊆ A ⊆ R↑� (A) might
not be satisfied, as we saw in Example 1. Therefore, the
comparison of these approximation operators is senseless
the case when the relation considered is not reflexive.

It is worth highlighting a result of Pagliani (2014)
that characterizes when the approximation operators in
Definition 12 coincide with those of Yao (1996).

Theorem 4. (Pagliani, 2014, Theorem 1) Let (U,R) be an
approximation space. The following assertions are equiv-
alent:

• R↑� (R↓r (A)) = R↓r (A), for all A ⊆ U .

• R↑r (R↓� (A)) = R↓� (A), for all A ⊆ U .

• R is a preorder (i.e., R is reflexive and transitive).

As a consequence of the previous result and Eqns. (7)
and (8), when the relation in an approximation space
(U,R) is not transitive, the lower approximations given
by the operators in Definition 12 are strictly more accurate
than the approximations given by the operators in the work
of Yao (1996). The following example illustrates this fact
by considering a reflexive and symmetric relation, that
is, a tolerance relation. Note that the use of tolerance
relations as indiscernibility ones is very interesting when
reducing some possible noise in the data, since it is a
weaker definition than the equivalence relation.

Example 3. In this example we consider an information
system (U,A), where U = {x1, x2, x3, x4}, A =
{a1, a2, a3, a4}, and the relationship among them is given
by means of the following table:

a1 a2 a3 a4

x1 × ×
x2 × ×
x3 × ×
x4 ×

.

In this example, the indiscernibility relation R assumes
that two objects are indiscernible when they differ by two
or fewer attributes, that is, xRy if there are at most two
attributes ai, aj ∈ {a1, a2, a3, a4} such that ai(x) �=
ai(y) and aj(x) �= aj(y). In this way, the values of
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this indiscernibility relation over the set of objects are
displayed in the following table:

R x1 x2 x3 x4

x1 × ×
x2 × × ×
x3 × × ×
x4 × ×

.

It is easy to check that the indiscernibility relation
R is reflexive and symmetric. Hence, as stated above,
we use the notation R ↓ and R ↑ instead of R ↓r, R ↓�
and R ↑r, R ↑�, respectively. In addition, note that R is
not transitive since, for example, we have that the pairs
(x1, x2), (x2, x3) ∈ R, but (x1, x3) /∈ R.

Let us consider the set A = {x1, x2}; then we have

R↓ A = {x1} and R↑ A = {x1, x2, x3},
which are the lower and upper approximations obtained
by the approach of Yao (1996). Considering the
approximations operators of Definition 12, we obtain the
following sets:

R↑ (R↓ A) = {x1, x2} and R↓ (R↑ A) = {x1, x2}
as the lower and upper approximation of A. Hence, we
have

R↓ A = {x1} ⊂ {x1, x2} = R↑ (R↓ A)
R↓ (R↑ A) = {x1, x2} ⊂ {x1, x2, x3} = R↑ A.

Thus, the subset A is not a generalized rough set,
according to Definition 12. �

The previous example highlights the fact that the
approximations given by Definition 12 are more precise
than those given by Definition 2. The following definition
shows how to measure the degree of accuracy of the
approximations of a subset A.

Definition 13. The accuracy measure of a finite set A ⊆
U in the approximation space (U,R), denoted as μ∗

R(A),
is defined as

max{Card(R↑r (R↓� (A))),Card(R↑� (R↓r (A)))}
min{Card(R↓� (R↑r (A))),Card(R↓r (R↑� (A)))} .

Note that, since for any pair of approximations of a
set A, the lower approximation is less than or equal to the
upper (Eqns. (5) and (6)), we have that 0 ≤ μ∗

R(A) ≤ 1.
From the previous comments, when the relation R

is reflexive, the accuracy measures μR and μ∗
R, given in

Definitions 4 and 13 are related.

Proposition 3. Let (U,R) be an approximation space,
where the relation R is reflexive1 and A ⊆ U ; then

1Note that, as we commented at the beginning of Section 3, Defini-
tion 2 may have no sense when the relation considered is not reflexive,
and µR(A) could be greater than 1.

μR(A) ≤ μ∗
R(A).

Proof. The result is obtained from the fact that, when the
relation R is reflexive, the chains shown in Eqns. (7) and
(8) are satisfied. �

4. Applications to decision systems

In this section we consider decision systems, recalled
in Definition 6, in order to continue illustrating the
convenience of our approach. The standard task in a
decision system, (U,A ∪ {d}), is to define a relation R
in U (i.e., an approximation space), by using a subset of
attributesB ⊆ A, capable of classifying objects in U with
respect to the decision attribute d.

In our approach, we intend to use more general
relations than those defined by means of Eqn. (4). The
following one weakens the original definition of an
indiscenibility relation.

Definition 14. Given an information system (U,A), s ∈
N and B ⊆ A, the s-indiscernibility relation with respect
to B, Rs

B , is defined as follows:

Two objects x, y ∈ U belong to Rs
B if and only if there

are at most s attributes {a1, . . . , as} ⊆ B such that
ak(x) �= ak(y) for all k ∈ {1, . . . , s}.

If (x, y) ∈ Rs
B , we say that x and y are

s-indiscernible in B. When B = A, we simply say that
x and y are s-indiscernible and the relation is denoted as
Rs.

Note that the indiscernibility relation given in
Eqn. (4) coincides with the 0-indiscernibility relation.
Another example of an s-indiscernibility relation
was already considered in Example 3, where the
2-indiscernibility relation of the corresponding decision
system was discussed. Below, we introduce another
example and compare the use of different values of s in
the s-indiscernibility relation.

Example 4. Let (U,A) be the information system given
by the set of objects U = {x1, x2, x3, x4, x5, x6} and
attributes A = {Forecast, Temperature, Humidity, Wind,
Sport}, related according to the following table:

Forecast Temperature Humidity Wind Sport

x1 sunny hot high weak no
x2 sunny hot high strong no
x3 cloudy hot high weak yes
x4 rainy warm high weak yes
x5 rainy cold normal weak yes
x6 rainy cold normal strong no

It is easy to check that every pair of objects
are discernible (from each other) under the standard
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0-indiscernibility relation. If we consider the
1-indiscernibility relation, we obtain that x1 and x2
are 1-indiscernible, since they differ in only one attribute
(Wind). Moreover, since the rest of objects differ in more
than one attribute, the pair x1 and x2 is the only one of
1-indiscernible objects.

If we take into account the 2-indiscernibility relation,
we obtain that x1 and x2 are 2-indiscernible objects again.
In addition, in this case, the objects x1 and x3 become
2-indiscernible as well. Note that the 2-indiscernibility
relation is not transitive, since (x2, x1), (x1, x3) ∈ R2,
but (x2, x3) /∈ R2. �

From the previous example it is obvious that there is
a kind of monotonicity with respect to the value s. In other
words, if two objects are s-indiscernible for s ∈ N, then
they are t-indiscernible for all t ≥ s as well.

Proposition 4. Let (U,A) be an information system and
s, t ∈ N such that s ≤ t. If (x, y) ∈ Rs, then (x, y) ∈ Rt

for all x, y ∈ U .

Proof. This property results directly from Definition 14.
�

From Example 4 is also evident that the
s-indiscernibility relation might not be transitive.
Nevertheless, the s-indiscernibility is always a tolerance
relation (reflexive and symmetric).

Proposition 5. Let (U,A) be an information system; the
s-indiscernibility relation Rs is a tolerance relation for
all s ∈ N.

Proof. This is a direct consequence of Definition 14. �

Traditionally, the positive region is defined for a
subset B ⊆ A since the indiscernibility relation IndB
given in Eqn. (4) is determined once the subset B ⊆ A
is fixed. However, in our approach, given a subset B ⊆
A, we may be interested in considering a more general
relation RB different from the equivalence relation IndB .
For that reason, it is more convenient to define the positive
regions associated with the relation RB instead of the
subset B; the use of subscripts is used to emphasize that
the relation RB is defined by using only the information
concerning the set of attributes B.

The following definition aims at measuring how
well a relation RB defined from the information of a
subset of attributes B can be used to discern between the
different classes of Indd (recall that Indd is an equivalence
relation). Specifically, the positive region of the relation
RB contains the set of objects for which the relation RB

is able to foretell their decision classes unequivocally.
Notice that, since RB may be not symmetric, we can
define two positive regions related to the capability of
predicting the decision classes. Moreover, we can also
measure the predictive ability of the relation RB with
respect to d, by means of the value γ∗RB

.

Definition 15. Let (U,A ∪ {d}) be a decision system,
B ⊆ A, and (U,RB) be a derived approximation
space. TheRB-left positive andRB-right positive regions
with respect to RB , denoted as POS�

RB
and POSr

RB

respectively, are defined as

POS�
RB

=
⋃

x∈U

RB ↑r
(
RB ↓� [x]d

)

POSr
RB

=
⋃

x∈U

RB ↑� (RB ↓r [x]d) ,

and the degree of dependency of d overRB , γ∗RB
, as

γ∗RB
=

max
{
Card(POS�

RB
),Card(POSr

RB
)
}

Card(U)
,

where [x]d represents the equivalence class of the object
x ∈ U with respect to the indiscernibility relation Indd
given by

Indd = {(x, y) ∈ U× U | d̄(x) = d̄(y)}.

Note that in the previous definition we used a
standard indiscernibility relation Indd to define equivalent
classes according to the decision attribute d. The sets
POS�

RB
and POSr

RB
represent the set of objects in U

that can be properly classified by using the relation RB ,
defined from the attributes in B. Hence, in the case of
γ∗RB

= 1, the decision classes can be fully determined by
the relationRB . Moreover, ifA,B ⊆ A and γ∗RA

= γ∗RB
,

the use of one or another set of attributes (A orB) behaves
similarly for the classification provided by the decision
attribute d. However, in such a case, we cannot say that
the information provided by A and B is the same, but the
percent of correctly classified objects is so.

Example 5. Consider the decision system given by the
following relation:

a1 a2 a3 a4 a5 a6 d

x1 × × × ×
x2 × × × ×
x3 × × × × ×
x4 × × ×
x5 × × × ×

,

and the 1-indiscernibility relation with respect to the
subset of attributes B = {a2, a4, a5, a6}, which is
displayed in the table below:

R1
B x1 x2 x3 x4 x5

x1 × ×
x2 × ×
x3 × × ×
x4 × ×
x5 × ×

.
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Note that the relation Indd provides only two decision
classes, [x1]d = {x1, x2, x3} and [x4]d = {x4, x5}.
Then, in order to determine the positive regions, we
only have to apply the lower approximations to both
sets. In addition, since R1

B is symmetric, both lower
approximations coincide. Hence, we have

R1
B ↑r

(
R1

B ↓� [x1]d
)
= R1

B ↑�
(
R1

B ↓r [x1]d
)
= {x1, x2}

R1
B ↑r

(
R1

B ↓� [x4]d
)
= R1

B ↑�
(
R1

B ↓r [x4]d
)
= ∅

and, as a consequence, γ∗
R1

B
= 2/5. �

The following result relates the measure of the degree
of dependency of d over RB to the existence of related
objects in different classes.

Theorem 5. Let (U,A ∪ {d}) be a decision system and
a relation RB with B ⊆ A. If γ∗RB

= 1; then, for all
x, y ∈ U such that (x, y) ∈ RB and [x]d �= [y]d, there
exists

• z ∈ RB ↓r ([x]d) with (z, x) ∈ RB and (z, y) /∈ RB

or/and

• z ∈ RB ↓� ([y]d) with (y, z) ∈ RB and (x, z) /∈ RB .

Proof. Since γ∗RB
= 1, we have Card(POSr

RB
) =

Card(U) or/and Card(POS�
RB

) = Card(U). Consider
the case Card(POSr

RB
) = Card(U). From this last

equality and using the property shown in Eqn. (6) we can
infer, for all x ∈ U , that

RB ↑� (RB ↓r ([x]d)) = [x]d.

Given x, y ∈ U such that (x, y) ∈ RB with [x]d �=
[y]d, by the definition of the approximation operators we
have

RB ↑� (RB ↓r ([x]d)) = {t ∈ U | Rt∩RB ↓r ([x]d) �= ∅}.

Since RB ↑� (RB ↓r ([x]d)) = [x]d, we get x ∈ RB ↑�
(RB ↓r ([x]d)) and, consequently, there exists z ∈ U such
that z ∈ RBx (i.e., (z, x) ∈ RB) and z ∈ RB ↓r ([x]d).

It remains to prove that (z, y) /∈ RB . Let us assume
by reductio ad absurdum that (z, y) ∈ RB , which is
equivalent to y ∈ zRB. By definition, RB ↓r ([x]d) =
{t ∈ U | tRB ⊆ [x]d} and, since y ∈ zRB and y /∈ [x]d,
we have that zRB � [x]d. As a consequence, we obtain
the contradiction z /∈ RB ↓r ([x]d).

If we consider the case Card(POS�
RB

) = Card(U)
we obtain, following a similar reasoning, the existence of
z ∈ RB ↓� ([y]d) such that (y, z) ∈ RB and (x, z) /∈ RB .

�

As a consequence of the previous result, the relation
RB cannot be transitive when there exists a pair of related
objects which belong to different decision classes and
γ∗RB

= 1.
The following results analyze the effects of adding

new properties to the discussed relation in the previous
theorem.

Corollary 1. Let (U,A ∪ {d}) be a decision system,
B ⊆ A and (U,RB) be an approximation space such that
RB is reflexive and γ∗RB

= 1. Then, for all x, y ∈ U such
that (x, y) ∈ RB and [x]d �= [y]d, there exists

• z ∈ [x]d such that (z, x) ∈ RB and (z, y) /∈ RB

or/and

• z ∈ [y]d such that (y, z) ∈ RB and (x, z) /∈ RB .

Proof. It is a direct consequence of the previous theorem
by noting that, by reflexivity, z ∈ RB ↓r ([x]d) implies
z ∈ [x]d. �

Proposition 6. Let (U,A ∪ {d}) be a decision system,
B ⊆ A and (U,RB) be an approximation space such that
RB is symmetric and γ∗RB

= 1. Then, for all x, y ∈ U
such that (x, y) ∈ RB and [x]d �= [y]d, there exist two
different elements:

• zx ∈ RB ↓r ([x]d) such that (zx, x) ∈ RB and
(zx, y) /∈ RB ,

and

• zy ∈ RB ↓� ([y]d) such that (y, zy) ∈ RB and
(x, zy) /∈ RB .

Proof. The proof follows a similar reasoning to the
one given to Theorem 5 noting that, when the relation
is symmetric, the two lower approximation operators
coincide. Then, POSr

RB
= POS�

RB
holds and,

consequently,

Card(POSr
RB

) = Card(POS�
RB

) = Card(U).

Therefore, both the cases in the proof of Theorem 5 are
satisfied, and zx is different from zy because they belong
to different classes, that this, we have in particular that
zx ∈ [x]d, zy ∈ [y]d, and [x]d �= [y]d. �

Corollary 2. Let (U,A ∪ {d}) be a decision system,
B ⊆ A and (U,RB) be an approximation space such that
RB is a tolerance relation and γ∗RB

= 1. Then, for all
x, y ∈ U such that (x, y) ∈ RB and [x]d �= [y]d, there
exist two different elements:

• zx ∈ [x]d such that (zx, x) ∈ RB and (zx, y) /∈ RB

and
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• zy ∈ [y]d such that (y, zy) ∈ RB and (x, zy) /∈ RB .

Proof. This result is a direct consequence of Corollary 1
and Proposition 6. �

Finally, another consequence of Theorem 5 is given
when the indiscernibility relation RB is an equivalence
one.

Corollary 3. Let (U,A∪{d}) be a decision system, B ⊆
A, and (U,RB) be an approximation space such that RB

is an equivalence relation. If γ∗RB
= 1 and (x, y) ∈ RB ,

then [x]d = [y]d.

The following result justifies the existence of
representative objects within each decision class when
γ∗RB

= 1. Specifically, such representative objects are
only related to objects in its decision class when RB is a
reflexive relation.

Theorem 6. Let (U,A ∪ {d}) be a decision system,
B ⊆ A, andRB be a reflexive relation such that γ∗RB

= 1.
Then, for each class [x]d,

• there exists z ∈ [x]d such that (z, y) /∈ RB , for all
y ∈ U \[x]d

or/and

• there exists z ∈ [x]d such that (y′, z) /∈ RB for all
y′ ∈ U \[x]d.

Proof. Let us assume by reductio ad absurdum that there
exists an object x ∈ U such that, for every z ∈ [x]d, there
exists y ∈ U \ [x]d with (z, y) ∈ RB , and there exists
y′ ∈ U \[x]d with (y′, z) ∈ RB .

Note that, sinceRB ↑� andRB ↑r preserve the empty
set, if we prove thatRB ↓r ([x]d) andRB ↓� ([x]d) are the
empty set, then

RB ↑� (RB ↓r [x]d) = RB ↑r
(
RB ↓� [x]d

)
= ∅ �= [x]d,

which contradicts the fact that γ∗B = 1 (by the definition
of the positive region) and we would finish the proof.

Let us prove thatRB ↓r ([x]d) is the empty set. Since
RB is reflexive, we have that RB ↓r ([x]d) ⊆ [x]d and
hence, in order to prove that RB ↓r ([x]d) is the empty
set, we only have to demonstrate that if z ∈ [x]d then
z /∈ RB ↓r ([x]d). Given z ∈ [x]d, by assumption we have
that there exists y ∈ U \ [x]d with (z, y) ∈ RB and, as a
consequence, zRB � [x]d. Therefore z /∈ RB ↓r ([x]d).

Assuming that there exists y′ ∈ U \ [x]d with
(y′, z) ∈ RB , a similar procedure can be given in order
to demonstrate that RB ↓� ([x]d) is the empty set as well.

�
The following result is a direct consequence of the

previous theorem.

Corollary 4. Let (U,A∪{d}) be a decision system, B ⊆
A, and RB be a tolerance relation such that γ∗RB

= 1.
Then, for each class [x]d there exists at least one z ∈ [x]d
such that (z, y) /∈ RB for all y ∈ U \[x]d.

The previous results show the existence of a kind
of representative objects in each class. In this respect,
each object related by RB to one of those representative
objects belongs to the same class and, as a result, those
elements can be used as the center of the clusters in
a classification procedure. Note that the representative
objects may not be unique, that is, there may exist more
than one representative object in each class. Moreover,
in such a case, it could be necessary to consider all of
the representative objects of one class to define correctly
the respective class. Note also that in the case of the
s-indiscernibility relation, such representative objects are
those with at least s + 1 attributes different from all the
objects that do not belong to their classes. We illustrate
these ideas by means of the following example.

Example 6. Consider again the decision system given in
Example 5 and the 1-indiscernibility relation with respect
to the subset of attributes C = {a1, a2, a3}, that is, the
relation R1

C given by

R1
C x1 x2 x3 x4 x5

x1 × × ×
x2 × × ×
x3 × × ×
x4 × ×
x5 × × × ×

.

Note that R1
C is symmetric. Therefore both lower

approximations coincide. Hence, for the decision class
[x1]d = {x1, x2, x3} we have that

R1
C ↓� [x1]d = R1

C ↓r [x1]d = {x2},
and then

R1
C ↑r

(
R1

C ↓� [x1]d
)
=R1

C ↑�
(
R1

C ↓r [x1]d
)
={x1, x2, x3}.

Similarly, for the decision class [x4]d = {x4, x5} we have
that

R1
C ↓� [x4]d = R1

C ↓r [x4]d = {x4},
and then

R1
C ↑r

(
R1

C ↓� [x4]d
)
= R1

C ↑�
(
R1

C ↓r [x4]d
)
= {x4, x5}.

As a result, we have γ∗
R1

C
= 1.

By Theorem 6, we know that at least two
representative elements x ∈ [x1]d and x′ ∈ [x4]d exist
which are related only to objects of their own decision
classes. In this example, those elements are x2 and x4,
respectively. Moreover, since

R1
C ↑r ({x2}) = {x1, x2, x3} = [x1]d
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and
R1

C ↑r ({x4}) = {x4, x5} = [x4]d,

we can classify correctly objects in U according to the
decision attribute {d}, only verifying whether the object
is related either to x2 or x4.

In addition, in the case of including new objects in
our decision system with a missing decision attribute {d},
we only need to check to which object, x2 or x4, it is
related by means of R1

C , in order to classify those. For
example, consider two new objects; x6 with the attributes
{a2, a3, a4} and x7 with the attributes {a1, a4, a5, a6}, for
which the values for the decision attribute {d} are missing.
Our goal is to label these objects according to the attribute
d. In this case, the 1-indiscernibility relation with respect
to the subset of attributes C is depicted in the following
table:

R1
C x1 x2 x3 x4 x5 x6 x7

x1 × × × ×
x2 × × × ×
x3 × × × ×
x4 × × ×
x5 × × × ×
x6 × × × ×
x7 × ×

.

From the previous table it is clear that x6 is related to the
representative object x2 and x7 is related to x4. Therefore,
we can classify x6 as an object satisfying the decision
attribute d and x7 as an object that does not satisfy the
decision attribute d.

It is important to note that the object x7 is not
related to any object with respect to C when we consider
the 0-indiscernibility relation. Therefore, from the
examination of the usual indiscernibility relation, this
object could not be labeled within any decision class.

This example shows that the examination of general
relations increases the number of objects that our system
is able to classify. �

The following result shows that the accuracy
obtained by means of our approach is always greater than
or equal to the accuracy obtained by the standard rough
sets classification by Yao (1996) (Definition 2). Note
that Definition 7 was originally introduced for the relation
IndB . However, it can be straightforwardly extended to
an arbitrary relation RB . Under such an assumption, we
compare the degrees of dependency given by Definitions 7
and 15.

Proposition 7. Let (U,A ∪ {d}) be a decision system,
B ⊆ A, and RB be a tolerance relation. Then γRB ≤
γ∗RB

.

Proof. By Eqns. (7) and (8), we have that R ↓� ([x]d) ⊆
R ↑r (R ↓� ([x]d)) for all x ∈ U . Consequently,

Card(POSRB ) ≤ Card(POS�
RB

), and therefore γRB ≤
γ∗RB

. �

Corollary 5. Let (U,A∪{d}) be a decision system, B ⊆
A, and RB be a tolerance relation such that γRB = 1.
Then, γ∗RB

= 1 as well.

The following example shows that the converse of
the previous result does not hold.

Example 7. Example 6 reveals that γ∗
R1

B
= 1 for B =

{a1, a2, a3}. However, since

R1
B ↓� [x1]d = R1

B ↓r [x1]d = {x2}
and

R1
B ↓� [x4]d = R1

B ↓r [x4]d = {x4},
we have that γRB = 2/5 �= 1. �

From the previous proposition and example, we
conclude that our approach needs to consider fewer
attributes for classification than the traditional one based
on standard rough sets (Pawlak, 1982; Yao, 1996).

5. Conclusions and future work

In this work we have motivated the use of an alternative
definition of approximation operators in rough set
theory. The main difference with respect to other
definitions in the literature is that it uses properties of
an isotone Galois connection to define approximation
operators as the interior and closure operators, from
arbitrary (indiscernibility) relations. We have shown
that our definition satisfies suitable properties in order
to be considered for the needs of lower and upper
approximations. Among those properties we point out
that the lower approximation is always contained in
the original set and the upper one always contains
the original set, independently of the properties of
the indiscernibility relation considered; in other words,
reflexivity, symmetry or transitivity are not required.
Other remarkable properties of approximation operators
are idempotence, monotonicity and duality (in terms of
the set complement).

Moreover, we have applied approximation operators
to a classification task. We have proven that
the proposed approximation operators perform better
classification than standard approximation operators when
the indiscernibility one is not an equivalence relation
and, in addition, it is capable of classifying new
objects according to the similarity with respect to some
representative objects in each class.

For future work, we have different goals. For
instance, the labeled procedure described in Example 6
should be further studied. For this goal, firstly we have to
analyze two natural cases: the one where all new objects
can be classified and the one where some new objects
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cannot be classified. Secondly, we should also analyze
the role of representative objects and how reliable they
are. Last but not least, we will apply this procedure to
practical examples.

Other future goals address the analysis of more
arbitrary relations than those devoted to indiscernibility
(as order relations), the study of the relationship of our
approach to the generalization of rough sets based on
granularity or covering (Zakowski, 1983; Yao, 1998b) and
the extension of our approach to fuzzy settings (Cornelis
et al., 2014; Medina, 2012a).

In addition, due to the close relationship between
rough sets theory and formal concept analysis, it would be
interesting to analyze the possible influence of the results
introduced in this paper, on the classification of objects
and attributes of formal contexts and on (fuzzy) attribute
reduction (Cornejo et al., 2017b; 2018b).
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