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Early identification can significantly improve the prognosis of children with autism spectrum disorder (ASD). Yet existing
identification methods are costly, time consuming, and dependent on the manual judgment of specialists. In this study, we
present a multimodal framework that fuses data on a child’s eye fixation, facial expression, and cognitive level to automat-
ically identify children with ASD, to improve the identification efficiency and reduce costs. The proposed methodology
uses an optimized random forest (RF) algorithm to improve classification accuracy and then applies a hybrid fusion method
based on the data source and time synchronization to ensure the reliability of the classification results. The classification
accuracy of the framework was 91%, which is higher than that of the RF, support vector machine, and discriminant analysis
methods. The results suggest that data on a child’s eye fixation, facial expression, and cognitive level are useful for iden-
tifying children with ASD. Because the proposed framework can separate ASD children from typically developing (TD)
children, it can facilitate the early identification of ASD and may improve intervention programs for children with ASD.
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1. Introduction

Autism spectrum disorder (ASD) is a broad
neurodevelopmental disorder characterized by social
communication disorders, verbal and non-verbal
communication deficits, narrow interests, and repetitive
and rigid behaviors (Amaral et al., 2008). Currently,
the cause of ASD is not clear, and there are no drugs
that can cure it. Because most people with ASD have
social maladjustments or lifelong disorders, they cannot
take care of themselves, which places an economic and
mental burden on society and their families. The World
Health Organization (WHO) identifies ASD as a growing
problem that seriously impacts the quality of life (Durkin
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et al., 2010). Recently, the number of children diagnosed
with ASD has increased dramatically. In terms of global
prevalence, roughly 1 in 160 children suffer from ASD.
In America, 1 in 59 children is diagnosed with ASD
according to the Autism and Developmental Disabilities
Monitoring (ADDM) Network (Christensen et al., 2016).

Early identification can dramatically improve the
prognosis of children with ASD, as the rapid brain
development is beneficial to treatment. Unfortunately,
there are no efficient tools to automate early identification,
and most medical institutes do not have enough ASD
specialists (Zwaigenbaum et al., 2009). According to
statistics, ASD identification is usually delayed until the
age of 4, and approximately 27% of cases are delayed until
the age of 8 (Halim et al., 2018). Most identification tools
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in use today are based on standardized questionnaires
for parents or specialists, such as the Modified Checklist
for Autism in Toddlers (M-CHAT) (Bernier et al., 2011)
and the Child Behavior Checklist (CBCL) (Achenbach
and Rescorla, 2000). Specialists administer identification
tools in rigorously controlled clinical settings, and they
usually take several hours to complete (Jaiswal et al.,
2017). Because these manual tools are time consuming
and difficult to apply, there are major technological
obstacles to identifying ASD in children.

Studies on children with ASD have generated
an enormous amount of treatment and diagnostic
data. Following the development of information
and communication technologies, such as mobile
Internet, smart sensors, and cloud computing, data-driven
intelligent analytics are increasingly used in the fields of
medicine and education (Xu et al., 2017). For example,
a medical study may analyze the characteristic data of its
patients to determine the best treatment approach, with the
added benefits of both improving treatment efficiency and
reducing medical costs. Currently, a lot of data for ASD
diagnosis are being generated. Historical data should be
used during diagnosis and treatment as a basis of judgment
for isolate children with ASD.

Machine learning and smart sensor data have
recently been used for the early identification of autism,
resulting in a simple, low-cost method that holds promise
in distinguishing between ASD children and typically
developing (TD) children. Tariq et al. (2018) utilized
a machine learning algorithm to analyze home videos
of children, which greatly sped up the diagnosis of
ASD in those cases with accurate outcomes. Using
a recurrent deep neural network, Zunino et al. (2018)
similarly processed video clips of children grasping a
bottle and accurately distinguished the children with ASD
from TD. Jiang et al. (2019) also proposed a machine
learning method based on eye fixation to differentiate
ASD from TD, achieving a classification accuracy of
86%. However, although these identification methods
show promise, most focused on a single-modal approach,
which is not diversified enough.

In fact, researchers have proposed a variety of
theoretical models to explain the behavioral or cognitive
abnormalities of individuals with ASD from different
perspectives, which can be used as the theoretical basis
for the early identification of ASD. From the perspective
of social cognitive, there are the theory of mind and the
theory of weak central coherence. From the perspective
of neuropsychology, there is the theory of broken mirror.
According to the theory of mind, it is believed that the
function of the eye direction detector (EDD) module
of individuals with ASD is impaired, resulting in their
weakened ability to detect and process information. They
cannot understand or speculate others’ psychological
state (Remington et al., 2009). The theory of weak

central coherence holds that TD (typical development)
individuals pay attention to both the global and the
local information when processing the two kinds of
information and can integrate them. However, the central
coherence of ASD is weak, which makes it hard to extract
the global information for information processing. It
also affects their attention to different information, such
as less attention to social information, more attention
to non-social information and restricted interest objects
(Müller and Frith, 2005). The theory of broken mirror is
proposed based on the abnormalities of the mirror neuron
system (MNS) in ASD. The MNS helps individuals to
imitate others’ expression in social activities. However,
the MNS of individuals with ASD is damaged, and they
have difficulties in imitating others’ facial expressions
(Wang and Chen, 2010).

Based on the above theories, researchers have
started some attempts to identify children with ASD
using behavioral or cognitive data. Compared with TD
children, ASD children have defects in their expression
imitation abilities. In particular, Rozga et al. (2009)
identified defects in the facial mimicry responses of
high-functioning ASD individuals. Likewise, Samad
et al. (2018) analyzed expression muscles to evaluate
whether ASD individuals could imitate other individuals’
expressions, and they recognized spontaneous expression
imitation as a behavioral marker of ASD in children.
Jaiswal et al. (2017) developed an algorithm that
used facial expression data to automatically distinguish
between participants with attention deficit hyperactivity
disorder (ADHD) and those with ASD. Social cognition
refers to the ability to perceive and interpret social
information, and ASD children also have social cognition
impairments (Sasson et al., 2011b).

Previous studies have identified many social
cognition impairments that ASD individuals frequently
possess, including those that affect motion prediction
(Hubert et al., 2007), spatial order (Sasson et al., 2007),
target recognition (Sasson, 2006), affect recognition
(Eack et al., 2015), and the advanced theory of mind
(Baron-Cohen et al., 1997). Furthermore, eye fixation
is commonly used to measure social preferences and
evaluate social attention in ASD children. Constantino
et al. (2017) determined that infants with ASD
demonstrate atypical behavior in their preferential
attention as well as in the timing, direction and targeting
of their eye movements. These behaviors are strongly
influenced by genetic factors.

Shaddy (2006) found that the pupil diameters of ASD
children decreased when they were watching faces, while
those of TD children increased. This result indicates
that the ASD children, unlike the TD children, were not
interested in faces. It also demonstrates that a child’s
pupil response can be used to distinguish between ASD
and TD children. Similarly, Wang et al. (2018) found
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that ASD children have abnormal face processing and
eye-tracking skills and that analyzing these features may
aid in understanding social communication disorders in
ASD children, as well as provide behavioral indicators
for early ASD identification. Overall, these research
studies suggest that data on a child’s eye fixation,
facial expression, and cognitive level can be useful for
distinguishing between ASD and TD children.

Notably, multi-view learning has been widely used
in biomedical fields, and many achievements have been
made in bioinformatics and neuroimaging regarding
gene expression clustering, patient classification, brain
network analysis, and biomarker identification. In
bioinformatics and neuroimaging, multiple experiments
can be conducted on a set of samples to obtain more types
of patient data (for example, image data, physiological
signals, behavioral data, or text related to the same
patients), and the resulting heterogeneous data can be
used to problem-solving issues with the methodology
(Serra et al., 2018). For example, Rundo et al. (2017a)
proposed an automated prostate gland segmentation
method using multispectral T1-weighted and T2-weighted
magnetic resonance imaging (MRI). In contrast to a
traditional single processing pipeline applied on either
T1-weighted or T2-weighted MRIs, their multi-view
approach combined T1-weighted and T2-weighted MRI
structural information, which significantly enhanced
the prostate gland segmentation. In addition, Rundo
et al. (2017b) developed an automated multimodal
positron emission tomography (PET) imaging and
MRI segmentation method designed for Gamma Knife
treatments, since the joint use of MRI and PET images can
convey different but complementary imaging information
to enhance treatment planning.

Some studies have evaluated the use of multimodal
data specifically for early ASD identification. For this
purpose, Halim et al. (2018) combined questionnaires
and home videos in their machine learning algorithm,
and they obtained a significant accuracy improvement
over single-modal data models. Drimalla et al. (2018)
developed a predictive model taking the subjects’ voices
and facial expressions as its input. This model detected
ASD in children more accurately than a single-modal
approach. To investigate the behavioral markers of
ASD, Samad et al. (2018) combined data on facial
expression, visual scanning, and eye-hand coordination,
and they concluded that multimodal data may provide
quantitative insights into ASD that can facilitate early
detection. Jaiswal et al. (2017) fused questionnaire, facial
expression, head pose, and body posture data to identify
ASD in children, and they obtained a higher identification
accuracy when using multimodal rather than single-modal
data.

Compared with single-modal data, multimodal data
provide more features and can produce better recognition

results. However, multimodal data fusion is still in its
infancy in the field of ASD identification in two important
ways. First, existing studies have adopted weak classifiers
and traditional ensemble classifiers with low accuracies
and stabilities, and the over-fitting problem can be further
optimized. Second, the fusion methods in previous studies
have ignored the diversity of their data sources and time
synchronization, both of which affect the objectivity and
accuracy of their fusion results.

For these reasons, in this study, we collected eye
fixation and facial expression data from participants while
they watched a short video, as well as cognitive level
data from an interactive platform. After fusing the
data, we then conducted early ASD identification with a
multimodal framework. The main contributions of this
study are as follows: (i) for the first time, data on a child’s
eye fixation, facial expression, and cognitive level were
used for the early intelligent identification of ASD, and
they were verified to be useful indicators for identifying
ASD in children; (ii) different discriminative abilities
of data on a child’s eye fixation, facial expression, and
cognitive level in ASD recognition task were explored,
as well as the information complementarity of these
data; (iii) an optimized random forest (RF) algorithm
based on weighted decision trees was used to improve
the classification accuracy, and a hybrid multimodal
data fusion framework based on the data source and
synchronization was developed to ensure the reliability of
the classification results.

The methodology of the proposed framework is
presented in Section 2. The feature extraction method is
described in Section 3. The improved RF classification
algorithm is presented in Section 4, wherein the details
of the hybrid fusion method are also provided. The
experiment results are provided in Section 5. Finally, the
conclusions are given in Section 6.

2. Methodology

2.1. Data. This study was approved by our institutional
review board. The data used in this study were collected
from two groups of participants: (i) 50 ASD children
aged 3–6 years (median = 4 years 6 months, standard
deviation = 9 months) and (ii) 50 TD children aged 3–6
years (median = 4 years 8 months, standard deviation =
7 months). The ASD children were recruited from special
education schools, and their diagnoses met the criteria of
Diagnostic and Statistical Manual of Mental Disorders,
4th Edition. Aside from ASD, these children were not
diagnosed with any other disorders. The TD children
were recruited from a regular kindergarten, and these
children were screened to exclude any with psychiatric
or neurological disorders, including ASD. There was
no significant difference in age or sex between the two
groups. The children’s parents provided written informed
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consent for their participation in this study.
The stimulus was a video clip with social and

non-social information. The social information was
a character with facial expressions, actions, and a
voiced message. The non-social information includes
backgrounds and ASD circumscribed interests, such as
line-up trains and spinning wheels. We intended to
analyze data reflecting the children’s attention, cognitive
abilities, and facial expression imitation abilities. We
collected data on eye fixation and facial expression
while the children watched the video and, based on the
data, then analyzed the children’s social attention, e.g.,
preferences and expression imitation abilities (Traynor
et al., 2019; Manfredonia et al., 2018). In addition,
the children’s social cognitive abilities were analyzed
using their responses to the social cognition questions
(Kerrianne et al., 2019).

2.2. Proposed framework. We developed a
multimodal framework capable of automatically
identifying ASD in children. In the data acquisition
stage, multimodal data were collected with non-invasive
sensors, including a Tobii Eye Tracker, a video camera,
and a personal computer. These sensors provided
information on eye fixation, facial expression, and
cognitive level, respectively. Next, the features were
extracted. First, the number of fixation coordinates in
each cluster was extracted as an eye fixation feature using
the K-means algorithm. Second, the number of frames
containing a smiling expression in each time interval was
extracted as a facial expression feature with the use of an
improved facial expression recognition algorithm boosted
by soft label. Finally, the answers and response times
collected with an interactive question-answer platform
were extracted as cognitive level features. Features with
the same source and synchronization then underwent
feature fusion, and an optimized RF algorithm based on
weighted decision trees was applied to the classification
model, which became the input for the decision fusion
stage. After this stage, the final classification result was
obtained. The experimental scene and the proposed
framework are shown in Fig. 1.

2.3. Formal definition of identifying children with
ASD. In our study, multimodal data on eye fixation,
facial expression, and cognitive level were collected from
the children. The identification of children with ASD was
achieved using the below definition and formulas.

Definition 1. The identification of children with ASD is
a learning prediction function:

c → {
0, 1

}
,

c (f1, . . . , fs) =

{
1, the child was identified ASD,

0, otherwise,
(1)

where f1, f2, . . . , fs represent the features extracted from
the data on eye fixation, facial expression, and cognitive
level.

As seen in Definition 1, the identification of
ASD is binary classification based on behavioral data,
physiological data, and cognitive data. Using the
learning prediction function c , children with ASD can be
distinguished from TD children. There are two problems
to be solved: (i) how to extract features from the different
data effectively and (ii) how to identify the child using
those features and the fused classification results. Feature
extraction is done to extract effective information from
the data, and usually the features are described with a
structured mathematical form. The differences between
ASD and TD children can be reflected by different
features. Therefore, if all the distinguishing features are
fused and sent to the network for training, the accuracy of
the identifications will improve. The fusion features of the
j-th child can be represented as

Ij =
[
I
(j)
E , I

(j)
F , I

(j)
A , I

(j)
T

]
, (2)

where I represents the distinguishing feature vector, E
and F represent eye fixation data and facial expression
data, and A and F represent the answers to questions
and response time to questions in the cognitive data,
respectively. Therefore, the sample set D can be defined
as:

D =
{(

I1, y1
)
,
(
I2, y2

)
, . . . , (In, yn)

}
, (3)

where (In, yn) is the n-th training sample, and yn ∈ (0, 1)
is the label of the n-th training sample, indicating whether
or not the child has ASD.

3. Feature extraction

3.1. Eye fixation features. Numerous studies have
demonstrated that ASD children have atypical attention
and processing patterns for both social and non-social
information (Greene et al., 2011). ASD children struggle
to integrate information expressed by the social cues
of eye gaze, head orientation, and body orientation
(Ashwin et al., 2015), and are slow to detect social
targets when they are in complex environments (Zhao
et al., 2017). These atypical attention and processing
patterns are reflected in the number of fixation points
in different information areas. ASD children usually
have more fixation points in non-social information areas
than social areas, while TD children have more fixation
points in social information areas than non-social areas
(Chitategmark, 2016). Moreover, autistic children give
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Fig. 1. Experimental scene and the proposed framework.

perseverative attention to objects related to their own
circumscribed interest items (Sasson et al., 2011a).

Following these observations, we divided the video
interface into different parts and counted the number of
fixation points in each part. The totals were used as
classification features to distinguish between ASD and
TD children. Figure 2 contains a segmented video image
with a social information area, a non-social information
area, and a circumscribed interest area (the spinnyanging
wheels). The colors of the areas represent the extent of the
participants’ attention.

In our study, the ASD children had a visual
preference for the non-social information areas and
circumscribed interest areas, while the TD children paid
more attention to the social information areas. In
previous studies, the interface was empirically divided
into different areas of interest (AOI) (Yi et al., 2014).
However, the AOI distribution is random and fragmentary
in complex scenarios, and it is unreliable to divide these
AOI without statistics. For more accurate results, we
performed the k-means algorithm as outlined in a previous
study (Liu et al., 2016), in which fixation points are
clustered and divided into k clusters with distinct cluster
centroids. After k cluster centroids were designated,
each fixation coordinate was assigned to the cluster with
the closest cluster centroid. The number of fixation
points in each cluster was extracted as a feature, and
k clusters corresponded to k features. Compared with
the AOI, the k-means algorithm used in this study was
a data-driven method, and the extracted features were
consequently more accurate and objective. The features
extracted from the eye fixation data can be represented as
E1, E2, . . . , Ek, such that E1 is the number of fixation
coordinates in the first cluster and Ek in the k-th cluster.

3.2. Facial expression features. Earlier studies have
found significant differences in the facial expression
imitation abilities of ASD and TD children (Manfredonia
et al., 2018). The stimulus used in this study encouraged
the children to spontaneously imitate the on-screen facial
expressions, and the gathered data were used to evaluate
their expression imitation abilities. This approach could
be further studied in other fields, such as computer vision,
where a facial expression recognition (FER) algorithm
could be used to analyze children’s facial expression
imitation ability, which may be a feasible way to detect
children with ASD. Owing to the content of the stimulus,
we only detected the smiling expression in this study.

For our purposes, FER remains challenging due
to the complexities and ambiguities in the facial
expressions of ASD children, who usually exhibit a
combination/mixture of emotions instead of a single
emotion. Thus, traditional FER is not optimal for
analyzing the facial expressions of children with ASD
(Trevisan et al., 2018; Gan et al., 2019). To address
this problem, our previous research on facial expression
recognition based on the convolutional neural network
(CNN) and the soft-label method was used to detect
the facial expression of the children (Gan et al.,
2019). A soft label can annotate multiple labels
on a combination/mixture expression, thus providing a
more useful description of complex expressions. The
framework of the proposed facial expression detection
algorithm is shown in Fig. 3. This framework mainly
involved three steps: (i) a CNN model was trained
using hard-label queries, (ii) soft labels were obtained by
fusing the latent label probability distribution predicted
by the trained model, and (iii) multiple base classifiers
were trained to improve the generalization performance
of the ensemble classifier. The architecture of the soft
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(a) (b)
Fig. 2. Relationship between the eye fixation features and the different information areas: the eye fixation features of the ASD children

(a), the eye fixation features of the TD children (b). The areas represent the different interest areas: ‘A’ indicates the non-social
information area, ‘B’ the circumscribed interest area, and ‘C’ the social information area.

label constructor and base classifiers were initialized by
a VGG16 model (Parkhi et al., 2015) containing 13
convolution layers and 3 fully connected layers. The
convolution layers were divided into 5 groups, which were
followed by 5 max pooling layers, and the resolution of
the output feature maps were 1/32 of the input image.
Feature maps were converted to prediction scores at the
fully connected layers. However, the last fully connected
layer was modified to give the final result of the expression
recognition. Each section of 40 frames was used as a time
interval, and the number of frames containing a smiling
expression in each time interval was taken as a facial
expression feature. The features can be represented as
F1, F2, . . . , Fi, such that F1 is the number of smiling
frames in the first time interval and Fi in the i-th time
interval.

3.3. Cognitive level features. ASD children struggle
to integrate information expressed by the social cues
of eye gaze, head orientation, and body orientation (Yi
et al., 2013), and are slow to detect social targets in
complex environments (Zhong et al., 2019). Thus, we
developed questions based on the social information in
the stimulus, and the response time for each question
was used to describe the different cognitive levels of the
two groups. Each participant answered 6 questions after
they watched the video. In total, there were 14 features:
6 answers, 6 response times, 1 total score, and 1 total
response time. The interactive platform used to collect
the cognitive level data is shown in Fig. 4. The feature
values were normalized with min-max normalization. As
shown in Table 1, the two types of cognitive features were
their answers to the questions and response times for the
questions.

4. Classification and the data fusion method

4.1. Classification algorithm. After feature
extraction, a classification algorithm with different
feature fusion layers was implemented. We developed an

improved RF algorithm based on weighted decision trees.
RF is an ensemble learning algorithm with a multitude of
decision trees constructed by randomly sampling from the
training and feature sets. RF prediction is decided by the
votes from all of the decision trees to avoid over-fitting
as much as possible. To reduce the instability caused by
different prediction abilities among the decision trees, we
evaluated the classification abilities of the decision trees
according to the mutual information and assigned weights
for each decision tree. Mutual information is a measure
used in information theory to calculate the correlation
between two variables, and it represents the uncertainty
of a random variable after observing another random
variable.

The process for implementing the improved RF
algorithm using the weighted decision trees is described
as follows:

Step 1. Create a decision tree (Kantavat et al., 2018). For
a sample data set D, if the samples can be divided into
m classes, the probability that a sample belongs to the
m-th class is Pm, and the Gini index of the probability
distribution is:

Gini(p) = 1−
M∑

m=1

p2m. (4)

A larger Gini index represents greater uncertainty; a
smaller Gini index indicates higher purity.

Table 1. Data types and feature descriptions.
Data Features Descriptions

Answers
to

questions
A1, . . . , An, As

An is the score to the
n-th question. As is
the total score.

Response
time to

questions
T1, . . . , Tm, Ts

Tm is the response
time to answer the
m-th question. Ts is
the total response time.
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Fig. 3. Framework of the proposed facial expression detection algorithm.

The sample data set D can be divided into two classes
(D1 and D2) by a feature, after which the Gini index of
the data set D can be expressed as

Gini(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (5)

Creating a decision tree involves creating new feature
nodes with the smallest Gini(D) until the decision tree
stops growing.

Step 2. Create an RF. The RF is an ensemble learning
algorithm with a multitude of decision trees constructed
by randomly sampling from the training and feature
sets. For example, h(X, θk) is a decision tree for k =
1, 2, . . . ,K , where X is a multi-dimensional vector set
representing the training data and θk is an independent
and identically distributed random vector set extracted
from X . In this equation, θk determines the classification
ability of the decision tree, and K represents the number
of decision trees. The RF prediction is decided by the
votes from all of the decision trees to avoid over-fitting as
much as possible, and the final prediction of the RF can

Fig. 4. Interactive platform that collected cognitive level data.

be given as

H(X) = argmax
Y

K∑

k=1

I (h(X, θk) = yi) , (6)

where h(X, θk) is the prediction of the k-th decision tree,
Y represents the actual label vector yi ∈ Y, i = 1, . . . ,m,
and I(·) represents the indicative function.

Step 3. Assign a weight to each decision tree based on the
mutual information.

Zj represents the vector of the j-th feature of the
training samples. The mutual information of Zj and Y
can be used to calculate the influence of a feature on the
final result through the following equation:

I(Zj ;Y ) =

∫ ∫
P (Zj , Y ) log

P (Zj, Y )

P (Zj)P (Y )
dz dy

= H(Y )−H(Y |Zj),

(7)

where P (Zj , Y ) represents the joint probability
distribution of Zj and Y , P (Zj) represents the marginal
distributions of Zj , P (Y ) represents the marginal
distributions of Y , H(Y ) represents the entropy of Y ,
and H(Y |Zj) represents the entropy of Y after the given
variable Zj .

The voting weight of a decision tree should be the
sum of the mutual information of all of its features and
can be defined as follows:

p = α
J∑

j=1

I(Zj ;Y ), (8)

where I(Zj ;Y ) represents the mutual information of the
Zj and Y , J represents the number of features, and α
represents the normalization factor of the voting weight.

Step 4. The final prediction of the RF based on the
weighted decision trees.

H = {h(X, θ1), h(X, θ2), . . . , h(X, θk)} represents
the RF model, and the final prediction of the model is
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determined as follows:

max
{
c|ci =

K∑

k=1

pkI(h(X, θk) = yi),

yi ∈ Y, i = 1, . . . ,m
}

(9)

where pk is the voting weight of the k-th decision tree and
I(·) represents the indicative function. If the prediction
of h(X, θk) is yi, the value of I(·) is 1. Otherwise, it
is 0. Here ci is the weighted voting result, and the final
prediction of the model is the maximum ci. This improved
RF algorithm based on weighted decision trees is shown
in Fig. 5.

4.2. Hybrid fusion method based on the data source
and time synchronization. Multimodal data fusion
processes multiple information sources with different
features and time series. There are three fusion methods:
feature fusion, decision fusion, and hybrid fusion (Poria
et al., 2017). For feature fusion, the features extracted
from various modalities are fused as a general feature
vector, which was analyzed for a final result. In decision
fusion, the features of each modality are classified
independently, and the classification results of different
modalities were identified as sub-decisions, which were
fused as a decision vector to gain the final result. The
advantage of feature fusion is that the complementary
information between various multimodal features was
used at an early stage, and can potentially provide a
better task accomplishment, but the final classification
result is not reliable if a modality is lost or wrong.
Decision fusion is a more robust approach that combines
the sub-decisions of each modality, but it does not take
advantage of complementary information at the early
stage. Hybrid fusion combines the advantages of feature
fusion and decision fusion, and it can flexibly and easily
fuse multi-source asynchronous data. In this study, the
data were collected from different sensors, and the data
collection time was asynchronous. Hence, the hybrid
fusion process was divided into two levels. The data
with the same source and synchronization were fused
in the first level for feature fusion, and then the results
were fused in the second level for decision fusion. The
multimodal data fusion method is shown in Fig. 6.

In Fig. 6, we fused the data from the same source and
collection time. The behavioral data on eye fixation and
facial expression were collected synchronically, as were
the cognitive data on answers and response times.

In the first fusion level, the eye fixation feature vector
and the facial expression feature vector were connected
and were sent into the feature pool of RF1 for feature
selection. Similarly, the feature vectors of answers and
response times were connected and sent into the feature
pool of RF2 for feature selection. As a result, the

behavioral data were fused by RF1 and the cognitive
data were fused by RF2. To improve the prediction
abilities of our study, we used the improved RF algorithm
(RF1 and RF2) to assign weights to each decision tree.
Those weights were calculated according to the mutual
information, as outlined in Eqn. (8). The classification
method was given in Eqn. (9).

In the second fusion level, we fused the decisions
of RF1 and RF2. The decision fusion weight of RF1
was the sum of the mutual information of all of its
decision trees, and the decision fusion weight of RF2
was calculated in the same way. Then, the decisions
and their fusion weights were multiplied respectively, and
the results were added and assigned to R. Compared
with the threshold, if R was greater than or equal to
the threshold, the final result was 1; otherwise, the
final result was 0. The threshold was obtained by
traversing all R. For each traversal, the threshold was
set to the current R, and the classification accuracy was
calculated under this threshold setting. After all traversals,
all of the classification accuracies were compared, and
the threshold corresponding to the highest classification
accuracy was set as the final threshold.

5. Results

5.1. Validation method. During the experiment,
each participant (50 ASD children and 50 TD children)
generated a sample containing data on eye fixation, facial
expression, and cognitive level. In a machine learning
framework, the data set is usually divided into the test set
and the training set. The training set is used to train the
model, while the test set is used to evaluate its ability to
generalize (Al-Jarrah et al., 2015). To provide the model
with enough training samples, we used the leave-one-out
cross-validation method (Xu et al., 2018). If the size of
the data set D was n, n−1 samples were used for training
and the remaining one sample was used for testing. One
sample was taken from D and added to the test set until
all of the samples were tested, and then the test accuracy
average was calculated as the final result.

5.2. Analysis of time complexity. The improved RF
algorithm proposed in this paper used decision trees as the
base classifier, where the number of base classifiers was
K and the number of samples was n. Two random forest
models were used to fuse the behavioral features and
cognitive features, respectively. The feature dimension
selected by the RF algorithm was z. In the experiment,
the leave-one-out cross-validation method was performed.
Thus, each kind of fusion feature needed to run the RF
algorithm n times. In the process of constructing the
decision tree, the growth of the tree was not pruned,
so the time of training each base classifier was less
than O(nz logn). Furthermore, the weights of the



An intelligent multimodal framework for identifying children with autism spectrum disorder 443

1( , )h X � 2( , )h X �

. . .

( , )kh X �

calculate mutual
information

calculate mutual
information

calculate mutual
information

. . .

calculate the 
voting weight

calculate the 
voting weight

calculate the 
voting weight

prediction prediction prediction

label 1 label 2  . . . label n

maximum

the final prediction

 

Fig. 5. Improved RF algorithm.

decision tree were calculated by the mutual information
of samples’ features and labels, and the time complexity
of the mutual information was O(z). Therefore, the
time complexity of the improved RF algorithm for each
fusion feature was O(Kz(1+n logn)), and the total time
complexity of the algorithm was O(2Kz(n+ n2 logn)).

5.3. Performance of the proposed framework.
As shown in Table 2, we compared the classification
accuracies of different classifiers for decision fusion
and hybrid fusion, respectively. The best classification
accuracy was 91%, and it was obtained with the improved
RF algorithm and the hybrid fusion method proposed in
this study. The best accuracies were 91% for hybrid fusion
and 87% for decision fusion. The average accuracies were
86.25% for hybrid fusion and 82% for decision fusion.
Notably, the hybrid fusion method proposed in this paper
had the highest individual and average values. Therefore,
the results indicate that the proposed framework can
effectively separate ASD and TD children.

Meanwhile, we compared the classification
accuracies of single-modal and multimodal fusion
classification methods, as shown in Table 3. For
single-modal classification (eye fixation, facial
expression, answers, or response time), the maximum
classification accuracy was 75% with the data of response

time. The proposed hybrid fusion method had a stronger
performance (accuracy 91%) than the decision fusion
method (accuracy 87%).

5.4. Complementary characteristics of different
data modalities. For ASD identification, we obtained
a classification accuracy of 69% using only the data of
eye fixation, and it was 66% using the data of facial
expression, and 74% using the data of answers, and
75% using response time. For hybrid fusion based on
the data source and time synchronization, there were
two stages: (i) feature fusion in the first fusion level
and (ii) decision fusion in the second fusion level.

Table 2. Accuracies of the different classifiers and fusion meth-
ods (%).

Classifier
Decision

fusion
Hybrid
fusion

RF 82 86
SVM 78 83
DA 81 85

improved RF
algorithm

87 91

AVG 82 86.25
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Fig. 6. Multimodal data fusion method. RF1 and RF2 are two random forests used for feature selection: here hm(x) represents
a decision tree in the random forest,

⊕
is the arithmetic operator used to perform the addition operation, and

⊙
is the

multiplication operator.

Using hybrid fusion, we obtained an accuracy of 91%,
which was significantly greater than that using single
modality, indicating that hybrid fusion may combine
the complementary information of single modality and

Table 3. Accuracies of single-modal and fusion classification
methods(%).

Accuracy(%)
Eye

fixation
Facial

expression
Answers

Response
time
(%)

Single-modal 69 66 74 75
Decision

fusion
87

Hybrid
fusion

91

effectively enhance the classification performance.

To further investigate the complementary
characteristics of different data modalities, we analyzed
the confusion matrices of eye fixation classification,
facial expression classification, answer classification
and response time classification, which could reveal
the advantages and weakness of each modality. The
confusion matrices of each data modality were shown in
Fig. 7. We observed that eye fixation has the advantage of
classifying ASD (82%) compared with facial expression
(58%), whereas facial expression outperforms eye fixation
in recognizing TD (74% versus 56%). It is difficult to
recognize TD using only eye fixation and ASD using
only facial expression, and the advantages of eye fixation
and facial expression are complementary information
to each other to improve the identification accuracy.
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Meanwhile, it can also be seen that response time has
the advantage of classifying ASD (88%) compared with
answer (72%), whereas answer outperforms response
time in recognizing TD (76% versus 62%), indicating that
there is complementary information between the data of
answers and response time.

Moreover, the misclassifications of each data
modality are different. Eye fixation misclassifies more TD
as ASD (44%), whereas facial expression misclassifies
more ASD as TD (42%). Answers misclassify more
ASD as TD (28%), while response time misclassifies
more TD as ASD (38%). These results indicate that
eye fixation, facial expression, answers and response
time have different discriminative powers for recognition
ASD and TD, and they have important complementary
characteristics. As shown in Table 3, combining the
complementary information of them, hybrid fusion can
significantly improve the classification accuracies (91%).

6. Conclusions

Early identification of ASD in children can dramatically
improve their prognosis and greatly benefit their
treatment. We have presented an intelligent multimodal
framework to identify ASD in children. Our main
contributions are threefold. First, we have used a
novel combination of eye fixation, facial expression, and
cognitive level data for early ASD identification, and
they were verified to be useful indicators for identifying
ASD in children. Second, different discriminative abilities
of data on a child’s eye fixation, facial expression, and
cognitive level in ASD recognition task were explored,
as well as the information complementarity of these
data. Third, we have presented an optimized random
forest algorithm and a multimodal data fusion framework
that uses a hybrid fusion method based on the data
source and synchronization to ensure the reliability of
the classification results. Our results indicate that data
on a child’s eye fixation, facial expression, and cognitive
level can be useful for identifying ASD in children. The

Fig. 7. Confusion matrices of single modality classification and
hybrid fusion classification. Each row of the confusion
matrix represents a predicted class and a column repre-
sents the target class. The element (i, j) is the percent-
age of samples in class j that is predicted as class i: eye
fixation (a), facial expression (b), answers (c), response
time (d).

proposed framework can separate ASD children from
TD children and, consequently, can facilitate early ASD
identification and support intervention programs for ASD
children.

This study has some limitations. First, the number
of samples used was relatively small. Increasing this
number would improve the accuracy and stability of the
algorithm, although it is difficult to increase the number
of ASD children sampled. If the number of TD children
sampled is too high, the positive and negative samples
will be imbalanced, thus affecting the results. In a
future study, we can apply a penalty weight method
to solve this problem (Yi et al., 2013; Zhong et al.,
2019). Second, we only combined data on eye fixation,
facial expression, and cognitive level, ignoring other
data modalities such as EEG, peripheral physiological
signals, and body movements (Halim et al., 2018). In
a future study, we plan to compare the identification
abilities of different data modalities to construct a more
comprehensive and effective framework.
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