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Digital signal processing, such as filtering, information extraction, and fusion of various results, is currently an integral
part of advanced medical therapies. It is especially important in neurosurgery during deep-brain stimulation procedures. In
such procedures, the surgical target is accessed using special electrodes while not being directly visible. This requires very
precise identification of brain structures in 3D space throughout the surgery. In the case of deep-brain stimulation surgery
for Parkinson’s disease (PD), the target area—the subthalamic nucleus (STN)—is located deep within the brain. It is also
very small (just a few millimetres across), which makes this procedure even more difficult. For this reason, various signals
are acquired, filtered, and finally fused, to provide the neurosurgeon with the exact location of the target. These signals
come from preoperative medical imaging (such as MRI and CT), and from recordings of brain activity carried out during
surgery using special brain-implanted electrodes. Using the method described in this paper, it is possible to construct a
decision-support system that, during surgery, analyses signals recorded within the patient’s brain and classifies them as
recorded within the STN or not. The constructed classifier discriminates signals with a sensitivity of 0.97 and a specificity
of 0.96. The described algorithm is currently used for deep-brain stimulation surgeries among PD patients.

Keywords: classification, decision support system, signal filtering, data fusion, temporal analysis.

1. Introduction

Most modern medical procedures cannot be safely
performed without technical support. This is particularly
observed in medical diagnostic and surgical procedures.
Medical imaging techniques, such as computed
tomography (CT) and magnetic resonance imaging
(MRI) scans, are essential diagnostic tools and are
obligatory prerequisites for most advanced surgeries.
Both types of scans are possible because of advanced
mathematical solutions that recreate cross-sections of
the human body from registered x-ray or magnetic data.
It is clear that modern medicine cannot advance further
without aid from applied mathematics and computer
science.

One area in medicine that is very much dependent
on computer science is functional neurosurgery. Here,
the target of the surgery is often located deep within a
patient’s brain, and without computerized aid, virtually
impossible to localize. In the case of deep-brain
stimulation (DBS) surgery for Parkinson’s disease (PD),

even with the aid of CT and MRI, only an approximate
location of the surgical target can be obtained. This is
why additional computational aid is required.

Standard DBS surgery for PD is conducted in two
steps: (i) using the combined data from CT and MRI
scans, a rough localization of the subthalamic nucleus
(STN) in the 3D space of a patient’s head is determined,
and (ii) according to these results, a more precise
localization of the STN is obtained using neurosurgical
microrecording. The latter is an analysis technique
performed by human experts during surgery.

Various mathematical methods of signal analysis
can be applied to STN localization with great success
rates. These methods, such as wavelet multiresolution
analysis, give deeper insights into the data obtained
from the microrecordings. This application of advanced
mathematics facilitates distinguishing between signals,
which – for a person without medical training – could be
mistaken for white noise.

The data acquisition is done as follows: using the
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3D guidance frame (Schaltenbrand, 1977), an array of
three to five parallel microelectrodes is inserted into the
patient’s brain and directed towards the expected location
of the STN. The electrodes are then advanced through the
patient’s brain. Starting from about 1 cm above the STN,
electrodes are advanced in increments of 1 mm. At each
step, a simultaneous recording of 10 seconds, on average,
is obtained from all electrodes. These steps are repeated
until the electrodes pass safely through the STN, and the
recordings indicate the presence of another brain structure
(the SNr), which is located below the STN (Israel and
Burchiel, 2011; Schaltenbrand, 1977).

The distinct hyperactivity of the STN allows an
experienced neurosurgeon to distinguish the localization
of the STN from other brain regions by simply looking
at the microrecording (Levy et al., 2000; Parent and
Hazrati, 1995; Shamir et al., 2012; Hutchison et al., 1998;
Ciecierski et al., 2014b; Mandat et al., 2011; Novak
et al., 2007; Kano et al., 2006).

However, there are some difficulties associated with
the procedure. The STN is a very small structure (9
× 4 × 7 mm) (Israel and Burchiel, 2011; Nieuwenhuys
et al., 2007) that can only be approximately located using
CT and MRI scans. Further, the hyperactivity of the STN
(Israel and Burchiel, 2011), which is required for clear
interpretation of the microrecordings by an expert, does
not always reach levels that provide obvious distinction.
The above reasons make this method very subjective,
while misdetection of the STN could lead to severe
medical complications (Temel et al., 2005), including
depression, mania, and other severe mood alterations
(Mallet et al., 2007; Mandat et al., 2006; Anderson and
Rogers, 2009).

Therefore, it is obvious that the accuracy of STN
localization is of highest priority for the surgical treatment
of PD symptoms. Further, the duration of the procedure
is also crucial, as general anaesthesia cannot be applied
owing to its significant effects on brain physiology (Saleh
et al., 2015; Ho et al., 2018).

By applying the author’s expert selection of various
filters and fusing the results they provide, a novel
algorithm has been developed that identifies whether
a given signal has been registered within the STN.
Classifiers, built according to this algorithm, provide
discrimination with a sensitivity of 0.97 and a specificity
of 0.96, which is more than satisfactory, even for
medical standards (Freeman and Moisen, 2008). The
fusion of information obtained from medical imaging,
along with the results provided here, can facilitate
the creation of an expert decision-support system that
provides neurosurgeons with an optimized way to localize
the STN.

The computational part of the surgery is conducted
as follows: The approximate 3D localization through CT
and MRI scans, calculation of the 3D vectors guaranteeing

a safe approach to the target within the patient’s head, and
computerized recording of brain activity in selected areas
have been improved substantially. This extension, through
computational analysis of brain recordings, facilitates a
shorter duration and better precision during surgery.

The rest of the paper is structured as follows.
Section 2 provides an overview of related works.
Section 3 formulates the goal of the paper, describes input
data, and defines discriminative filters. Section 3 also
defines the final classifier and algorithms based on it. In
Section 4, the classification results are evaluated. Various
classification algorithms are run with different subsets of
filters. Finally, Section 5 concludes the paper.

2. Related works

The problem of distinguishing recordings acquired within
the STN from those acquired in other parts of the brain has
been covered in the literature for over ten years. There
are various approaches and solutions to this problem. A
review of some of the most notable papers related to this
subject is provided below:

Moran et al. (2006) aim to detect the STN entry and
exit points on the track of the electrode using the Bayesian
approach on the RMS value of the recorded signal. The
obtained error in predicting the STN entry was 0.18 ±
0.84 mm, and the exit point was detected with 0.50 ± 0.59
mm accuracy. However, the paper does not provide any
methods for artifact removal. Signals containing artifacts
were not used for calculations.

Zaidel et al. (2009), in a similar manner to Moran
et al. (2006), focused on the detection of the STN entry
and exit points on the track of the electrode. This paper
also focused on the RMS of the signal, but instead of
the Bayesian approach, it used the hidden-Markov model.
The described method removes only artifacts introduced
by the power supply. It is not specified how signals with
artifacts from another origin were treated. The obtained
results are similar to those found by Moran et al. (2006).

Cagnan et al. (2011) focused on the detection of
the STN based on the signal’s power in frequency bands
below 100 Hz. Artifact removal was based only on an
amplitude threshold. The overall accuracy of the method
with surgical protocols is 88%. Neither sensitivity nor
specificity is provided.

Schiaffino et al. (2016) distinguished STN
recordings using the K-NN classifier, which is based
upon eight spike-independent and seven spike-dependent
features. Recordings containing artifacts were discarded
by authors, who obtained a sensitivity of 0.86, and a
specificity of 0.90.

Valsky et al. (2017) focused on the detection of the
point where the electrode exits the STN. Based on the
RMS and the signal power in frequency bands below 300
Hz, discrimination is done using the SVM classifier and
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a hidden-Markov model. As the method focuses only on
the detection of the bottom border of the STN, it provides
neither sensitivity nor specificity. The bottom border of
the STN is detected with an error of 0.04 ± 0.18 mm.

Some of the reviewed papers focus solely on the
detection of one or both of the STN borders, while others
attempt to classify all available recordings. In most cases,
the detection is based on spike activity or on the power
of the signal at frequencies below 500 Hz. No paper
focuses on frequencies above 500 Hz. Artifacts that are
ever-present in neurobiological recordings are not filtered
out or are filtered based upon the amplitude only. In many
cases, all signals with artifacts are discarded.

3. Problem formulation

The goal of this paper is to construct an algorithm that,
for a given input signal registered by electrode e at depth
d, provides information on whether this signal has been
acquired within the STN.

Definition 1. (Depth sets) Let the set of depths in μm, be
defined as

D = {−10000,−9000, . . . , 0, . . . , dE} (1)

where dE ≤ 6000 and, ∀d ∈ D, d mod 1000 = 0. Let
the base set of depths, in μm be defined as

DB = {−10000, . . . ,−6000} (2)

where DB ⊂ D.

Definition 2. (Input signal) Let the input signal registered
by electrode e at depth d ∈ D be defined as

mer(e, d) = (xe,d,1, . . . , xe,d,ne,d
), (3)

where ne,d is the number of recorded samples.

Definition 3. (Filter) For input signal mer(e, d), define a
function f , such that f(mer(e, d)) ∈ R is a defined filter

F (f, e, d) = f(mer(e, d)), (4)

Assuming that

fB(e) = avg
d∈DB

f(mer(e, d)), (5)

the normalized filter is defined as

FN (f, e, d) =
f(mer(e, d))

fB(e)
. (6)

Definition 4. (Binary classifier) For signal mer(e, d) and
a set of filters FS = {F1, . . . , Fi, FN1 , . . . , FNj} define a
binary classifier

BC(FS,mer(e, d)) =

⎧
⎪⎨

⎪⎩

1 if mer(e, d) acquired

within the STN,

0 otherwise.

(7)

3.1. Input data. In most cases, in each hemisphere,
the recording begins at depth –10000 μm (i.e., 10 mm
above the estimated STN location) and continues in
increments of 1000 μm, up to a depth of +6000 μm (see
Definition 1). Each recording (see Definition 2) made by
a given electrode at each location is at least 10 s long and
is sampled at 24 kHz. For the purpose of recording, three
to five electrodes are typically used. The datasets used
in this paper are obtained from 50 surgeries, and contain
6540 recordings, averaging to 131 recordings per patient.
Of those 6540 recordings, 5422 recordings (83%) were
according to neurosurgical protocols labelled as recorded
outside of the STN, while 1118 (17%) were labelled as
recorded within the STN.

3.2. Definition of filters. As filters are the basis upon
which a classifier makes its decisions, they are of utmost
importance in this algorithm. Filters must be constructed
in such a way that their values would significantly differ
for recordings made within the STN and outside of it.

Discrete neuron activity-based filters. The electrical
activity of a neuron is registered by an electrode as a
voltage spike. Typically, in the STN, they are below
200 μV (Israel and Burchiel, 2011). Registered spikes
are discrete events in time and can be additionally sorted
according to their shape. As the shape of the spike
is dependent on the cell structure (Nieuwenhuys et al.,
2007; Lewicki, 1998; Koch, 2004), it remains unchanged
in a given recording. Therefore, it is clear that spikes
of different shapes must originate from different neuron
cells. Two most obvious characteristics are the average
number of spikes per second and the bursting ratio.
The bursting ratio is based upon the lengths of intervals
between consecutive spikes and is defined here as the
fraction of intra-spike intervals that are not longer than
33 ms.

Definition 5. (Spike activity-based filters) Assuming
that f1(mer(e, d)) is the average number of spikes per
second in mer(e, d) (see Definition 2), AvgSpkRate
denotes F (f1, e, d) (see Definition 3). For f2(mer(e, d)),
representing the maximum average number of spikes
per second obtained from a single cell in mer(e, d)
(see Definition 2), AvgSpkRateScMax denotesF (f2, e, d)
(see Definition 3). For f3(mer(e, d)), representing the
fraction of intra-spike intervals that are no longer than 33
ms observed in mer(e, d) (see Definition 2), BurstRatio
denotes F (f3, e, d) (see Definition 3). Finally, assuming
that f4(mer(e, d)) is the fraction of intra-spike intervals
generated by a single cell that are no longer than 33 ms
and are observed in a given mer(e, d) (see Definition 2),
BurstRatioScMax denotes F (f4, e, d) (see Definition 3).

Construction of spike activity-based filters is
explained in detail in a study by Ciecierski et al. (2014b).
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The wavelet transform provides a mathematical
framework that can be applied in many areas of digital
processing for medical data. The model of signal
processing provided by the wavelet transform facilitates
a shift in signal analysis from the time–amplitude to the
time–frequency plane (Jensen and la Cour-Harbo, 2001).
This allows analysis of the original signal in various
frequency domains while still retaining the temporal
information from the original signal. When a certain
feature is detected in the time–frequency plane, its time
of occurrence in the original signal is readily available.
The wavelet transform is always based upon the set
of mother-wavelet functions. Their choice can be of
significant importance and depends on the original data.
For some data, simple Haar functions are sufficient, while
for other datasets, different functions are proven to obtain
better results. In the case of neurological signals, the
Daubechies D4 wavelet is commonly used. In this paper,
all wavelet transformations are D4-based. Finally, as the
wavelet transform is reversible, it is possible to switch to
the time-frequency plane, make the required adjustments
in the frequency domain, and return to the time–amplitude
plane. Such operations constitute the base model for the
filtering of a signal in the frequency domain. This model
is used in the paper as the core feature, as it is the basis
for the removal of artifacts, as well as for the calculation
of some essential filters.

Definition 6. (Discrete wavelet decomposition for-
wards step) The signal Sk containing 2n samples
and reflecting frequencies below f Hz is decomposed
into two signals, each containing n samples: Sk+1

(containing n samples and reflecting Sk in frequencies
below f/2 Hz) and Dk+1 (containing n samples and
reflecting Sk in frequencies between f/2 Hz and f Hz).
Such octave-based decomposition, while being commonly
used, is only a particular case of wavelet analysis. Other
versions of wavelet analysis with different filter banks do
exist.

The above implies that any signal that can be fully
decomposed using the wavelet transform has to have a
number of samples that is a power of 2. The signal with a
number of samples 2n can be maximally decomposed in
n steps, resulting in final S and D being singleton sets.

Definition 7. (Discrete wavelet decomposition) Assume
that the original signal S0 is sampled with frequency
f0 Hz, and has n samples (n being a power of 2).
Then, for k = 1, . . . , log2 n, denote by Sk the tuple
of n/2k wavelet coefficients representing the signal S0

in frequencies (0, f0/2
k+1] and by Dk the tuple of

n/2k wavelet coefficients representing the signal S0 in
frequencies (f0/2k+1, f0/2

k]. The full decomposition is

therefore represented as the set

WD(S0, f0) = {Slog2 n, Dlog2 n, . . . , D1}. (8)

Definition 8. (Frequency mapping) For the original signal
sampled with frequency f0 Hz, the frequency coverage the
tuple Sk can be defined as FCS(f0, k) = (0, f0/2

k+1]
while the frequency coverage the tuple Dk can be defined
as FCD(f0, k) = (f0/2

k+1, f0/2
k]. Finally, for the

original signal S0 sampled with frequency f0 Hz, and
for a given continuous, left open, frequency interval F,
a defined function returning a set of tuples of wavelet
coefficients that fit into its range can be created.

FC(S0, f0,F)

= {Sk ∈ WD(S0, f0) : k = log2 n ∧ FCS(f0, k) ⊆ F}
∪

{Dk ∈ WD(S0, f0) : k ≤ log2 n ∧ FCD(f0, k) ⊆ F}.
(9)

Definition 9. (Artifact filtering) For a given signal
(x1, . . . , xn) and threshold t the thresholding function can
be defined as (y1, . . . , yn) = thr((x1, . . . , xn), t), where

yi =

{
xi if |xi| ≤ t,

0 otherwise.
(10)

For a given signal mer(e, d) sampled with 24 kHz
and right-padded to its length being a power of 2, the
partial-wavelet decomposition can be defined as

WD5(mer(e, d)) = (S5, D5, D4, D3, D2, D1). (11)

Using the function

t5N (x) = thr(x, 5σN (x)), (12)

we get

WDT5 = (t5N (S5), t5N (D5), t5N (D4), t5N (D3),

t5N (D2), t5N (D1)). (13)

As sets S and D represent the original signal in various
frequency bands, the function t5N acts in the frequency
domain. From WDT5, by means of the inverse-wavelet
transform, the filtered mer(e, d) can be obtained and
defined as artrem(mer(e, d)). In the above definition, the
following estimation of standard deviation is used

σN =
1

0.6745
median(|x1|, . . . , |xn|). (14)
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Filters based on the background activity. The
amplitude of the electrical activity in neural tissue is
low. In the STN and adjacent areas, the observed spikes
do not exceed 200 μV, and the background activity
is below 50 μV (Israel and Burchiel, 2011). This
implies that, during the recording process, the signal
needs to be greatly amplified. This makes the signal
very prone to contamination by artifacts generated from
non-neural sources. These sources include the heartbeat,
the frequency of the main power supply, or the noise
present in the operation theatre. Any mechanical contact,
such as a slight nudge to the 3D frame that holds the
patient’s head, also produces significant artifacts in the
recordings.

It has been found that, without a good methodology
designed for the removal of these artifacts, filters
calculated from the background activity are so strongly
distorted that their values are almost random and provide
very little useful information (Ciecierski et al., 2014a).
This is a well-known problem in this field of research
(see Section 2), and in many cases, recordings with
such contamination are left unchanged, filtered by an
amplitude threshold (Cagnan et al., 2011), or even simply
discarded (Schiaffino et al., 2016). Here, as the system
was developed as a practical aid during neurosurgical
procedures, discarding the data was not an option, and a
completely new dedicated artifact-removal procedure has
been developed (see Definition 9). The degree of wavelet
decomposition and levels of thresholding are wholly the
author’s own intellectual creation. The novelty of this
method is applying the thresholding and filtering in the
frequency domain rather than the amplitude domain. The
effectiveness of artifact removal can be seen in Fig. 1.

Filters calculated from the background activity are
always calculated in the context of a pass of the given
electrode. This is because of the normalization process
(see Definition 3), which is made using a baseline level
calculated from the first five millimetres of the recording
pass (see Definition 1). As the recording starts at a
certain distance from the expected location of the STN,
and the electrode approaches the STN from above, the
first recorded depths are expected to be within a part of the
brain with lower activity (Nieuwenhuys et al., 2007). This
activity is low, especially in comparison with the STN
activity (Israel and Burchiel, 2011), and can be so used
as a reference point – the baseline level fB of a filter (see
Definition 3).

It becomes clear that, if any of the background
activity-based filters described below has a value
ν, this implies that it is ν times as large as its
non-normalized average calculated for the base depths
DB (see Definition 1).

Definition 10. (Background activity-based filters)
Assuming that mer(e, d) is a recording sampled with
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Fig. 1. Recording before and after artifact removal.

frequency 24000 Hz, the following functions can be
defined:

fPRC80(mer(e, d)) = P80%(|artrem(mere,d)|) (15)

as the 80th percentile of the absolute value of the filtered
amplitude of mer(e, d),

fRMS(mer(e, d)) =

√
√
√
√

1

ne,d

∑

x∈artrem(mer(e,d))

x2 (16)

as the RMS value of filtered mer(e, d).
Having

PWR(mere,d, f0, fb, fe)

=
∑

T∈FC(mere,d,f0,(fb,fe])

∑

x∈T

x2 (17)

as the power of the signal sampled with frequency f0 in
the frequency band spanning from fb to fe, one can define

fLFB(mer(e, d))

= PWR(artrem(mere,d), 24000, 0, 500) (18)

as the power of the signal mer(e, d) in frequencies below
500 Hz.

fHFB(mer(e, d))

= PWR(artrem(mere,d), 24000, 500, 3000) (19)

as the power of the signal mer(e, d) in frequencies
between 500 Hz and 3 kHz.
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Using the function defined above, the following
background-activity based filters are defined:

PRC80(e, d) = FN (fPRC80, e, d), (20)

RMS(e, d) = FN (fRMS, e, d), (21)

LFB(e, d) = FN (fLFB, e, d), (22)

HFB(e, d) = FN (fHFB, e, d). (23)

Let also

BAS = {PRC80,RMS,LFB,HFB}. (24)

Filters based on the moving average. For each
of the background activity-based filters (PRC80, RMS,
LFB, and HFB), the moving average (Smith, 1997) is
calculated. In this manner, other four filters are defined:
MPRC80, MRMS, MLFB, and MHFB.

Definition 11. (Moving average-based filters) Let the
padded form of filter F (e, d) ∈ BAS be defined as

PAD1(F (e, d)) =

{
F (e, d) if d ∈ D,

1 otherwise.
(25)

Using the filters from Definition 10, the following
filters are defined:

MPRC80(e, d) =
1

5

2∑

k=−2

PAD1(PRC80(e, d+ 1000k)),

(26)

MRMS(e, d) =
1

5

2∑

k=−2

PAD1(RMS(e, d+ 1000k)),

(27)

MLFB(e, d) =
1

5

2∑

k=−2

PAD1(LFB(e, d+ 1000k)),

(28)

MHFB(e, d) =
1

5

2∑

k=−2

PAD1(HFB(e, d+ 1000k). (29)

The above filters are the five-element wide moving
averages of the filters described in Definition 10.

Temporal filters. The temporal filters reflect
maximal—encountered on the track of the given
electrode—positive or negative changes in the values of
filters that are based upon the background activity. The
changes are monitored by comparing the current depth
with those 1000 μm and 2000 μm above it. For a given
electrode e, depth d, and F ∈ BAS (see Definition 11),
F (e, d) denotes the value of filter F calculated for the
recording registered by the electrode e at depth d. For
F ∈ BAS, the following can be defined.

Definition 12. (Filter delta) For F ∈ BAS define

dlt(F, e, d, step)

=

{
0 if d < min(D),

F (e, d)− F (e, d− step) otherwise.
(30)

Now, using filter delta ‘dlt’ it is possible to define the
temporal filters:

Definition 13. (Temporal filters) For F ∈ BAS the
following can be defined:

dltMAX(F, e, d, k) = max
di≤d

dlt(F, e, di, k), (31)

dltMIN(F, e, d, k) = min
di≤d

dlt(F, e, di, k) (32)

as maximal positive and negative changes in the value of
F . For F ∈ BAS, one can define the following filters:

DU1(F (e, d)) = dltMAX(F, e, d, 1000),

DU2(F (e, d)) = dltMAX(F, e, d, 2000),

DD1(F (e, d)) = dltMIN(F, e, d, 1000),

DD2(F (e, d)) = dltMIN(F, e, d, 2000).

(33)

From this, 16 temporal filters can be defined as
follows:

DU1 PRC80(e, d) = DU1(PRC80(e, d)),

DU2 PRC80(e, d) = DU2(PRC80(e, d)),

DD1 PRC80(e, d) = DD1(PRC80(e, d)),

DD2 PRC80(e, d) = DD2(PRC80(e, d)),

DU1 RMS(e, d) = DU1(RMS(e, d)),

DU2 RMS(e, d) = DU2(RMS(e, d)),

DD1 RMS(e, d) = DD1(RMS(e, d)),

DD2 RMS(e, d) = DD2(RMS(e, d)),

DU1 LFB(e, d) = DU1(LFB(e, d)),

DU2 LFB(e, d) = DU2(LFB(e, d)),

DD1 LFB(e, d) = DD1(LFB(e, d)),

DD2 LFB(e, d) = DD2(LFB(e, d)),

DU1 HFB(e, d) = DU1(HFB(e, d)),

DU2 HFB(e, d) = DU2(HFB(e, d)),

DD1 HFB(e, d) = DD1(HFB(e, d)),

DD2 HFB(e, d) = DD2(HFB(e, d)).

(34)

The temporal filters are designed in such a way as
to latch onto an increase or decrease in the values of the
filters based on the background activity in the context of a
pass of a given electrode. Assuming that a certain filter F
has an increased value for the recordings made within the
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STN, DU1(FN (e, d)) and DU2(FN (e, d)) will have an
increased value in the STN, and at depths below it, those
filters change values on the top border of the STN. When
considered alone, these filters discriminate data recorded
at depths above the STN but fail to distinguish the STN
from structures located below it.

DD1(FN (e, d)) and DD2(FN (e, d)) will have
decreased values at depths below the STN; those filters
change values at the bottom border of the STN. When
considered alone, these filters discriminate data recorded
at depths below the STN but fail to distinguish the STN
from structures located above it.

Filter summary. In Section 3, 28 filters are defined:

• Four spike activity-based filters: AvgSpkRate,
the average number of spikes per second in a
given recording; AvgSpkRateScMax, the maximal
AvgSpkRate obtained from a single neuron;
BurstRatio, the fraction of the intra-spike intervals
that are no longer than 33 ms; BurstRatioScMax,
maximal BurstRatio obtained from a single neuron.

• Four background activity-based filters: PRC80,
normalized 80-th percentile of a recording’s
amplitude absolute value; RMS, normalized root
mean square of the recording; LFB, normalized
power of the recording in a band below 500 Hz;
HFB, normalized power of the recording in the band
between 500 Hz and 3 kHz.

• Four moving average-based filters: MPRC80,
MRMS, MLFB, MHFB.

• Sixteen temporal filters: DU1 PRC80,
DU2 PRC80, DD1 PRC80, DD2 PRC80,
DU1 RMS, DU2 RMS, DD1 RMS, DD2 RMS,
DU1 LFB, DU2 LFB, DD1 LFB, DD2 LFB,
DU1 HFB, DU2 HFB, DD1 HFB, DD2 HFB.

To simplify the notation further, the following sets of
filters are defined.

Definition 14. (Sets of filters)

SA = {AvgSpkRate, AvgSpkRateScMax,

BurstRatio, BurstRatioScMax},
BA = {RMS, PRC80, LFB, HFB},

MA = {MRMS, MPRC80, MLFB, MHFB},
DU1 = {DU1 PRC80, DU1 RMS,

DU1 LFB, DU1 HFB},
DU2 = {DU2 PRC80, DU2 RMS,

DU2 LFB, DU2 HFB},

(35)

DD1 = {DD1 PRC80, DD1 RMS,

DD1 LFB, DD1 HFB},
DD2 = {DD2 PRC80, DD2 RMS,

DD2 LFB, DD2 HFB},
DALL = DU1 ∪ DU2 ∪ DD1 ∪ DD2,

ALL = SA ∪ BA ∪ MA ∪ DALL.

3.3. Binary classifier. For classifying recordings
based on defined filters (see Definition 4), the AdaBoost
classifier has been selected (Dietterich, 2000). As this
classifier is particularly well suited to imbalanced data
(83% of the recordings used in calculations here were
originally labeled as recorded outside the STN), it is the
most obvious first choice. AdaBoost is an ensemble
classifier that makes decisions based on the weighted sum
of decisions of tree-based weak learners. In the process of
training, the weights are modified to minimize the error
in the training set. All results given below have been
obtained using a Matlab implementation (AdaBoostM1)
and ten-fold cross-validation. Additionally, in Section 4.3,
the results obtained using AdaBoost are compared with
those obtained using an SVM classifier with different
kernels (Williams, 2003). The original class of each
recording is set according to the information taken from
the neurosurgical protocol. This information has been
filled by the neurosurgeon during the DBS procedure.

3.4. Algorithm. The algorithm for decision making
during the DBS procedure is Algorithm 1. During
Step 7 the values of the selected filters are calculated
for all of the recordings acquired during Step 5. The
classification process is then made in Step 8. The detailed
actions performed during Steps 7 and 8 are described
in Algorithm 2. Step 9 is the crucial point of the
combination of digital signal processing, filtering, and
classification provides neurosurgeons with the diagnostic
information.

4. Performance evaluation

Two approaches to the classification problem were tested
using the AdaBoost classifier. The author set the
AdaBoost parameters to the following values:

• the number of trees in the ensemble: 500,

• the minimal tree leaf size: 5,

• the learning rate: 0.1.

Both the approaches were focused on the selection of
an optimal set of filters that would give results comparable
to those achieved using a set of all 28 filters. The first
approach is a novel one based upon the author’s own
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Algorithm 1. Decision making during DBS surgery.
Step 1. Using medical imaging, acquire CT and MRI data.

Step 2. Fusing the data from CT and MRI, the surgeon
obtains an approximate location of the STN.

Step 3. Surgery begins.

Step 4. An array of 3 to 5 electrodes are advanced towards
the STN to a point roughly 10 mm above its center.

Step 5. For a span of 16 mm, moving in 1 mm increments,
electrodes record brain activity.

Step 6. Artifacts present in recorded data are removed
using a novel, wavelet-based filter.

Step 7. The set of filters devised, tested, and developed
by the author are calculated for each of the acquired
recordings. Typically, during surgery, around 100
recordings are classified (see Algorithm 2).

Step 8. Using the information fusion provided by the
filters, the classifier assesses which recordings were made
within the STN.

Step 9. Using the information fusion provided by the
classifier, the extent of the STN on the track of each
electrode is obtained. In this way, the computational
solution provides neurosurgeons with the locations of the
upper and lower borders of the STN within the patient’s
brain.

Step 10. Neurosurgeons use data acquired during surgery,
along with the localization provided by the classifier, to
pinpoint the exact location of the part of the STN that is
to be implanted with a stimulating electrode.

Step 11. The stimulating electrode is implanted in the
patient’s brain.

choice of filters. The second one is based upon a growing
set of filters, where consecutive filters are added according
to their rank based upon the area under the receiver
operating characteristic (ROC) curve. Additionally, the
first, novel approach has also been tested with an SVM
classifier with linear and RBF kernels (Duch et al., 2000).

4.1. AdaBoost classification based on predefined
sets of filters. In the first approach, classification has
been conducted using the AdaBoost classifier with sets
predefined (see Definition 14) by the author in Section 3.2.
The results of the classification are shown in Table 1.

From Table 1, it can be seen that classification based
solely on filters calculated from spike activity yields poor
results. It has good sensitivity (0.879), which comes from
the fact that the recordings from the STN are characterized
by high spiking activity (Israel and Burchiel, 2011). The
issue here is that the STN is not the only the area on track
of the electrodes that can produce high spiking activity;

Algorithm 2. Classification of recordings for a given
electrode e using a set of filters FS and classifier CLS.

Require: data = {mer(e, d) : d ∈ D}
1: results = ∅
2: for d ∈ D do
3: Filter values = ∅
4: for Filter ∈ FS do
5: v := Filter(e, d)
6: Filter values = Filter values ∪ (Filter, v)
7: end for
8: c := CLS(Filter values)
9: results = results ∪ (d, c)

10: end for
11: return results {Returns classes for all recordings}

Table 1. AdaBoost classification results.
Set of filters Sensitivity Specificity ROC area

ALL 0.973 0.961 0.994
DALL 0.971 0.957 0.991

DU2 ∪ DD2 0.969 0.952 0.989
DU1 ∪ DD1 0.955 0.933 0.985
BA ∪ MA 0.948 0.938 0.984

BA 0.934 0.938 0.977
MA 0.948 0.889 0.967
DU1 0.966 0.805 0.913
DU2 0.962 0.801 0.904
DD2 0.911 0.808 0.885
DD1 0.843 0.804 0.878
SA 0.879 0.729 0.856

for example, the SNr—located below the STN—also
exhibits slightly different but high spiking. This, in
turn, leads to poor specificity (0.729), which—given that
recordings taken outside of the STN constitute 83% of all
recordings—is not sufficient.

In the case of DD1 or DD2, the results are slightly
better than those obtained from spike-derived filters.
Filters from those sets can properly distinguish only
recordings made below the STN. Classification results
obtained using such filters are still better than those based
on spikes. This shows how non-specific spike activity
can be (Israel and Burchiel, 2011). This can be clearly
seen when comparing the mediocre ROC curve obtained
for all spike activity-based filters (Fig. 2) with the ROC
curve calculated for a single background activity-based
filter (Fig. 3).

Results obtained using either DU1 or DU2 are
superior because, as explained in Section 3.2, filters from
these sets are designed to detect the top border of the
STN, i.e., the depth at which the electrode enters the STN.
This is why they yield good sensitivity. These filters are,
however, unable to discern the bottom border of the STN,
and they cannot differentiate recordings from the STN
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Fig. 2. ROC for spike activity-based filters.
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Fig. 3. ROC for PRC80.
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Fig. 4. DU1 PRC80 and DU2 PRC80 values.
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Fig. 5. DD1 PRC80 and DD2 PRC80 values.

from those registered below it. This, in turn, leads to a
specificity that is barely above 0.8.

Filters from BA and MA sets are based directly on
background noise in the recorded signal. This noise comes
from a summation of the activity of neuron cells in the
vicinity of the electrode (Israel and Burchiel, 2011). The
more neuron cells present in this vicinity, and the more
active they are, the louder this noise. Knowing that
the STN consists of large amounts of small hyperactive
neuron cells (Israel and Burchiel, 2011), these filters
provide good sensitivity and specificity. In the case of
the BA set, both sensitivity and specificity are above 0.93.
The PRC80 filter alone can be used for classification,
with a resulting sensitivity of 0.949 and specificity of
0.910. The ROC curve plotted for the first of the folds
(for PRC80) is shown in Fig. 3. The problem with these
filters is that they show increased values not only for
the STN, but also for another structure located below the
STN, which may result in false-positive readouts.

Figure 4 shows the DU1 PRC80 and DU2 PRC80
filter values, while Fig. 5 shows the values of the
DD1 PRC80 and DD2 PRC80 filters. From both these
figures, it becomes clear how the values of the temporal
filters act when considered together. Filters DU1 PRC80
and DU2 PRC80 clearly change their values upon entry
into the STN, i.e., on its top border, at –1000 μm.
Similarly, the DD1 PRC80 and DD2 PRC80 filters signal
the point of exit from the STN, i.e., its bottom border, at
4000 μm.

Neither set of filters is able to detect both borders of
the STN, but when combined, they should provide good
discrimination. Knowing that after the electrodes exit the
bottom border of the STN, they very rarely advance much
further (Israel and Burchiel, 2011) one might hypothesize
that DU1 PRC80 and DU2 PRC80 alone might provide
a good basis for discrimination (they distinguish areas
above the STN from the STN), while DD1 PRC80 and
DD2 PRC80 might not (see Table 1).

This means that the combination of temporal filters
might yield very good results. This is indeed the case
when considering the DALL set, where the combination
yields a sensitivity of 0.971, a specificity of 0.957, and
the area under the ROC curve of 0.991. Figure 6 shows
the nearly perfect ROC curve obtained for the DALL-filter
set.

Table 2 highlights the reasons why the results
obtained from the DALL set are better than those obtained
from the BA. Here, it becomes evident why the false
positive cases for the SNr in BA do not occur in the case of
DALL. BA has an elevated value both in the STN and SNr,
which, for some patients with more active SNrs, might
lead to false-positive detection of the SNr as the STN.

It can be seen from the results of the DU1, DU2,
DD1, and DD2 sets that only within the STN, DU1
and DU2 have elevated values, while DD1 and DD2 are
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Fig. 6. ROC for the DALL filter set.

Table 2. Expected filter values.
Area BA DU1, DU2 DD1, DD2

above the STN ∼ 1 ∼ 0 ∼ 0
STN High + High + ∼ 0

below the STN ∼ 1 High + High –
above the SNr ∼ 1 High + High –

SNr High + High + High –

close to zero. Moreover, taking BA, DD1, and DD2 in
combination, it becomes clear that the BA is elevated only
within the SNr, while DD1 and DD2 are clearly negative.

To remain objective, one must admit that, for some
patients, there is no observable space between the STN
and SNr (i.e., the space that is below the STN and
above SNr) (Israel and Burchiel, 2011; Nieuwenhuys
et al., 2007). In such cases, false positives might still
occur.

Further, it was found that the results obtained with
28 filters were marginally improved. The sensitivity
increases by 0.002, the specificity increases by 0.004, and
the area under the ROC curve increases by 0.003. Before
calculating the DALL set, the BA set also needs to be
calculated. To obtain results that are better by a fraction
of a per cent, the MA and SA need to be calculated, which
is computationally intensive as it contains spike-sorting
procedures (Israel and Burchiel, 2011).

4.2. AdaBoost classification based on filters or-
dered by the ROC area. To obtain verification as to
which filters are essential for good classification results,
the filters were ranked using Matlab according to their
influence on the area under the ROC curve. This value
has been calculated for the AdaBoost classifier run with
the same parameters as in Section 4.1.

Table 3 and Fig. 7 clearly demonstrate how the

classification-quality measures change as subsequent
filters are added to the pool used for classification.

The results in Table 3 show how discriminating the
filters from the BA set are, especially the PRC80 one.
If a maximal simplicity of calculations is the goal, this
filter alone gives a sensitivity of 0.949, a specificity of
0.910, and an ROC area of 0.963—all three classification
qualities measure above 0.9.

It is also evident that other filters from the BA set
follow in importance for classification quality. The first
eight rows from the bottom of Table 3 are a steady growth
of filters set up to point where all eight filters from BA ∪
MA are chosen.

After this point, the DU1 and DU2 sets are added,
and then filters based on spike activity. Finally, by adding
filters from DD1 and DD2, a full filter set is obtained.
As the addition of the remaining nine filters (one from
SA, four from DD1, and four from DD2), only improves
the value of the area under the ROC curve from 0.993 to
0.994, they were omitted in Table 3 and are referenced in
the table as a row with dots.

As this approach adds filters separately, it cannot
detect the advantage of the use of, for example, the
DU1 and DD1 early. Other filters from other sets, when
considered alone, simply give a larger increase in the area
under the ROC curve.

4.3. SVM classification based on predefined sets of
filters. Not all classification methods are equally
suited to any given data. This can be clearly seen in
the case of temporal filters, where the effect is very
pronounced. One of the most popular and widely used
classification methods is SVM (support vector machine)
(Williams, 2003). In data science, for some types of data,
SVM classifiers are advantageous, while for other types,
tree-based ones prove to be superior.

The results provided in Tables 4 and 5 illustrate
a case where a tree-based classifier is much better
in employing information given by values returned by
temporal filters. In the case of the default linear kernel,
only filters from the BA set were able to yield sensitivity,
specificity, and the area under the ROC curve above
0.9. With the sole exception of DU1 ∪ DD1, all results
based on temporal filters were poor. In some cases, the
sensitivity or specificity was even below 0.4.

The SVM classifier with the RBF kernel,
which is often considered superior to the linear
one (Apostolidis-Afentoulis and Lioufi, 2015; Jeleń
et al., 2008) yields temporal filters results that are even
worse, as shown in Table 5. In this case, all classifications
based solely on temporal filters have the area under the
ROC curve below 0.7. In the case of DU1, DD1, DU2,
and DD2, the failure of classification is complete; the
classifier fails to distinguish the STN recordings and
classifies them as recorded outside of the STN (sensitivity



Mathematical methods of signal analysis applied in medical diagnostic 459

Table 3. Classification results with filters ranked according to the area under the ROC curve.
Set of filters Sensitivity Specificity ROC area

ALL 0.973 0.961 0.994
. . . . . . . . . . . .

BA ∪ MA ∪ DU1 ∪ DU2 ∪ {AvgSpkRate, AvgSpkRateScMax, BurstRatio} 0.974 0.952 0.993
BA ∪ MA ∪ DU1 ∪ DU2 ∪ {AvgSpkRate, BurstRatio} 0.971 0.957 0.993

BA ∪ MA ∪ DU1 ∪ DU2 ∪ {AvgSpkRate} 0.971 0.955 0.993
BA ∪ MA ∪ DU2 ∪ {DU1 PRC80. DU1 RMS, DU1 HFB, AvgSpkRate} 0.974 0.951 0.992

BA ∪ MA ∪ {DU1 PRC80. DU1 RMS, DU1 HFB, . . .
. . . DU2 PRC80. DU2 RMS, DU2 HFB, AvgSpkRate} 0.977 0.946 0.992
BA ∪ MA ∪ {DU1 PRC80. DU1 RMS, DU1 HFB, . . .

. . . DU2 PRC80. DU2 RMS, DU2 HFB} 0.976 0.948 0.992
BA ∪ MA ∪ {DU1 RMS, DU1 HFB, DU2 PRC80. DU2 RMS, DU2 HFB} 0.970 0.951 0.992

BA ∪ MA ∪ {DU1 HFB, DU2 PRC80. DU2 RMS, DU2 HFB} 0.973 0.945 0.991
BA ∪ MA ∪ {DU1 HFB, DU2 RMS, DU2 HFB} 0.973 0.947 0.991

BA ∪ MA ∪ {DU1 HFB, DU2 HFB} 0.964 0.947 0.990
BA ∪ MA ∪ {DU2 HFB} 0.967 0.944 0.989

BA ∪ MA 0.948 0.938 0.984
BA ∪ {MPRC80. MRMS, MHFB} 0.946 0.937 0.984

{PRC80. RMS, HFB, MPRC80. MRMS, MHFB} 0.949 0.928 0.983
{PRC80. RMS, HFB, MPRC80. MRMS} 0.939 0.936 0.981

{PRC80. RMS, HFB, MRMS} 0.942 0.931 0.981
{PRC80. RMS, HFB} 0.947 0.912 0.974

{PRC80. RMS} 0.947 0.912 0.972
{PRC80} 0.949 0.910 0.963

Table 4. SVM classification results: linear kernel.
Set of filters Sensitivity Specificity ROC area

ALL 0.954 0.949 0.987
BA ∪ MA 0.956 0.940 0.985

BA 0.964 0.930 0.984
MA 0.959 0.882 0.972

DU1 ∪ DD1 0.870 0.907 0.909
DU2 0.963 0.767 0.894
DU1 0.961 0.748 0.892
SA 0.906 0.552 0.767

DALL 0.957 0.522 0.697
DU2 ∪ DD2 0.313 0.966 0.569

DD1 0.368 0.785 0.548
DD2 0.621 0.414 0.523

at or below 0.001, with specificity above 0.999). It is also
worth mentioning that the results obtained using the BA
∪ MA set are better than those obtained from the full
filter set. The addition of filters based on spike activity or
temporal ones has, in fact, worsened the results.

4.4. Classification summary. During the performance
evaluation in Section 4, it has been shown that, for
the classification of microelectrode data using the filters
defined in Section 3.2, the best values of sensitivity,
specificity, and the area under the ROC curve can be

Table 5. SVM classification results: RBF kernel.
Set of filters Sensitivity Specificity ROC area

BA ∪ MA 0.928 0.910 0.957
ALL 0.939 0.838 0.925
MA 0.914 0.787 0.886
BA 0.846 0.785 0.845
SA 0.906 0.552 0.767

DALL 0.957 0.522 0.697
DU1 ∪ DD1 0.933 0.400 0.663
DU2 ∪ DD2 0.313 0.967 0.569

DD1 0.001 1.000 0.508
DU1 0.000 1.000 0.500
DU2 0.000 1.000 0.500
DD2 0.000 1.000 0.500

obtained using the AdaBoost classifier with the author’s
optimal parameters.

It has been shown that an expert set of 16 temporal
filters (DALL) provided by the author can yield optimal
results that are comparable to those obtained using all
28 filters. It has also been shown that the automatic
selection of the filters by their rank cannot achieve similar
performance.

4.5. Performance of selected background activity-
based filters. Figure 8 shows the values returned by
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the PRC80 filter, calculated for a set of three electrodes
(anterior, central, and medial) on the entire track of their
recording pass. The recording began at depth, 10000
μm, i.e., 10 mm above the expected location of the STN
center and then continued till the bottom border of the
STN was passed, and the area below the STN reached
a depth of +6000 μm. The location of the STN can be
readily identified as the area of an increased filter value.
For comparison, in the surgical protocol, the boundaries
of the STN have been affixed at −1000 μm to 2000 μm
for the central electrode; −1000 μm to 4000 μm for the
anterior electrode; and 0 μm to 4000 μm for the medial
electrode.

The PRC80 filter has been selected by its ROC
rank (Table 3) as the one that is most influential for
classification. This filter has been defined by the author in
this study. While not being RMS-based, as is the case in
most papers in Section 2, it has been found by the ranking
method to be superior.

The HFB filter is another filter that merits discussion.
This filter is based on frequencies between 500 Hz and 3
kHz. The novelty of this filter comes from the observation
that all papers in Section 2 that investigate the power of the
signal in certain bands focus only on frequencies below
500 Hz.

The HFB filter also provides additional novel
information not found in other filters. Further to
showing the top and bottom borders of the STN in a
very pronounced way, it often also shows the internal
subdivisions of the STN. This can be observed in Fig.
9 at a depth of 1000 μm. The confirmation of the filter
importance is shown in Table 3, where this filter is third in
the ranking of importance for classification.

Figure 9 shows the HFB filter values as calculated
for the same set of three electrodes (anterior, central, and
medial) that was used in Fig. 8.

5. Conclusions

The goal of this paper was to provide a set of filters to
discriminate recordings registered within the STN from
recordings registered outside this brain substructure. The
set of filters should contain fewer filters but preserve
performance.

Section 3.2 defines various filters that can be used for
the discrimination process. Some of them are based on the
analysis of the amplitude of the recorded signal, some on
the background noise, and finally, some are meta–filters
that have been derived from values of other, previously
defined filters.

It has been shown in Section 4 that amplitude-based
filters, i.e., filters relying on spike detection and sorting,
do not provide sufficient discriminating quality. They
provide fair sensitivity (0.88); however, they tend to
classify recordings from other brain areas (namely, the

0 5 10 15 20 25 30
Number of filters taken

0.9

0.92

0.94

0.96

0.98

1

V
al

ue

Classification measures

Sensitivity
Specificity
AuROC

Fig. 7. Changes in the values of classification measures.

-1
00

00
 

m

-9
00

0 
m

-8
00

0 
m

-7
00

0 
m

-6
00

0 
m

-5
00

0 
m

-4
00

0 
m

-3
00

0 
m

-2
00

0 
m

-1
00

0 
m 0

10
00

 
m

20
00

 
m

30
00

 
m

40
00

 
m

50
00

 
m

60
00

 
m

0

1

2

3

4

5

6

PRC80 - Anterior
PRC80 - Central
PRC80 - Medial

Fig. 8. PRC80 filter values.

-1
00

00
 

m

-9
00

0 
m

-8
00

0 
m

-7
00

0 
m

-6
00

0 
m

-5
00

0 
m

-4
00

0 
m

-3
00

0 
m

-2
00

0 
m

-1
00

0 
m 0

10
00

 
m

20
00

 
m

30
00

 
m

40
00

 
m

50
00

 
m

60
00

 
m

0

5

10

15

20

25

30

HFB - Anterior
HFB - Central
HFB - Medial

Fig. 9. HFB filter values.



Mathematical methods of signal analysis applied in medical diagnostic 461

SNr) as the STN and hence are not specific enough
(specificity of 0.73).

Background activity-based filters provide much
better discriminative power and achieve both sensitivity
and specificity above 0.93.

Finally, temporal filters have been fully developed by
the author and designed to detect points where electrodes
enter and exit the STN (see Section 4.1). They achieved a
sensitivity above 0.97 and a specificity above 0.955. The
obtained results are all above 0.95 and are competitive
with other results from literature.

One of the more interesting findings is that, while
temporal filters provide excellent classification results
when used with the AdaBoost classifier, they cannot be
properly utilized by the SVM.

A further increase in sensitivity, by 0.002, and
specificity, by 0.004, can be achieved. However, this
requires the calculation of spike activity-based filters,
which involves computationally expensive spike sorting,
i.e., grouping detected action potentials according to their
shape.

For a typical patient, the time required for a
full analysis of data from a single hemisphere takes
approximately 75 seconds. Additional spike sorting
would increase this time by 20 seconds. This can increase
the sensitivity and specificity by less than 0.005 for an
increase in computing time by over 25%.

A computer system based upon the solution
described in this paper can be used in the operation theatre
(in real time) during awake brain surgery. Any increase in
the processing time automatically increases the duration
of the entire surgical procedure. Awake brain surgery
is stressful for a patient, and this is the medical and
ethical reason to make all necessary calculations as fast
as possible.

In this paper, it has been found that using the
AdaBoost classifier provides optimal results when a set
of 16 filters are used from the DALL set. The calculation
of these filters can easily be performed using four filters
from the BA set. Calculation of filters from the BA
set, while being computationally demanding, cannot be
avoided as they provide the discriminative power of the
entire solution.
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