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A simple computational algorithm is proposed for minimizing sums of largest eigenvalues of the matrix inverse over the
set of all convex combinations of a finite number of nonnegative definite matrices subject to additional box constraints on
the weights of those combinations. Such problems arise when experimental designs aiming at minimizing sums of largest
asymptotic variances of the least-squares estimators are sought and the design region consists of finitely many support
points, subject to the additional constraints that the corresponding design weights are to remain within certain limits. The
underlying idea is to apply the method of outer approximations for solving the associated convex semi-infinite programming
problem, which reduces to solving a sequence of finite min-max problems. A key novelty here is that solutions to the latter
are found using generalized simplicial decomposition, which is a recent extension of the classical simplicial decomposition
to nondifferentiable optimization. Thereby, the dimensionality of the design problem is drastically reduced. The use of
the algorithm is illustrated by an example involving optimal sensor node activation in a large sensor network collecting
measurements for parameter estimation of a spatiotemporal process.
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1. Introduction

A fundamental question in optimum experimental
design is how to allocate measurement resources in
regression problems so that the experiment be maximally
informative. Mathematically, this amounts to minimizing
or maximizing some clearly defined real-valued function
which quantifies the ‘goodness’ of the experiment. Most
often, a suitable criterion is defined on the Fisher
information matrix (FIM) being the inverse covariance
matrix of the parameter estimates to be obtained from the
data collected. A strength of this formulation is that the
relevant design criterion can be extremized to provide an
optimal allocation.

In the modern theory of regression design, feasible
allocations are identified with probability measures on
the design region, called continuous designs, or simply
designs (Atkinson et al., 2007; Fedorov and Leonov,
2014; Pronzato and Pàzman, 2013; Melas, 2006). In
this way, the design problem is converted to that of
extremizing a functional which depends on measures.

Based on the appropriate equivalence theorems which
constitute necessary and sufficient optimality conditions
and are central in the theory of optimal design, it is
sometimes possible to determine analytically an optimal
measure. For general systems, however, it is usually
the case that some iterative design procedure is required,
for which equivalence theorems serve as methods for
checking the optimality of any continuous design.

A standard sequential vertex-direction design
algorithm embodies the idea of the following general
feasible-direction method which is commonly used in
nonlinear programming (Bertsekas, 1999): The current
approximation ξ(k) to the optimal design ξ� is updated
by forming its convex combination with a (Dirac)
measure δx putting unit mass at a single point x chosen
in the design region so that the directional derivative
of the design criterion at ξ(k) in the direction of δx is
negative (resp. positive) if the design criterion is to
be minimized (resp. maximized). A straightforward
approach consisting in using an iterative nonlinear
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optimization routine to solve for the optimal measurement
locations and respective allocation masses in the resulting
design is rather questionable, since the number of
measurement locations is not known initially. Thus,
efficient specialized algorithms have been invented which
exploit the specific problem structure (see e.g., Pronzato
and Zhigljavsky, 2014; Atkinson et al., 2007; Pronzato
and Pàzman, 2013; Fedorov and Leonov, 2014). They
produce a sequence of measures whose accumulation
point solves the design problem.

An alternative strategy is to cover the design region
with a suitable network, N , of points which should be
rich enough to contain close approximations to the points
likely to have positive mass in the optimal design, and
to focus solely on optimizing the masses associated with
elements in N . Such a formulation turns out to be
extremely convenient since we deal with minimization
(resp. maximization) of a convex (resp. concave) function
over a nice constraint set, a canonical simplex Sn, and
this can be tackled by standard numerical methods, e.g.,
the gradient projection method or the conditional gradient
method (Botkin and Stoer, 2005; Wu, 1978). (Note
that the projection operation on Sn is almost as simple
as a closed-form solution (cf. Maculan et al., 2003).)
The vertex-direction method can also be used here, but
it is usually extremely slow. That is why its various
improvements were proposed, e.g., the vertex-exchange
method (Böhning, 1986).

A highly competitive idea for a moderate cardinality
of N is to employ extremely powerful algorithms for
convex optimization based on semidefinite programming.
Results of their successful application to D-, E- and
E-optimum designs were reported by Joshi and Boyd
(2009), Chepuri and Leus (2015) and Lu and Pong (2013).
These methods have polynomial worst-case complexity
and perform well in practice, rapidly computing the
global optima with nonheuristic stopping criteria using
interior-point algorithms.

For some criteria, however, even more specialized
algorithms can be invented, which exploit specific
problem structures. The most representative example
is the extremely simple multiplication algorithm devised
and analysed by Silvey et al. (1978), Pázman (1986),
and Yu (2010). An interesting feature of this scheme
is that it is globally convergent and that the successive
values of the design criterion form a monotonic sequence.
Although slow convergence is sometimes reported, some
neat methods of removing nonoptimal support points can
substantially accelerate it (Pronzato, 2003; Harman and
Pronzato, 2007). What is more, the ease with which
we can implement it constitutes a decided advantage.
Yu (2011) combined vertex-direction, vertex-exchange
and multiplicative algorithms for D-optimality in the
so-called cocktail algorithm, which increases the speed
while preserving convergence.

Recently, Harman et al. (2020) set forth a
very effective randomized exchange algorithm (REX)
which can be interpreted as a combination of both
the vertex-exchange algorithm and the KL exchange
algorithm commonly used to determine exact designs.

Some studies have been undertaken in order to
extend the appealing framework of the design on the
finite design space N to more complex settings which are
encountered in applications. Thus, equality constraints on
the design weights are sometimes considered, as discussed
by Torsney and Mandal (2001). In practice, however,
various inequality constraints must more frequently be
considered, which are due to cost limitations, required
design measure space restrictions for achieving certain
robustness properties, or restrictions on the experimental
space. The incorporation of additional linear constraints
on the weights is necessary if various resource constraints
have to be taken into account. For example, when
measurements at different points incur different costs,
an important requirement might be that the total cost
of the experiment must not exceed a given budget.
The constrained setting also appears naturally in relaxed
formulations of the sensor selection problems, which
consists of selecting a given number of gauged sites from
among a much larger number of candidate ones (Joshi and
Boyd, 2009). Although much work has been done in this
respect as regards theory (e.g., Cook and Fedorov, 1995),
the number of publications on the algorithmic aspects of
constrained optimization of experimental design is still
very limited.

Harman and Benková (2017) proposed a nontrivial
and efficient barycentric algorithm, which draws on the
idea of the multiplicative algorithm and is specialized
in two linear inequality constraints (the size and cost
constraints) on the weights. Problems with larger numbers
of linear equality/inequality constraints can be treated
by employing either interior-point methods (Joshi and
Boyd, 2009; Chepuri and Leus, 2015; Lu and Pong,
2013), most often using existing SDP solvers, or the
simplicial decomposition (SD), an inner-linearization
polyhedral approximation method (Bertsekas, 2015). The
multi-aspect work by Esteban-Bravo et al. (2017), where
Newton-type methods were exploited to attack problems
subject to nonlinear constraints, is truly representative of
the former. The latter turns out to be extremely valuable
for large cardinalities of N , as it drastically reduces the
problem dimensionality, without even saying about the
striking simplicity of its implementation (it alternates
between solving an LP problem and extremizing the
original design criteria over the convex hull of a
finite number of given nonnegative matrices, which can
easily be solved using vertex-direction, vertex-exchange
or multiplicative algorithms discussed previously), cf.
(Uciński and Patan, 2007; Uciński, 2015).

In addition to that, a very auspicious, versatile
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and efficient technique exploiting second-order cone
programming for D-, A-, G- and I-optimality criteria
was put forward by Sagnol and Harman (2015), who
substantially refined the technically sound approach
outlined by Sagnol (2011) for c-optimality. Finally, recent
research reported by Duarte et al. (2020) points to a
lot of potential for handling various intricate constraints
presented by mixed integer nonlinear programming
(MINLP) formulations when supported by quite efficient
state-of-the-art numerical solvers.

Nevertheless, algorithmic construction of optimum
designs on finite design spaces has not reached the
maturity of its unconstrained counterpart yet and
still waits for effective and efficient algorithms with
good performance for large numbers (sometimes many
thousands) of candidate support points. These algorithms
should also cover optimality criteria which are not
as well behaved as common ones, e.g., those of D-
and A-optimality. Specifically, the communications on
nonsmooth criteria are limited.

An important nonsmooth optimality criterion is the
minimum eigenvalue of the FIM, called the E-optimality
criterion. Maximizing it, we minimize the length of the
largest axis of the uncertainty ellipsoid for the estimates.
This criterion turns out to be nondifferentiable when the
minimum eigenvalue of the FIM is multiple. It is easy
to show (Joshi and Boyd, 2009) that the corresponding
relaxed problem can be reformulated in terms of an
LMI-constrained convex minimization problem, but when
the cardinality of N grows, solving SDP problems
becomes computationally demanding and interior-point
solvers quickly run into time and memory issues on
mediocre computers.

Instead, Pronzato and Pàzman (2013, p. 236) made
use of an equivalent formulation in terms of a semi-infinite
programming (SIP) problem and then the method of
outer approximations of Shimizu and Aiyoshi (1980)
was applied, which resulted in an extremely simple
computational scheme alternating between determining
the minimal eigenvalue of the current FIM and solving
an LP problem. This simplicity makes the algorithm well
suited for large cardinalities of N .

The above LP-based approach to E-optimality was
then extended by Burclová and Pázman (2016) for
the case of the Ek-optimality criterion (the sum of k
smallest eigenvalues of the FIM). This criterion, put
forward and thoroughly analyzed by Harman (2004), is
a generalization of both E-optimality (it corresponds to
k = 1) and trace optimality (when k equals the number
of estimated parameters, the Ek-optimality criterion is
just the trace of the FIM). Its distinguishing feature is
that the minimal efficiency of a design over the class
of all orthogonally invariant design criteria coincides
with its minimal efficiency over the finite class of all
Ek-optimality criteria. Recall that for orthogonally

invariant criteria the quality of a design depends solely on
the shape of the corresponding confidence ellipsoid for the
estimates and not on its orthogonal rotations, and that this
class includes most design criteria used in practice. Thus,
the search for a design maximum-efficient, i.e., the most
efficiency stable, for all orthogonally invariant criteria,
can be replaced by a drastically simpler exploration of
the maximum efficient designs among the Ek-optimality
criteria with k ranging from 1 to the number of estimated
parameters.

Apart from application of the Ek-optimality criteria
as accessory criteria when constructing criterion-robust
designs, practitioners may be tempted by using the
Ek-optimality criterion for an arbitrarily fixed k > 1. A
rationale could be its dependence on more than a single
eigenvalue of the FIM, accompanied by the simplicity of
the LP-based method of its numerical construction. But
in this setting utmost care should be taken to avoid the
potential pitfalls. Specifically, a major drawback of the
Ek-optimality criterion is that for k > 1 there is no
guarantee that at an optimal design the information matrix
will be nonsingular. Indeed, a very large sum of k smallest
eigenvalues of the FIM does not necessarily mean that all
of them are nonzero. Thus, identifiability may be lost at
an Ek-optimum design. Another disadvantage is that the
shape of the ellipsoid of concentration for the estimates is
only indirectly influenced by the eigenvalues of the FIM.
In fact, the squared lengths of the axes of the confidence
ellipsoid are proportional to the eigenvalues of the inverse
of the FIM. This constitutes a motivation behind a revision
to the form of the Ek-optimality criterion.

The first aim of this paper is to investigate properties
of the alternative form of the Ek-optimality criterion,
being defined as the sum of k largest eigenvalues of the
FIM. A design minimizing this criterion makes the sum
of the squared lengths of k largest axes of the confidence
ellipsoid minimal. Equivalently, it suppresses the average
of k largest variances of the estimates. It constitutes a
generalization of both E- and A-optimality, and it will be
shown here that it possesses numerous desirable features,
such as convexity, antitonicity or orthogonal invariance.
What is more, there is no risk of ending up with a singular
FIM provided that we deal with a problem in which the
parameters are identifiable.

The selfimposed form of the modified Ek-optimality
criterion is in marked contrast to the lack of
communications on its use in the literature. A plausible
explanation is its nonsmoothness and a less convenient
form than for the genuine Ek-optimality criterion due to
the replacement of the FIM by its inverse. As a result,
it is impossible to employ the LP-based algorithm of
Pronzato and Pàzman (2013) to numerically construct
optimal designs. That is why the second objective of this
paper is to develop an efficient computational algorithm
for construction of the corresponding optimum designs.
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The proposed algorithm retains the basic structure
of the method of outer approximations employed by
Burclová and Pázman (2016), i.e., it alternates between
computing k smallest eigenvalues of the FIM along
with their associated eigenvectors, and solving a finite
min-max problem. The marked difference is that the
latter is strongly nonlinear in the design weights and,
therefore, LP solvers are of no use here. They key
and original idea in attacking this possibly large-scale
problem is to apply generalized simplicial decomposition
(GSD), proposed by Bertsekas and Yu (2011), a viable
counterpart of ordinary SD, which is directed towards
nonsmooth convex minimax problems. Bertsekas and
Yu (2011) only sketched the idea as an application
of a more general approach stemming from extended
monotropic programming. Successful attempts to use it
in the context of optimum sensor selection were reported
by Patan and Uciński (2019). Here we adopt it to the
specificity of the constrained design problem in question,
provide a separability form of optimality conditions,
which can be easily applied to terminate the algorithm,
and discuss specifics of our implementation. A nontrivial
computational example is used to validate the proposed
technique.

The paper is organized as follows. In Section 2
the general problem of optimum experimental design
is defined with special emphasis on Ek-optimality. In
Section 3 the proposed modified Ek-optimality criterion
is introduced and its properties are discussed. Section 4
reformulates the problem in terms of continuous designs.
In Section 5 the method of outer approximations is set
forth as the tool to determine numerical approximations to
the respective optimal designs. In Section 6 generalized
simplicial decomposition is employed to implement the
step involving the solution of a finite min-max problem.
Section 7 reports computational results for a nontrivial
problem of sensor selection. In Section 8 some concluding
remarks are made. Finally, three appendices contain some
accessory results or proofs of theoretical results.

Notation. Throughout the paper, R+ and R++ stand
for the sets of nonnegative and positive real numbers,
respectively. We adopt the convention that all vectors have
column form. The set of real m × n matrices is denoted
by R

m×n. We use S
m to denote the set of symmetric

m × m matrices, S
m
+ to denote the set of symmetric

nonnegative definite m×m matrices, and S
m
++ to denote

the set of symmetric positive definite m × m matrices.
The curled inequality symbol� (resp.�) is used to denote
generalized inequalities. More precisely, between vectors,
it represents a componentwise inequality, and between
symmetric matrices, it represents the Loewner ordering:
given A,B ∈ S

m, A � B (resp. A � B) means
that A − B is nonnegative (resp. positive) definite. The
symbols 1 and 0 denote vectors whose all components

are ones and zeros, respectively. The context makes their
lengths clear. By analogy, 0 and I stand for the zero and
identity matrices of appropriate dimensions, respectively.
However, we shall occasionally write Ik for the k × k
identity matrix to accentuate its dimensions. Given two
vectors a, b ∈ R

n, their scalar product is denoted either
by aTb or a · b.

Given a set of points A, conv(A) stands for its
convex hull, i.e., the set of all convex combinations of
elements of A. If A is convex, ri(A) signifies its relative
interior. The probability (or canonical) simplex in R

n is
defined as

Sn = conv
({

e1, . . . , en
})

=
{
p ∈ R

n
+ | 1Tp = 1

}
,

where ej is the usual unit vector along the j-th coordinate
of Rn.

For any A ∈ S
m, let λmax(A) = λ1(A) ≥ · · · ≥

λm(A) = λmin(A) denote the eigenvalues of A in
decreasing order.

2. Optimum experimental design problem

Consider observations yij of a d-dimensional vector y of
response variables, performed at fixed values xi of the
l-dimensional vector x of explanatory (or independent)
variables (e.g., time, temperature, spatial location, drug
doses, etc.), which follow the parametric model structure
(Seber and Wild, 1989, p. 529)

yij = η(xi, θ) + εij ,

{
j = 1, . . . , ri,

i = 1, . . . , n.

We assume that xi �= xk whenever i �= k. The
additional index j is necessary when the observations
are replicated ri > 1 times for the setting xi. Then
the total number of experimental runs is N =

∑n
i=1 ri.

Here the regression function η : R
l+m → R

d is given
a priori and θ constitutes an m-dimensional vector of
constant but unknown parameters. The d-dimensional
vectors of additive random errors εij disturbing the model
are assumed to be sampled from a multivariate normal
distribution satisfying

E(εij) = 0,

E(εijε
T
k�) = δikδj�V (xi),

where the dispersion matrices V (xi) ∈ S
d
++, i =

1, . . . , n are known, possibly up to a common constant
multiplier, and δij signifies the Kronecker delta.
This means that observations at different experimental
conditions are uncorrelated, but we allow for correlations
between individual responses.

For a linear functional form of η, we have

η(xi, θ) = F (xi)
T θ,
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where F (xi) ∈ R
m×d, i = 1, . . . , n are known. Let

M i ∈ S
m
+ be given by

M i = F (xi)V
−1(xi)F

T(xi), i = 1, . . . , n.

If the matrix

M =

n∑

i=1

riM i,

called the Fisher information matrix (FIM), has full rank,
then the weighted least squares estimator of θ is given by
(Fedorov and Leonov, 2014, p. 15)

θ̂ = M−1
n∑

i=1

riF (xi)V
−1(xi)ȳi,

where

ȳi =
1

ri

ri∑

j=1

yij .

It is unbiased and efficient, and has the multivariate
normal distribution with

Cov(θ̂) = M−1.

On some mild assumptions (Pronzato and
Pàzman, 2013), these properties hold asymptotically
for a nonlinear function η if we define θ̂ as the
maximum-likelihood estimator of θ and replace F T(xi)
by ∂η(xi,ϑ)/∂ϑ

∣
∣
ϑ=θ

.
We assume that the values of xi, i = 1, . . . , n are

fixed and may not be altered, but we have full control
over the corresponding numbers of replications ri, i =
1, . . . , n. The focus here will be on choosing the latter
values in some optimal way to enhance the process of
estimating θ. To form a basis for the comparison of
different experiments, a number of real-valued criteria
defined on the FIM have been proposed (Atkinson et al.,
2007; Pronzato and Pàzman, 2013; Fedorov and Leonov,
2014). They are most often related to the confidence
ellipsoid, i.e., a highest probability density region for the
parameters. The most common options include (we use
symbols Ψ and Φ for criteria which are supposed to be
minimized and maximized, respectively):

(i) the D-optimality criterion,

ΦD(M ) = det1/m(M ),

maximization of which amounts to minimizing the
volume of the confidence ellipsoid;

(ii) the A-optimality criterion,

ΨA(M ) = trace(M−1),

minimization of which is equivalent to minimizing
the sum of the squared lengths of the axes of the
confidence ellipsoid;

(iii) the E-optimality criterion,

ΦE(M) = λmin(M),

maximization of which leads to minimizing the
length of the largest axis of the confidence ellipsoid;

(iv) the trace-optimality criterion,

Φtr(M) = trace(M), (1)

maximization of which makes the sum of the
diagonal elements of the FIM maximal.

Different criteria yield slightly different optimal
designs and the choice of a particular criterion is dictated
by a specific application and ease of computations. The
criterion (1) is occasionally used due to its simplicity,
but it may lead to serious problems with identifiability.
Indeed, it is employed in the hope that large diagonal
elements of the FIM will translate into “small” elements
of its inverse, but this may not necessarily be the case.
Taken to extremes, the use of this criterion may result in a
singular FIM (Zarrop and Goodwin, 1975).

In the search for a flexible and general criterion,
Harman (2004) advocated maximization of the
Ek-optimality criterion

ΦEk
(M) =

m∑

�=m−k+1

λ�(M),

i.e., the sum of k smallest eigenvalues of the FIM for an
arbitrarily selected k ∈ {1, . . . ,m}. In fact, it defines
a family of criteria which range from E-optimality (for
k = 1) to trace-optimality (for k = m). A distinctive
feature of this criterion is orthogonal invariance, i.e.,

ΦEk
(UMUT) = ΦEk

(M )

for any orthonormal (i.e., satisfying UTU = Im) matrix
U ∈ R

m×m.
Burclová and Pázman (2016) developed a relatively

simple algorithm to compute Ek-optimum designs. It
makes use of the formulation in terms of an SIP problem
and applies the method of outer approximations exposed
by Shimizu and Aiyoshi (1980). This is an extension
of the idea set forth by Pronzato and Pàzman (2013,
p. 326) for the E-optimality criterion. In general, SIP
problems are markedly hard to solve, especially when
the lower-level program is not convex (and this is the
case here). Specifically, a formidable challenge is that
to establish feasibility of any value of the upper-level
decision variable means to find a global extremum
in the lower-level problem. This imposes a heavy
computational burden, which is even more pronounced
in generalized SIP problems receiving particular attention
recently (Djelassi et al., 2019), in which the set of
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constraints depends on the upper-level decision variables.
But Burclová and Pázman (2016) exploit the relative
simplicity of their SIP formulation to the maximum and
their computational scheme alternates between computing
k smallest eigenvalues of an m ×m matrix accompanied
by the corresponding eigenvectors and solving an LP
subproblem. The simplicity of the approach makes the
algorithm well-suited for very large cardinalities of the set
of candidate design points.

Unfortunately, for k > 1 the Ek-optimality criterion
inherits the main drawback of the trace-optimality
criterion, i.e., it does not prevent optimal information
matrices from being singular. Indeed, a large sum of k
smallest eigenvalues of the FIM does not imply that the
minimal eigenvalue is positive.

Another severe disadvantage is that manipulating the
sum of smallest eigenvalues of the FIM influences the
axes of the uncertainty ellipsoid only indirectly and in a
rather awkward manner. A high value of this criterion
might correspond to an ellipsoid which is extremely
elongated, at least in one direction, which means an
excessive variability of the estimates and contradicts the
main objective of optimum design.

3. Modified Ek-optimality

In order to remove the above disadvantages of the
Ek-optimality criterion while retaining its ability to
embrace a range of optimality criteria, the following
modified Ek-optimality criterion is proposed:

ΨEinv
k
(M) =

⎧
⎨

⎩

k∑

�=1

λ�(M
−1) if M � 0,

+∞ otherwise.
(2)

As it is the sum of k largest eigenvalues of the inverse
of the FIM, its minimization will suppress the sum of
the squared lengths of k largest axes of the confidence
ellipsoid. Its finite values always correspond to a
nonsingular FIM, which implies identifiability. On the one
hand, Einv

k -optimum designs are E-optimum ones for k =
1 and, on the other, they constitute A-optimum designs for
k = m. This means that the family of optimality criteria
so defined for k ∈ {

1, . . . ,m
}

has a better interpretability
in terms of the estimation accuracy than the same family
for the genuine Ek-optimality criterion.

While analyzing the properties of the Einv
k -optimality

criterion and setting up the numerical algorithm of
Section 5, the following equivalent form is essential:

ΨEinv
k
(M) = max

Q∈Q
trace(QTM−1Q) (3)

for M ∈ S
m
++, where

Q =
{
Q ∈ R

m×k : QTQ = Ik

}
,

cf. Theorem A1. The set Q is not convex, but it is
compact. (The Frobenius norm of any Q ∈ Q equals√
k.)

For notational simplicity, in what follows we write Ψ
instead of ΨEinv

k
.

The result below lists the main analytical properties
of the proposed criterion. Its proof is included in
Appendix B.

Theorem 1. In S
m
+ the design criterion Ψ is

(i) antitonic, i.e., reversing the Loewner ordering,

M1 
 M2 =⇒ Ψ(M 1) ≥ Ψ(M2),

(ii) positively homogeneous of degree −1, i.e.,

Ψ(αM) =
1

α
Ψ(M ), ∀α > 0,

(iii) convex,

(iv) orthogonally invariant.

A serious problem presented by the criterion (2)
is its potential nondifferentiability for k < m, which
may happen in case its matrix argument has multiple
eigenvalues. As a very simple example, set M = I
and observe that then the partial derivatives of Einv

k with
respect to the diagonal elements of M fail to exist.
In general, we must cope not only with the likelihood
of a nondifferentability at a minimizing point, but also
with the fact that our highly nonlinear objective function
has no simple analytical expression. Fortunately, the
convexity of the design criterion makes it possible to
exploit some of the machinery of convex analysis. In
Section 5 we demonstrate that the alternative form of
this criterion, Eqn. (3), is computationally tractable and
its minimization can be made into a convergent and
implementable procedure.

4. Relaxed formulation using continuous
designs

The resulting optimization problem constitutes a classical
discrete resource allocation problem (Katoh, 2001): Given
a total amount of N observations, we wish to allocate it to
n measurement settings so that the objective value (cost)
Ψ[M(r1, . . . , rn)] is minimized. Its combinatorial nature
implies that calculus techniques cannot be exploited in
the solution and, with a long list of candidate settings xi

and a large N , complicated search algorithms can readily
consume appreciable computer time and space.

A commonly used device for this problem is to
extend the definition of the solution (Atkinson et al., 2007;
Fedorov and Leonov, 2014; Pronzato and Pàzman, 2013).
To this end, it is convenient to operate on the frequencies
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of observations pi = ri/N , called weights, in place of
the design variables ri, i = 1, . . . , n, and on the so-called
normalized FIM

M̃(p) =

n∑

i=1

piM i

in lieu of M(r1, . . . , rn). Note that n ≤ N and p =
(p1, . . . , pn) satisfies

1Tp = 1, p � 0. (4)

When N is large, we may dispense with the
restriction that the feasible weights are integer multiples
of 1/N and seek a solution in a wider class of approxi-
mate designs, i.e., the ones in which the weights are any
real numbers satisfying (4). This relaxation makes the
optimization problem more tractable and we adhere to it in
what follows. Moreover, owing to antitonicity, a p which
minimizes Ψ[M̃(p)] yields multiplicities r1, . . . , rn
which also minimize Ψ[M(r1, . . . , rn)]. Consequently,
minimization of this slightly modified design criterion
Ψ[M̃( · )] is further considered. For simplicity of
notation, we will also drop the tilde over M( · ). The
settings xi associated with positive weights pi are said to
be support points.

One of the common criticisms of the mathematical
optimal design is that the produced designs concentrate at
a relatively small number of support points, rather than
spreading the measurement effort around appropriately,
which many practicing statisticians tend to do (Cook and
Fedorov, 1995). Indeed, the results reported by various
authors indicate that the number of support points with
nonzero weights is most often close to the number of
the estimated parameters. This gave rise to investigations
aiming at imposing the appropriate limitations on the form
of the optimal designs. Following this line of research, in
the remainder of the paper, we are interested in solving the
linearly constrained design problem stated as follows.

Problem 1. Given a vector b ∈ R
n
++ satisfying 1Tb > 1,

find a vector of weights p = (p1, . . . , pn) to minimize

J(p) = Ψ
(
M(p)

)

over the set P =
{
p ∈ R

n | 0 
 p 
 b,1Tp = 1
}
.

In this formulation, we prevent spending the overall
experimental effort at few points by directly bounding
the frequencies of observations from above. Problems
of this type have received close attention in the general
framework of optimal design with bounded density (Cook
and Fedorov, 1995; Fedorov, 1989; Sahm and Schwabe,
2001). In the specific context considered here, this
formulation possesses a number of notable features which,
in theory, should make its solution straightforward. First
of all, note that the performance index Ψ is convex over

the canonical simplex Sn due to the convexity ofΨ and the
linear dependence of the FIM on the weights. Moreover,
the constraint set P constitutes the intersection of Sn and
the box B =

{
p ∈ R

n | 0 
 p 
 b
}

, which is a rather
nice convex set.

Write P+ =
{
p ∈ P | M(p) � 0

}
. For

abbreviation, we set

f(p,Q) =

{
trace(QTM−1(p)Q) if p ∈ P+,

+∞ otherwise.

5. Algorithm for construction of
Einv
k -optimum designs

5.1. Regularization of the optimality criterion.
Before proceeding further, observe that we need to restate
Problem 1 in order to make the numerical search for
an optimum design well conditioned. This is due to
the possible bad behaviour of the mapping f whenever
M(p) tends to become singular. This is illustrated by the
following example.

Example 1. Assume that M1 = diag([1, 0, 0]),
M2 = diag([0, 1, 0]), M 3 = diag([0, 0, 1]). Consider
the weights parameterized as

p(γ) =
(1
2
(1 − γ),

1

2
(1− γ), γ

)

by γ ∈ [0, 1]. For γ ∈ (0, 1) we have that M−1(p(γ)) =
diag([2/(1− γ), 2/(1− γ), 1/γ]). Now consider

Q1 =

⎡

⎣
0 0
1 0
0 1

⎤

⎦ , Q2 =

⎡

⎣
1 0
0 1
0 0

⎤

⎦ .

It follows that

f(p(γ),Q1) =
2

1− γ
+

1

γ
→ +∞,

f(p(γ),Q2) =
4

1− γ
→ 4

as γ → 0. This means that numerical exploration of the
design criterion through f is in danger of approaching the
singular matrix M (p(0)) = diag([1/2, 1/2, 0]) just by
odd coincidence. A consistent behaviour of the function
f is to be expected here, i.e., f(p,Q) should grow
unboundedly whenever the FIM tends to be singular. This
singularity is a symptom of the loss of identifiability
(Pronzato and Pàzman, 2013; Coll and Sánchez, 2019)
and it is quite natural to introduce a safeguard against
this undesirable situation built into the computational
procedure. �

In order to avoid a potentially degenerate numerical
minimization problem, a penalty for solutions yielding
M(p) close to being singular is incorporated in the design
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criterion. Specifically, setting β as an arbitrary small
positive real, we replace Ψ by

Ψ̃(M )

⎧
⎪⎪⎨

⎪⎪⎩

max
Q∈Q

trace(QTM−1Q)

−β log det(M) if M � 0,

+∞ otherwise.

(5)

Clearly, the term −β log det(M ) grows unboundedly
as M tends to be singular. Since Ψ(M) =∑k

�=1 λ�(M
−1) ≥ kλmin(M

−1) = k/λmax(M) >

0, the same behaviour of Ψ̃(M) is guaranteed. What
is more, the concavity of the log-determinant on S

m
++

implies that the convexity of the design criterion is
retained.

The value of the adjustable parameter β should be
small, so as not to pull the computed design away from
minimizing Ψ(M) in favour of maximizing det(M ). In
computer experiments reported in Section 7 its choice
has been made via a trial-and-error procedure so as to
make the ultimate value of the penalty component remain
within a margin of several per cent of the value of
the compound criterion (5). A similar strategy proved
to perform quite well in a similar design problem for
correlated observations investigated by Uciński (2020).

Continuing in this fashion, we introduce the function

f̃(p,Q) =

⎧
⎪⎨

⎪⎩

trace(QTM−1(p)Q)

−β log det(M ) if p ∈ P+,

+∞ otherwise,

and the corresponding regularized optimality criterion
J̃(p) = Ψ̃(M(p)) in lieu of f and J , respectively.

For notational simplicity, from now on we will write
J̃ , Ψ̃ and f̃ simply as J , Ψ and f , respectively.

5.2. Method of outer approximations. The
Einv
k -optimality criterion is convex, but nondifferentiable,

which suggests that its minimization may be nontrivial.
For k = 1, i.e., the E-optimality criterion, minimizers
can sometimes be determined in closed form. This
is the case of polynomial or trigonometric regression
(Pukelsheim, 1993; Melas, 2006); see also the work of
Harman (2004), where Ek-optimal designs are found
explicitly for polynomial regression. In general, however,
it is rather hard to construct designs of this type without
resorting to numerical optimization.

Observe that Problem 1 can equivalently be
formulated as the following semi-infinite programming
(SIP) problem (Hettich and Kortanek, 1993; Polak, 1987;
Reemtsen and Görner, 1998): Determine p ∈ P and
α ∈ R to minimize α subject to the constraints

f(p,Q) ≤ α, Q ∈ Q. (6)

The reason why such problems are called
semi-infinite is that the design vector p is finite
dimensional but the number of constraints (6) is infinite.
This type of conversion has been used frequently in
optimum experimental design (cf., e.g., Duarte and
Wong, 2014), especially while constructing robust
designs.

A very convenient technique to solve the above SIP
problem is the method of outer approximations (Polak,
1997, p. 460) which reduces computations to solving a
sequence of simpler finite min-max problems. Strictly
speaking, in each step, the constraints (6) are replaced by

f(p,Q) ≤ α, Q ∈ R.

for a finite set R ⊂ Q consisting of the most
representative values of Q. Thus, the constraint set{
(p, α) ∈ P × R : f(p,Q) ≤ α, ∀Q ∈ Q}

is a subset
of

{
(p, α) ∈ P × R : f(p,Q) ≤ α, ∀Q ∈ R}

, i.e., the
latter constitutes an “outer approximation” to the former,
which accounts for the name of the method.

From now on, we write

JR(p) = max
Q∈R

f(p,Q).

Obviously, we always have J(p) ≥ JR(p), ∀p ∈ P .
The algorithm implementing the method of outer

approximations is outlined as Algorithm 1. Note that
minimizers and maximizers in Steps 1 and 2, respectively,
should be global.

Global minimizers of J are the only accumulation
points of the sequence

{
p(κ)

}
and the termination

Algorithm 1. Method of outer approximations.

Step 0. (Initialization) Guess initial weights p(0) ∈ P+.
Set κ = 0, computeQ(0) = argQ∈Q max f(p(0),Q), and

set Q(0) =
{
Q(0)

}
. Choose 0 < ε � 1, a parameter used

in the stopping rule.

Step 1. (Solution of the finite min-max problem) Compute

p(κ+1) = argmin
p∈P

JQ(κ)(p). (7)

Step 2. (Determination of the next representative orthog-
onal matrix) Compute

Q(κ+1) = argmax
Q∈Q

f(p(κ+1),Q). (8)

Step 3. (Termination check) If

f(p(κ+1),Q(κ+1)) ≤ JQ(κ)(p(κ+1))(1 + ε) (9)

then STOP and p(κ+1) is optimal. Otherwise, set
Q(κ+1) = Q(κ) ∪ {

Q(κ+1)
}

, replace κ by κ + 1, and
go to Step 1.
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condition of Step 3 will be satisfied in a finite number
of iterations (cf. Shimizu and Aiyoshi, 1980, Thm. 3;
Polak, 1997, Thm. 3.5.20, p. 462). Basically, these
convergence results require the continuity of f on P ×Q
and the compactness of P and Q. (Note that the convexity
of f , P and Q is not required.) Here this function
may be unbounded, but those results still apply. This
is because for the needs of the proof of convergence we
could replace f by the composition g ◦ f , where g is
any strictly increasing continuous mapping transforming
[0,+∞] onto a compact interval, e.g., we could set g(v) =
arctan(v). It is easy to see that such a transformation does
not alter the minimizers.

Observe that the implementation of Step 2 is
straightforward. Theorem A1 yields

Q(κ)

=
[
v1(M

−1(p(κ))) · · · vk(M
−1(p(κ)))

]

=
[
vm(M (p(κ))) · · · vm−k+1(M (p(κ)))

]
,

(10)

where v� stands for the normalized eigenvector
corresponding to λ�, � = 1, . . . ,m.

Note that these eigenvectors are required to be
orthonormal, which is guaranteed if a system of
orthonormal eigenvectors of M(p(κ)) is available. The
existence of such a system results from the symmetry
of M(p(κ)) (Harville, 1997, Cor. 21.5.9, p. 534), but
standard numerical solvers may fail to produce it in case
M(p(κ)) has multiple eigenvalues (usually, they only
guarantee the linear independence of the eigenvectors
corresponding to the same eigenvalue). This problem
can, however, be easily addressed using the Schur
decomposition of M(p(κ)), the implementations of
which are provided by most numerical libraries. Indeed,
the spectrum of M (p(κ)) is real, which means that there
exist an orthogonal matrix V ∈ R

m×m and an upper
triangular matrix B ∈ R

m×m whose diagonal elements
are not-necessary-distinct eigenvalues of M(p(κ)) (in
arbitrary order) such that M(p(κ)) = V BV T (cf.
Bernstein, 2005, Cor. 5.4.3, p. 172; Harville, 1997,
Thm. 21.5.11, p. 536). But the symmetry of M (p(κ))
additionally yields BT = (V TMV )T = V TMV = B,
which means that B is actually diagonal and then the
columns of V form the desired system of orthonormal
eigenvectors of M (p(κ)).

Clearly, for M(p(κ)) with multiple eigenvalues
the eigenvectors v� are thus defined up to possible
permutations within the groups of the eigenvectors
corresponding to the same eigenvalues, but Theorem A1
implies that any arbitrary choice of the v�’s forces (8)
provided that Q(κ+1) is defined by (10). (The method
of outer approximations does not require the uniqueness
of the global minimizers and maximizers in (7) and (8),

respectively.)
As for Step 3, in (9) we make use of

f(p(κ),Q(κ)) =
k∑

�=1

λ�(M
−1(p(κ)))

=

m∑

�=m−k+1

λ−1
� (M (p(κ)))

However, the solution of the finite min-max problem
(7) of Step 1 is not obvious. At first sight, it does
not appear involved since the constraint set P is the
intersection of a hyperbox and a hyperplane, which is
a nice polyhedral set. Therefore, by introducing an
additional scalar variableα, we could rewrite it as follows.

Problem 2. Find a pair (p�, α�) to minimize α subject to

f0(p) ≤ α, . . . , fκ(p) ≤ α,

(p, α) ∈ P × R,

where fj(p) = f(p,Q(j)), j = 0, . . . , κ.

Basically, this is a smooth convex optimization
problem which could be numerically solved using
Newton-like methods, e.g., SQP. Unfortunately,
application of this clear idea is complicated by a
possibly very large value of n+1, the number of decision
variables. An alternative technique is therefore badly
needed. In what follows it is demonstrated that, with a
little turning up, it is possible to retain the simplicity of
Problem 2 and efficiently solve it.

6. General simplicial decomposition for the
finite min-max problem

6.1. Generalized simplicial decomposition. Uciński
and Patan (2007), Patan and Uciński (2008), Uciński
(2012; 2015), as well as Herzog et al. (2018)
demonstrated that for differentiable convex design
criteria the inner linearization algorithm called simplicial
decomposition (SD) (Bertsekas, 2015; Patriksson, 2001)
proves extremely effective at drastically reducing the
problem dimensionality and exploiting special structure
present in common design criteria.

Specifically, P is approximated with the convex hull
of an ever expanding set P(τ) that consists of extreme
points of P plus an arbitrary starting point p(0) ∈ P . The
method alternates between minimization of the design
criterion over conv(P(τ)) (this set has a relatively low
number of extreme points and this is where a substantial
dimensionality reduction emerges) and addition of a new
extreme point p̃τ ∈ P so as to guarantee a cost
improvement when it is minimized over conv(P(τ+1)),
where P(τ+1) = P(τ)∪{

p̃τ

}
(this is done by minimizing
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the linearized design criterion over P , which boils down
to solving a simple LP problem).

Unfortunately, there is no direct way to extend
the applicability of SD to nondifferentiable convex cost
functions. Larsson et al. (2015; 1998) exposed ergodic
sequences of subgradients and a conditional subgradient
method, but the appealing simplicity of the SD algorithm
was thereby lost. Bertsekas and Yu (2011), however,
advanced generalized simplicial decomposition (GSD),
which retains some key advantages of SD: it involves a
solution of linear programs, called the column generation
problems (CGPs), to generate new extreme points of P
and a solution of typically low-dimensional nonlinear
convex programs over conv(P(τ)), called the restricted
master problems (RMP). The latter programs have
low dimensions as long as P(τ) has a relatively small
cardinality. Moreover, the sequence of the solutions
produced by GSD tends to a solution of the original
problem in a finite number of iterations (due to the
polyhedral form of P) steadily decreasing the objective
function.

Adapting the universal GSD scheme to our needs, we
obtain Algorithm 2. In the sequel, its consecutive steps
will be discussed in turn.

6.2. Initialization. For simplicity, we assume that P(0)

consists of only two points, i.e., P(0) =
{
p1,p2

}
, where

p1 ∈ ri(P). Since 1Tb > 1 and b � 0, we set

p1 =
1

1Tb
b.

(If all the elements of b are equal to each other, p1 is then
simply the centre of Sn.) Then p2 is selected as a point
minimizing the value of J ′

Q(κ)(p
1;p−p1), the directional

derivative of JQ(κ) at p1 in the direction p − p1, over
p ∈ P .

By Danskin’s theorem (Bertsekas, 1999, p. 717), we
have

J ′
Q(κ)(p

1;p− p1)

= max
j:fj(p1)=JQ(κ) (p1)

(p− p1)T∇fj(p
1).

Therefore, p2 is the first component of the solution
to the following LP problem: Find a pair (p�, ω�) to
minimize ω subject to

[∇fj(p
1)
]T
p ≤ [∇fj(p

1)
]T
p1 + ω,

∀j : fj(p1) = JQ(κ)(p1),

(p, ω) ∈ P × R.

Algorithm 2. Solving Problem 2 via GSD.

Step 0. (Initialization) Guess an initial finite set P(0) ⊂ P
containing a point in ri(P) and such that card(P(0)) ≥ 2.
Set τ = 0.

Step 1. (Solution of the restricted master problem) Find a
pair (p(τ), α(τ)) to minimize α subject to

f0(p) ≤ α, . . . , fκ(p) ≤ α, (11)

(p, α) ∈ conv(P(τ))× R,

along with the appropriate values of the dual optimal
variables μ

(τ)
j ≥ 0, j = 0, . . . , κ corresponding to the

inequality constraints (11).

Step 2. (Termination check) If there exist some real
numbers c and ηj , j = 0, . . . , κ satisfying

κ∑

j=0

ηj
∂fj(p

(τ))

∂pi

⎧
⎪⎨

⎪⎩

≥ c if p(τ)i = 0,

= c if 0 < p
(τ)
i < bi,

≤ c if p(τ)i = bi

for i = 1, . . . , n,

(12)

ηj

{
= 0 if fj(p(τ)) < α(τ),

≥ 0 otherwise

for j = 0, . . . , κ,

(13)

κ∑

j=0

ηj = 1, (14)

then STOP and p(τ) is optimal.

Step 3. (Solution of the column generation problem) Set

γ(τ) =
κ∑

j=0

μ
(τ)
j ∇fj(p

(τ)).

Generate an extreme point p̃τ ∈ P as an optimal solution
to the LP problem

minimize (γ(τ))�p (15)

subject to p ∈ P . (16)

Set P(τ+1) = P(τ) ∪ {
p̃τ

}
. Increment τ and go back to

Step 1.

6.3. Solution of the restricted master prob-
lem. Standard optimality conditions (Bertsekas, 1999,
Chapter 5) imply that (p(τ), α(τ)) together with the
nonnegative dual variable μ(τ) = (μ

(τ)
0 , . . . , μ

(τ)
κ ) satisfy

the Langrangian optimality condition

(p(τ), α(τ)) ∈ arg min
p∈conv(P(τ))

α∈R

L(p, α,μ(τ)),
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where

L(p, α,μ) = α+

κ∑

j=0

μj(fj(p)− α)

constitutes the Lagrangian. Clearly, the complementary
slackness conditions imply that μj can be positive only
when the j-th constraint in (11) is active, i.e., fj(p(τ)) =

α(τ). What is more, we necessarily have
∑κ

j=0 μ
(τ)
j =

1 and this condition, together with the nonnegativity of
the multipliers, defines the canonical simplex in R

κ as the
domain of the dual function.

The typically low-dimensional nonlinear RMP can
be solved using fast Newton-like methods, such as SQP,
and their implementations usually return, as a by-product,
the values of the required Lagrange multipliers μ(τ)

j .

Note that if P(τ) =
{
p1, . . . ,pr

}
, the RMP takes

the following form: Find a sequence of weights q(τ) =

(q
(τ)
1 , . . . , q

(τ)
r ) and a scalar α(τ) so as to minimize α

subject to

fj(Nq) ≤ α, j = 0, . . . , κ,

(q, α) ∈ Sr × R,

where

N =
[
p1 . . . pr

]
.

Having found q(τ) and α(τ), we set p(τ) = Nq(τ).
The formulae for the gradients and Hessians of fj ,

which are needed in an efficient implementation of this
step using general-purpose NLP solvers, are given in
Appendix C.

6.4. Optimality conditions. The termination
conditions (12)–(14) can be easily deduced from the
Kuhn–Karush–Tucker characterization of p�, an optimal
solution to Problem 2; see, e.g., the works of Uciński and
Patan (2007) or Uciński (2012) for similar derivations.
Note that this characterization says that the components
of a convex combination of ∇f0(p

�), . . . ,∇fκ(p
�)

corresponding to weights pi between 0 and bi should
equal the same value, whereas the ones corresponding to
zero and upper bounds bi should respectively be no less
and no greater than this value, respectively. In practice,
this condition is easy to check using an LP solver. We
merely set the objective function to zero, treat η ∈ R

κ+1

and c ∈ R as variables and (12)–(14) as constraints, and
verify whether or not this linear program is solvable.

Note that in this primal LP problem the number
of constraints may be by far larger than the number
of variables (this is because, typically, the number of
active constraints from among (11) is low). Therefore, to
significantly reduce the time spent on this step, it is much
more reasonable to solve the dual problem. The primal

has a finite optimal solution if, and only if, so does the
dual. In turn, the primal is infeasible if, and only if, the
dual is unbounded.

6.5. Solution of the column generation problem.
The simple form of the constraints (16) makes it possible
to develop an algorithm to solve this LP problem, which is
almost as simple as a closed-form solution. The key idea
is to make use of the following assertion being a direct
consequence of Lemma 1 by Uciński (2012).

Theorem 2. A vector q ∈ P constitutes a global solu-
tion to the problem (15)–(16) if, and only if, there exists a
scalar ρ such that

γ
(τ)
i

⎧
⎪⎨

⎪⎩

≥ ρ if pi = 0,

= ρ if 0 < pi < bi,

≤ ρ if pi = bi

for i = 1, . . . , n.

We thus see that it is sufficient to pick the consecutive
lowest components of γ(τ) and set the corresponding
weights pi as their maximal allowable values bi. The
process is repeated until the sum of the assigned weights
exceeds one. Then the value of the last weight which was
set in this manner should be corrected so as the sum of
the already processed weights be one, and the remaining
(i.e., unassigned) weights are then set as zeros. This
straightforward scheme is implemented as Algorithm 3.
Note that its correctness requires satisfaction of the
condition b 
 1, which is by no means restrictive.

Algorithm 3. Algorithm model for solving the CGP.

Step 0. (Initialization) Set j = 0 and v(0) = 0.

Step 1. (Sorting) Sort the elements of γ(τ) in
nondecreasing order, i.e., find a permutation π on the
index set I =

{
1, . . . , n

}
such that

γ
(τ)
π(i) ≤ γ

(τ)
π(i+1), i = 1, . . . , n− 1.

Step 2. (Identification of nonzero weights)
Step 2.1. If v(j) + bπ(j+1) < 1 then set

v(j+1) = v(j) + bπ(j+1).

Otherwise, go to Step 3.
Step 2.2. Increment j by one and go to Step 2.1.

Step 3. (Form the ultimate solution) Set

pπ(i) =

⎧
⎪⎨

⎪⎩

bπ(i) for i = 1, . . . , j,

1− v(j) for i = j + 1,

0 for i = j + 2, . . . , n.
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7. Simulation example

As a nontrivial device to check the viability of the
proposed technique, the problem of sensor selection for
a distributed parameter system (DPS) will be used (cf.
Uciński, 2005; Patan and Kowalów, 2018). Here the
response y is defined implicitly as the solution of a
partial differential equation (PDE). Specifically, consider
the contaminating mobile source identification problem
which is of paramount interest in security, environmental
and industrial monitoring, or pollution control (Khapalov,
2010; Beddiaf et al., 2016). In a typical scenario,
after some chemical contamination has occurred, there
is a developing plume of dangerous or toxic material.
Its evolution is affected by weather conditions and the
surrounding geography. What is more, the contamination
source itself can be mobile. Emergency services wish to
quickly know where the source of the plume is located and
what its velocity is.

To set up a specific scenario of this type, consider the
spatiotemporal dynamics of the contaminant dispersion
over the spatial domain Ω = [0, 1]2 and the time horizon
T = (0, 1], which is modelled by the advection-diffusion
equation

∂y

∂t
+ υ · ∇y −∇ · (a∇y) = u, (17)

where y = y(x, t) is the contaminant concentration at
spatial point x ∈ Ω and time instant t ∈ T , υ = (1, 1)
is the known wind velocity, and ∇ stands for the spatial
gradient. In this description u = u(x, t) and a = a(x)
are the forcing term modelling the contamination source
and the diffusion coefficient, respectively.

Equation (17) is closely related to a physical model
of the mesoscale atmospheric motion (Jacobson, 1999). It
is complemented with the boundary conditions

y = 0 on ∂Ω− × T , (18)

∂y

∂n
= 0 on ∂Ω+ × T , (19)

and the initial condition

u
∣∣
t=0

= 0 in Ω. (20)

Here ∂Ω is the boundary of Ω, ∂Ω− =
{
x ∈ ∂Ω : υ ·n <

0
}
= {0}×[0, 1]∪[0, 1]×{0}, ∂Ω+ =

{
x ∈ ∂Ω : υ·n ≥

0
}
= {1}× [0, 1]∪ [0, 1]× {1}, where ∂y/∂n stands for

the derivative of y in the direction of the outward normal
of ∂Ω, n.

Both the terms u = u(x, t) and a = a(x) are
approximated by some functions which are known up to a
vector of unknown parameters θ ∈ R

m. In the scenario
considered, the mobile source with a known emission
intensity of 70, initially located at an unknown spatial
point z = (z1, z2) and moving in uniform motion with

Fig. 1. Isolines of the unknown diffusion coefficient.

constant velocity s parallel to the x2-axis, i.e., s = (0, v)
with unknown v, is described by

u(x, t) = 70 exp(−100‖x− (z + st)‖).

This emulates the action of a mobile pointwise source
(Dirac’s delta is approximated here by a slender Gaussian
function).

In turn, the diffusion coefficient is modelled as a
linear-in-parameters function

a(x) = a0 + a1x1 + a2x2

+ a3x
2
1 + a4x1x2 + a5x

2
2,

where the values of a0 to a5 are unknown.
All the unknown coefficients can then be collected in

a vector

θ = (a0, a1, a2, a3, a4, a5, z1, z2, v),

i.e., m = 9. We shall use the notation y(x, t; θ) to
emphasize the dependence of the solution on specific
values of θ. For simulation purposes, the following
nominal value of this vector was adopted:

θ0 = (0.2,−0.05, 0.2,−0.1, 0.05, 0.2, 0.1, 0.1, 0.8).

Figure 1 shows the isolines of the spatially-varying
diffusion coefficient determined by the first three
components of θ0. The evolution of the contaminant
concentration is displayed in Fig. 2. The dispersion
plume of the contaminant primarily spreads over the
entire spatial domain Ω, reflecting a complex combination
of advection and diffusion processes. It is strongly
influenced by the direction of the wind being the dominant
transport factor.

Now assume that a given number r = 150 of
available sensors can be deployed in Ω̄ = Ω ∪ ∂Ω to
measure the contaminant concentration at a sequence of
given time instants t� = 0.1�, � = 1, . . . , 10. This means
that the response is one-dimensional (d = 1). The goal is
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(a) t = 0.025

(b) t = 0.25

(c) t = 0.5

(d) t = 1.0

Fig. 2. Isolines of the contaminant concentration at consecu-
tive time instants for a source moving in uniform motion
from point (0.1, 0.1) to point (0.1, 0.9). The arrows re-
flect the wind direction.

Fig. 3. Trajectory of the contamination source (the arrow) and a
finite set of candidate points for sensor location (repre-
sented by points).

to use these observations to estimate the parameter vector
θ. The model (17)–(20) calibrated in this way can then be
used, e.g., to predict the plume envelope evolution.

The sensors usually cannot be placed at arbitrary
positions owing to limited access to specific spatial
areas. Here we introduce a limitation of this type by
assuming that no measurements can be made in the region
[0, 0.2) × [0, 1]. The actual sensor location should be
selected from among a given finite (but possibly large)
set of candidate locations, see Fig. 3. Here there are
n = 750 candidate locations with coordinates (0.2 +
i/30, j/30) for i = 0, . . . , 24 and j = 1, . . . , 30. This
selection should be made so as to collect the most valuable
information about the unknown parameters as quantified
by the Einv

k -optimality criterion. The measurements are
disturbed by uncorrelated noise with zero mean and a
constant variance (note that the value of the variance does
not influence the sensor locations).

For the design, the elements of the row vector of
the sensitivity coefficients ∂y(x, t;ϑ)/∂ϑ at admissible
sites are indispensable in order to determine matrices M i

which are required to evaluate optimality criteria. As
y depends on θ nonlinearly, the response is linearized
with respect to θ around the nominal vector θ0. It is
easy to check (Uciński, 2005) that this strategy of taking
measurements adheres to the framework considered here
on setting

M i =

10∑

�=1

(
∂y(xi, t�;ϑ)

∂ϑ

)T(
∂y(xi, t�;ϑ)

∂ϑ

)∣∣
∣
∣
ϑ=θ0

.

This is a routine in the design for nonlinear
response models (Atkinson et al., 2007). The
sensitivity coefficients were determined using the
direct-differentiation technique (Uciński, 2005). Here it
consists in solving a system of ten PDEs in which one
equation constitutes the original state equation (17) and
the other nine equations result from its differentiation
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with respect to the nine components of θ. This system
of PDEs was solved using FEniCS v.2019.1.0, an
open-source computing platform for solving PDEs using
the finite-element method (Langtangen and Logg, 2016).

A uniform triangular mesh in space was employed (Ω
was partitioned into 60×60 squares, each partitioned into
a pair of triangles). The time derivative was approximated
by a simple backward difference with the time step equal
to 0.01 (this corresponds to the so-called implicit Euler
discretization).

At each candidate point x1 and at each time instant
t� at most one observation may be taken. It is also
assumed that each sensor, when placed at a spatial point, is
supposed to take a series of measurements at consecutive
time moments t�, � = 1, . . . , L. Thus, a weight pi
is associated with each candidate point satisfying the
condition

0 ≤ pi ≤ 1

r
.

Therefore, the framework of Section 4 applies here after
setting b = (1/r)1.

Note that selection of best locations of r sensors from
among n candidate points means that we are interested
in the solutions in which the weights pi are either 0 or
1/r. This, together with the requirement pT1, would
imply that as many as r weights would be nonzero
and these would correspond to the best sites for sensor
location. But Problem 1 constitutes in fact a relaxed
formulation and there is no guarantee that the number of
nonzero weights in its optimal solution will not exceed r.
As optimal designs for uncorrelated observations usually
naturally tend to be sparse (i.e., most of their components
are zero) (cf. Atkinson et al., 2007), no special sparsity
enforcing techniques are needed. Instead, a pre-defined
number, Nrand, of feasible sensor configurations are
drawn at random based on the optimal weights produced
by Algorithm 1. Specifically, for each configuration,
the locations of individual sensors are drawn without
replacement from the set of points with nonzero weights
in the optimal solution, with the probabilities being
merely the values of the corresponding weights. The
configuration yielding the smallest value of the criterion
J(p) is chosen as the ultimate sensor configuration at this
stage. Here we set Nrand = 100.

All the algorithms were implemented in Python 3.7
using NumPy, its fundamental package for linear
algebra, and SciPy, its core library used for scientific
computing. From the latter, the real Schur decomposition
(scipy.linalg.schur) was used to produce
systems of orthonormal eigenvectors of the current
information matrices, the trust-region constrained
NLP solver (scipy.optimize.minimize with
method = ’trust-constr’) was used to produce
solutions to the RMP problem along with the vector
of the Lagrange multipliers μ needed in Step 3

Table 1. Performance of Algorithm 1 and the procedure by Bur-
clová and Pázman (2016) in computing continuous
Einv
k - and Ek-optimum designs, respectively.

k
CPU time [s] effEinv

k

# of iterations
Einv
k Ek Einv

k Ek

1 3.52 30.55 0.99 4 26
2 7.91 22.11 0.82 8 20
3 1.76 10.07 0.81 2 12
4 1.82 9.96 0.60 2 12
5 1.81 15.50 0.59 2 24
6 1.70 3.72 0.55 2 6
7 0.82 3.08 0.60 1 6
8 0.90 1.46 0.31 1 3
9 0.84 1.21 0.23 1 2

of Algorithm 2, and the interior-point LP solver
(scipy.optimize.linprog) was employed to
solve the dual LP problem associated with Step 2 of
Algorithm 2.

The ultimate program was run with the open-source
Anaconda distribution 2019.10 under Windows 10 on a
laptop equipped with an Intel Core i7–6700HQ CPU,
2.60 GHz, 24 GB RAM.

The value of ε = 10−4 was set in the termination
condition of Step 3 in Algorithm 1. The penalty
coefficient preventing the loss of identifiability was set as
β = 0.001, but it turned out that this value had only a
negligible effect on the values of the design criteria. (The
contribution of the penalty term to the final value of the
design criterion varied from 1.2 to 1.9%.)

Figure 4 displays optimum sensor configurations for
both Einv

k - and Ek-optimality criteria. The latter have
been obtained by implementing the LP-based procedure
by Burclová and Pázman (2016) using the interior-point
solver scipy.optimize.linprog. Sensors form
a dense cluster along the trajectory of the source and
in the area covered by the spreading contaminating
plume. Logically, their measurements will be likely to
be beneficial for estimation of the initial source position
(z1, z2) and velocity v. But some part of experimental
effort must be also spent on estimation of the diffusion
coefficient. This is reflected by the location of a few
sensors in the top-right part of Ω, where the diffusion
coefficient is lower and its sensitivity to changes in the
values of coefficients ai is more pronounced.

The Einv
k -optimum sensor configurations keep on

slightly varying for moderate values of k but then
their changes are only minor. This results from the
influence made on the criterion by several dominating
eigenvalues of the inverted FIM. Inclusion of smaller
eigenvalues to the sum defining this criterion has
negligible impact. For the Ek-optimality criterion the
number of eigenvalues included in the criterion influences



Construction of constrained experimental designs on finite spaces . . . 673

(a) Einv
1 (b) Einv

2 (c) Einv
3 (d) Einv

4

(e) E1 (f) E2 (g) E3 (h) E4

(i) Einv
5 (j) Einv

6 (k) Einv
7 (l) Einv

9

(m) E5 (n) E6 (o) E7 (p) E9

Fig. 4. Einv
k and Ek-optimum sensor configurations for different k.

the optimal configurations much stronger. It is to be noted,
however, that the greater k, the more sensors are clustered
along the left boundary of the set of candidate points.
But an increase in k is accompanied by much poorer
quality of the produced sensor configurations in terms of
the Einv

k -optimality criterion. This is not surprising, since
for k = 1 both the criteria yield the same optimum design,
but for increasing k they start concentrating on completely
different aspects of the FIM.

In Table 1 the performance parameters for the
algorithms producing continuous Einv

k (Algorithm 1)

and Ek-optimum (the procedure by Burclová and
Pázman (2016)) designs are included. Additionally, the
Einv
k -efficiency of Ek-optimum designs is listed. It is

defined as

effEinv
k
=

J(p�
Einv
k

)

J(p�
Ek
)
,

where p�
Einv
k

and p�
Ek

stand for Einv
k - and Ek-optimum

designs, respectively. It expresses how close p�
Ek

is to
p�

Einv
k

in terms of the Einv
k -optimality criterion. The larger

its value (it is always between 0 and 1), the more p�
Ek

is
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valuable as quantified by the Einv
k -optimality criterion.

Comparison of CPU times of the algorithms for
both the criteria indicates that the procedure for the
Einv
k -optimum designs is substantially faster in spite of the

fact that it uses an NLP solver, while the procedure for
Ek-optimality exploits only an LP solver. The reason lies
in the striking differences in the dimensionalities of these
NLP and LP problems. Extremely great efficiency gains
result from using GSD, as the number of variables in the
NLP problems in the simulations never exceeded ten. In
turn, in the LP problem all 750 variables have to take part
in numerical optimization. This also makes the version of
the algorithm for Einv

k -optimality an attractive alternative
for determining E-optimum designs.

A common observation for both the criteria is that the
number of loops in the method of outer approximations
decreases as k increases (this may mean that the Einv

k - and
Ek-optimality criteria are easier to optimize for large k).

8. Conclusions

The proposed Einv
k -optimality criterion and the

attendant computational procedure, embodied as
Algorithm 1, constitutes a viable alternative to the
Ek-optimality criterion and the LP-based method of outer
approximations discussed by Harman (2004) as well as
Burclová and Pázman (2016). The criterion possesses a
much clearer interpretation in terms of the shape of the
asymptotic covariance matrix for the estimates. What
is more, in spite of a more involved implementation,
the gains resulting from combining the method of outer
approximations and generalized simplicial decomposition
make the scheme outperform the much simpler scheme
for Ek-optimality.

There is still room for some improvements. Observe
that the sets Q(κ) in Algorithm 1 are ever expanding.
As a result, solution of the NLP problem in Step 1 of
Algorithm 2 becomes more and more computer-intensive.
Thus, the appropriate techniques of dropping least
valuable elements of these sets are badly needed. Such
techniques exist for SIP problems (see, e.g., Zhang et al.,
2010), and with some additional effort they seem to be
adaptable here, but there are no such methods available for
generalized simplicial decomposition. Inclusion of such
schemes is of utmost importance for large-scale problems.
Their adaptation or elaboration will constitute the main
research direction for future research.
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Patan, M. and Uciński, D. (2008). Configuring a sensor
network for fault detection in distributed parameter
systems, International Journal of Applied Mathemat-
ics and Computer Science 18(4): 513–524, DOI:
10.2478/v10006-008-0045-4.
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Góra, Poland, in 1989, and his PhD and DSc degrees in automatic control
and robotics from the Wrocław University of Science and Technology,
Poland, in 1992 and 2000, respectively. In 2007 he was conferred the
full professorial title, the highest scientific degree in Poland. He is cur-
rently a professor at the University of Zielona Góra, Poland. His research
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Appendix A

Minimum principle

The following bounds to the sum of largest eigenvalues
can be found, e.g., as Fact 8.14.17, p. 328, in the work
of Bernstein (2005) or Thm. 21.12.5, p. 556, in that of
Harville (1997).

Theorem A1. Let A ∈ S
m with (not necessarily dis-

tinct) eigenvalues ordered so that λ1 ≥ λ2 ≥ · · · ≥ λm.
Then for any Q ∈ R

m×k such that QTQ = Ik (i.e., with
orthonormal columns), where k ≤ m,

m∑

�=m−k+1

λ� ≤ trace(QTAQ) ≤
k∑

�=1

λ�.

The above two bounds are tight, i.e., equalities hold if the
columns of Q are orthonormal eigenvectors of A corre-
sponding to λm−k+1, . . . , λm and λ1, λ2, . . . , λk, respec-
tively.

Appendix B

Proof of Theorem 1

With no loss of generality, we may restrict our attention
to the cone S

m
++. The extension of these results to

S
m
+ amounts to incorporating singular matrices, which

involves +∞ as the corresponding values of Einv
k and is

straightforward.

Property (a). Assume that M1 
 M 2. Given
Q ∈ R

m×k, the function X �→ trace(QTXQ) =
trace(QQTX) is matrix nondecreasing on S

m since
QQT � 0 (Boyd and Vandenberghe, 2004, p. 109).
Therefore, as matrix inversion is matrix-decreasing
(Marshall et al., 2011, Fact E.3.b, p. 672), we get

trace(QTM−1
1 Q) ≥ trace(QTM−1

2 Q).

Taking the maximum over all Q ∈ Q (note that
the compactness of Q guarantees the existence of the
corresponding maxima), we conclude that Ψ(M1) ≥
Ψ(M 2).
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Property (b). It is immediate that, given Q ∈
Q and α > 0, we have trace(QT(αM )−1Q) =
(1/α) trace(QTM−1Q). Taking the maximum over all
Q ∈ Q establishes the property.

Property (c). For any fixed Q ∈ Q, the mapping
X �→ trace(QTXQ) is nondecreasing on S

m. This,
taken in conjunction with the matrix convexity of the
matrix inversion (Marshall et al., 2011, Fact E.7.b,
p. 677), implies the convexity of the composition M �→
trace(QTM−1Q) on S

m
++. The pointwise maximum of

such functions over Q is convex, which yields our claim.

Property (d). Let U ∈ R
m×m be orthonormal, i.e.,

UTU = Im. It is easy to check that Q is invariant
with respect to premultiplication by UT, i.e., Q = UTQ.
Consequently,

Ψ(UMUT)

= max
STS=Ik

trace(ST(UMUT)−1S)

= max
STS=Ik

trace((UTS)TM−1UTS)

= max
QTQ=Ik

trace(QTM−1Q) = Ψ(M).

Appendix C

Gradients and Hessians for the RMP

Let g(p) = trace(QTM−1(p)Q) − β log det(M (p)).
We have

∂g(p)

∂pi
= − trace

((
M−1(p)QQTM−1(p)

+ βM−1(p)
)
M i

)
,

∂2g(p)

∂pi∂pj
= trace

((
2M−1(p)QQTM−1(p)

+ βM−1(p)
)
M iM

−1(p)M j

)
.
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