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The paper is devoted to the problem of increasing the efficiency of underwater vehicles by using a fault diagnosis system for
their thrusters which provides detection, isolation, and identification of minor faults. To address the problem, a two-stage
method is proposed. At the first stage, a bank of diagnostic observers is designed to detect and isolate the emerging faults.
Each observer in this bank is constructed to be sensitive to some set of faults and insensitive to others. At the second
stage, additional observers working in sliding mode are synthesized in order to accurately estimate the error value in the
signal obtained from the angular velocity sensor and to estimate deviations of the thruster parameters from their nominal
values due to the faults. In contrast to the existing solutions, reduced-order (i.e., lower-dimensional) models of the original
system are proposed as a basis to construct sliding mode observers. This approach permits reduction of the complexity of
the obtained observers in comparison with the known methods, where full-order observers are constructed. The simulation
results show the efficiency and high quality of all synthesized observers. In all cases considered, it was possible to detect
typical faults, as well as estimate their values.
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1. Introduction

One of the most important tasks arising during various
missions is ensuring their safety and fault tolerance.
A promising way to increase the efficiency of the
UV operation is the use of fault diagnosis methods
(Blanke et al., 2006; Mironovsky, 1998; Escobet et al.,
2019) for fault detection and isolation as well as fault
identification (Simani et al., 2002; Byrski et al., 2019).
These methods provide accurate estimates of the error
values in the signals received from sensors and estimates
of the deviations of the UV thruster parameters from
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their nominal values due to faults. Then the obtained
estimates can be used to eliminate the consequences
of the appearing faults (Blanke et al., 2006; Filaretov
et al., 2012) (this is called accommodation to these faults).

Thrusters of the UVs, providing their motion along
prescribed trajectories, are such UV components which
influence their ability to perform assigned tasks. The
appearance of any faults that is caused by failures
or changes in the thruster parameters may lead to a
significant decrease in the performance of the UV control,
various emergency situations, or even a loss of expensive
devices. In this paper, the regarded UVs have no
other actuators except thrusters and both movement and
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positioning are realized only by changes in the developed
thrusts.

It is assumed that the following typical faults can
appear in each thruster: (i) a fault in the angular velocity
sensor resulting in a constant or variable error in its
readings; (ii) the heating of the motor or closing several
windings of its armature circuit resulting in a change in
the nominal value of electrical resistance; (iii) an unknown
external torque effect on the output motor shaft, caused by
plants tangled over a screw propeller.

At present, in order to assess the technical condition
of various elements, the UVs are equipped with alarm
control systems whose tasks include identifying the
critical and emergency situations (Chirikjian, 2009;
Pisarets et al., 2004). However, as a rule, the
existing alarm systems provide only general monitoring
of operability and do not allow to detect the faults, as well
as to evaluate errors in the thruster sensors readings and
the deviations of the UV thruster parameters from their
nominal values.

Currently, there are several approaches to construct
systems dedicated to the diagnosis of UV thrusters. In
particular, methods based on constructing observers using
UV dynamic models are presented by Zhang et al. (2011),
Zhu and Sun (2013), Wang (2012a) as well as Zhao et al.
(2014). However, since the UVs are described by very
complex nonlinear differential equations with variable
and uncertain parameters, such systems for diagnosis
are rather complex and do not yield high-quality fault
detection and identification if the UVs are in high-speed
motion. In addition, many of these methods require the
use of special test motions of the UV movement (Zhao
et al., 2014).

There are interesting diagnosis methods based on
neural networks (Wang et al., 2009; Wang, 2012b). A
disadvantage of these methods is the necessity for a
complex training procedure by using also special test
motions of the UVs.

Sarkar et al. (2002) considered the approach to
construct a fault diagnosis and accommodation system
in the UV thrusters was. This approach suggests
disconnection of the faulty thruster and the subsequent
distribution of its power between the remaining thrusters.
A disadvantage of this approach is the fact that UVs must
be equipped with an excessive number of the thrusters.

Currently, one of the promising approaches to fault
detection and identification is the use of the observers
operating in a sliding mode (Utkin, 1992) (sliding mode
observers, SOs). Nowadays, the SOs are applied to solve
the problems of fault identification in linear (Edwards
and Spurgeon, 1994; Fridman et al., 2007; Edwards
et al., 2000) and nonlinear (Davila et al., 2006; He
and Zhang, 2012; Rascón et al., 2017) systems, to
ensure fault-tolerant control (Edwards et al., 2012; Alwi
and Edwards, 2008; Bartoszewicz and Adamiak, 2019).

However, in all these papers, a number of restrictions are
imposed on the original system and full-order observers
are constructed.

Besides, to solve the problem of sensor fault
identification, the methods suggested by Tan and Edwards
(2003) and similar papers assume that a new state vector
being a filtered version of the system output is introduced
and a special system of a larger dimension is constructed.
The methods suggested by Edwards et al. (2000) and
Kalsi et al. (2011) provide only approximate solutions
of the sensor fault identification problem since the final
expressions contain the derivative of the sensor fault.
These reasons make the procedure of the accurate fault
identification in the UV thrusters and sensors rather
complicated.

As a result, most of above-mentioned methods
cannot be effectively used for the purpose of constructing
the fault diagnosis system for the UV thrusters. Thus,
the task of developing a new easily implemented and
effective method for constructing fault diagnosis systems
for the UV thrusters remains unresolved and topical. Such
systems must provide both fault detection and isolation,
as well as identification of the error values in the signals
received from the UV thruster sensors, and the deviations
of the thruster parameters from their nominal values due
to faults.

Problem statement. Construct a bank of diagnostic
observers to solve the task of fault isolation based on the
structural residual vector and the matrix of syndromes and
then construct a bank of sliding mode observers based on
the reduced order model of the original system invariant
with respect to the disturbance to estimate the error values
in the signals received from the UV thruster sensors and
estimate the deviations of the UV thruster parameters from
their nominal values.

The contribution of the present paper can be
summarized as follows. (i) Sliding mode observers
for fault identification are constructed based on a
reduced-order model of the original system invariant with
respect to the disturbance. The reduced order model
may be free from some special features of the original
system preventing sliding mode observer design. (ii)
To solve the problem of sensor fault identification, the
suggested approach allows construction of the sliding
mode observer of a reduced dimension which does not
contain the derivative of the sensor fault. The known
papers which solve this problem construct sliding mode
observers containing the derivative of the sensor fault or
having a dimension a greater than that of the original
system. Our previous papers (Zhirabok et al., 2019;
2020a; 2020b) consider systems described by linear
models; the present paper operates with nonlinear models
containing arbitrary nonlinear functions.

The rest of the paper is organized as follows. In
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Section 2, the reduced order models are constructed.
Section 3 is devoted to sliding mode observer design. In
Section 4, the problem of fault isolation is studied. The
fault diagnosis system for the UV thruster is designed in
Section 5. Section 6 concludes the paper.

2. Reduced order model design

Each UV thruster can be described by nonlinear dynamic
model

ẋ(t) = Fx(t) +Gu(t) + CΨ(x(t), u(t))

+Dd(t) + Lρ(t),

y(t) = Hx(t) +Dsds(t),

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
n are vectors

of state, control, and output, respectively, F ∈ R
n×n,

G ∈ R
n×m, H ∈ R

l×n, C ∈ R
n×q , and L ∈ R

n×p

are, constant matrices; D ∈ R
n×1 and d(t) ∈ R are,

respectively, a constant matrix and a function describing
unmatched actuator faults: if there are no faults, d(t) = 0,
if a fault occurs, d(t) becomes an unknown bounded
function of time; Ds ∈ R

l×1 and ds(t) ∈ R are
respectively, a matrix and a function describing sensor
faults: if there are no faults, ds(t) = 0; if a fault occurs,
ds(t) becomes an unknown bounded function of time;
ρ(t) ∈ R

p is the disturbance; it is assumed that ρ(t) is an
unknown bounded function of time; Ψ(x, u) is a nonlinear
term,

Ψ(x, u) =

⎛
⎜⎝

ϕ1(A1x, u)
...

ϕq(Aqx, u)

⎞
⎟⎠ ,

A1, . . . , Aq ∈ R
1×n are constant row matrices,

ϕ1, . . . , ϕq are arbitrary nonlinear functions.
Note that the UVs have many different sensors;

in particular, there are sensors in thrusters. The most
beneficial case for fault diagnosis is when all components
of the state vector x(t) are measured. This case is
interesting per se since it allows us to construct a fault
diagnosis system of a minimal complexity and save
computational resources of the UV on-board computer.
Therefore, in what follows we will assume that H = I ,
i.e., H is the identity matrix.

As pointed out in the Introduction, diagnostic
observers and sliding mode observers will be constructed
based on a reduced-order model of the original system
invariant with respect to the disturbance and some faults.
It is known (Zhirabok et al., 2019; 2020a) that such a
model is generally described by the equations

ẋ∗(t) = F∗x∗(t) +G∗u(t) + J∗Hx(t) +D∗d(t)
+ C∗Ψ(x∗(t), y(t), u(t)) + L∗ρ(t),

y∗(t) = H∗x∗(t) +D∗sds(t),
(2)

where x∗(t) ∈ R
k, k < n, is the state vector, F∗ ∈ R

k×k ,
G∗ ∈ R

k×m, J∗ ∈ R
k×l, H∗ ∈ R

1×k, D∗ ∈ R
k×1,

D∗s ∈ R, and L∗ ∈ R
k×p are matrices to be determined,

C∗Ψ(x∗, y, u) =

⎛
⎜⎝

ϕi1(A∗1i1x∗ +A∗2i1y, u)
...

ϕik(A∗1ikx∗ +A∗2iky, u)

⎞
⎟⎠ ,

A∗1i1 , . . . , A∗1ik ∈ R
1×k, A∗2i1 , . . . , A∗2ik ∈ R

1×l are
row matrices to be determined.

We assume that x∗(t) = Φx(t) and y∗(t) = R∗y(t)
for some matrices Φ ∈ R

k×n and R∗ ∈ R
1×l under

d(t) = 0, ds(t) = 0, and ρ(t) = 0. It is known (Zhirabok
et al., 2017) that these matrices satisfy the conditions

ΦF = F∗Φ + J∗H,

R∗H = H∗Φ, ΦG = G∗,

Ai = (A∗1i A∗2i)
(

Φ
H

)
, i = i1, . . . , ik,

ΦC = C∗, ΦD = D∗,
ΦL = L∗, R∗Ds = D∗s.

(3)

The matrices F∗ and H∗ are sought in the canonical form

F∗ =

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎠ ,

H∗ = ( 1 0 0 . . . 0 ).

(4)

Using the matrices F∗ and H∗ in (4), we obtain from (3)
equations for the rows of the matrices Φ and J∗:

Φ1 = R∗H,

ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1,

ΦkF = J∗kH,

where Φi and J∗i are the i-th rows of the matrices Φ and
J∗, respectively, i = 1, . . . , k, k is the dimension of the
model (2).

Clearly, when H = I , the minimal dimension of
the reduced order model is equal to one. This implies
F∗ = 0 and H∗ = 1 in (2). It is known (Zhirabok et al.,
2019; 2020a) that to construct system (2) invariant with
respect to the disturbance, the condition ΦL = 0 should
be satisfied. To take into account this condition, introduce
the matrix L0 of a maximal rank such that L0L = 0,
then Φ = NL0 for some matrix N . It follows from
R∗H = H∗Φ, H∗ = 1, and H = I that R∗ = Φ = NL0.
Next, ΦF = F∗Φ+J∗H is transformed into J∗ = NL0F .
Then

G∗ = NL0G, C∗ = NL0C, D∗ = NL0D.

The choice of the matrix N may be conditioned by
different reasons. Let, for example, two faults be possible
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in system (1) and be represented by the sum D1d1(t) +
D2d2(t) instead of the termDd(t). To construct the model
(2) insensitive to the first fault, introduce the matrix L1 =
(L D1) and the matrix L0

1 of the maximal rank such that

L0
1L1 = 0. (5)

Then

R∗ = Φ = N1L
0
1, J∗ = N1L

0
1F,

G∗ = N1L
0
1G, C∗ = N1L

0
1C, (6)

D∗ = N1L
0
1D

for some matrix N1.
Clearly, from H = I it follows that we may set

A∗1i := 0 for all i; to obtain the matrices A∗2i, assume
that C∗Ψ(x∗, y, u) contains the functions ϕi1 , . . . , ϕik ;
then A∗2i can be found as A∗2i = Ai, i = i1, . . . , ik,
which follows from (3) under H = I and A∗1i = 0.
Rewrite the term C∗Ψ(x∗, y, u) in the form Ψ∗(y, u). As
a result, the model (2) takes the form

ẋ∗(t) = G∗u(t) + J∗y(t) +D∗d(t)
+ Ψ∗(y(t), u(t)),

y∗(t) = x∗(t) +D∗sds(t).
(7)

3. Sliding mode observer design

3.1. Actuator faults. Assume that Ds = 0. The
sliding mode observer is based on the model (7) and takes
the form

˙̂x∗(t) = G∗u(t) + J∗y(t) + v(t)

+ Ψ∗(y(t), u(t)) −Key(t),

ŷ∗(t) = x̂∗(t),

(8)

where the discontinuous function v(t) is given by

v(t) =

{
−g|D∗| ey(t)

|ey(t)| if ey(t) �= 0,

0 otherwise,

ey(t) = ŷ∗(t)− y∗(t) = ŷ∗(t)−R∗y(t),
= e(t) = x̂∗(t)− x∗(t),

K > 0 is the feedback coefficient guaranteeing the
observer stability. Using (7) and (8), we write down the
equation for the error e(t):

ė(t) = v(t)−D∗d(t)−Ke(t). (9)

Theorem 1. If the scalar g satisfies g > |d(t)|, then the
sliding motion of system (9) is asymptotically stable.

Proof. Consider the Lyapunov function

V (t) = e2(t)

and find its derivative with respect to time:

V̇ (t) = 2(v(t)−D∗d(t)−Ke(t))e(t)

= −2Ke2(t)− 2g|D∗|e(t) e(t)

|e(t)|
− 2e(t)D∗d(t)

≤ −2Ke2(t)− 2g|D∗||e(t)|
+ 2|e(t)||D∗||d(t)|

= −2Ke2(t)− 2|D∗||e(t)|(g − |d(t)|).

Since g > |d(t)|, we have V̇ (t) < 0, which completes the
proof. �

According to Edwards et al. (2000), the
discontinuous function v(t) in (9) can be approximated to
any degree of accuracy by the equivalent output injection
function

veq = −g|D∗| ey(t)

|ey(t)|+ δ
, (10)

where δ is a small positive scalar.
It is known (Edwards et al., 2000) that the sliding

motion takes place forcing ė(t) = 0 and e(t) = 0;
therefore (9) implies veq(t) − D∗d(t) = 0. Then the
function d(t) can be estimated in the form

d̂(t) = −sign(D∗)
gey(t)

|ey(t)|+ δ
.

3.2. Sensor faults. Assume that D = 0. To construct
the SO estimating sensor faults, the condition R∗Ds = 0
should be satisfied as otherwise no sliding motion can be
obtained (Zhirabok et al., 2020b). To take into account
this condition, introduce the matrix Ls = (L Ds) and the
matrix L0

s of a maximal rank such that L0
sLs = 0. Then,

by analogy with (6), R∗ = Φ = NsL
0
s, J∗ = NsL

0
sF ,

G∗ = NsL
0
sG, and C∗ = NsL

0
sC for some matrix Ns.

The choice of the matrix Ns may be conditioned by
different reasons. Let two sensor faults be possible in
system (1) and be represented by the sum Ds1ds1(t) +
Ds2ds2(t) instead of the term Dsds(t). To construct the
model (2) insensitive to the first fault, introduce the matrix
D0

s1 of a maximal rank such that D0
s1Ds1 = 0. Then J∗ =

M1D
0
s1 for some matrix M1. As a result, the equation

J∗ = NsL
0
sF is transformed into M1D

0
s1 = NsL

0
sF

which can be rewritten in the form
(

M1

−Ns

)(
D0

s1

L0
sF

)
= 0. (11)

This equation has a solution if and only if

rank

(
D0

s1

L0
sF

)
< rank(D0

s1) + rank(L0
sF ). (12)
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If (12) is true, the matrix M1 is found from (11).
As above, the term C∗Ψ(x∗, y, u) is in the form

Ψ∗(y, u). Assume for simplicity that the output yj
corresponding to the faulty sensor does not enter the
nonlinear term Ψ∗(y, u). As a result, the model (2) takes
the form

ẋ∗(t) = G∗u(t) + J∗x(t) + Ψ∗(y(t), u(t)),
y∗(t) = x∗(t).

(13)

Since y(t) = x(t) + Dsds(t), the sliding mode
observer takes the form

˙̂x∗(t) = G∗u(t) + J∗y(t) + v(t)

+ Ψ∗(y(t), u(t))−Key(t)

= G∗u(t) + J∗x(t) + J∗Dsds(t) + v(t)

+ Ψ∗(y(t), u(t))−Key(t),

ŷ∗(t) = x̂∗(t).

The equation for the error e(t) = x̂∗(t) − x∗(t) is in the
form

ė(t) = v(t) + J∗Dsd(t)−Ke(t), (14)

where the function v(t) is given by

v(t) =

{
−g|J∗Ds| ey(t)

|ey(t)| if ey(t) �= 0,

0 otherwise,
(15)

ey(t) = ŷ∗(t) − R∗y(t). Since R∗ = Φ and R∗Ds = 0,
we get

ey(t) = ŷ∗(t)−R∗y(t)
= x̂∗(t)−R∗(x(t) +Dsds(t))

= x̂∗(t)− Φx(t) +R∗Dsds(t) = e(t).

Theorem 2. If the scalar g satisfies g > |ds(t)|, then the
sliding motion of system (14) is asymptotically stable.

Proof. It is similar to the proof of Theorem 1 since the
relation (9) is similar to (14). �

As above, the discontinuous function v(t) in (14)
can be approximated by an equivalent output injection
function veq(t) similar to (10). As a result, the function
ds(t) is estimated as

d̂s(t) = sign(J∗Ds)
gey(t)

|ey(t)|+ δ
.

4. Fault isolation

Assume that the matrix L0
1 from (5) does not exist or the

condition (12) is not satisfied for some faults. This means
that some faults cannot be decoupled from one another.
In this case, a fault isolation procedure based on a bank
of diagnostic observers (DOs) should precede the fault
identification procedure. Each observer from such a bank

is constructed based on the model (7) or (13) sensitive
to some group of faults and insensitive to others. Each
observer generates a residual as a mismatch between the
transformed output R∗y(t) of the original system and the
output y∗(t) of the DO:

r(t) = R∗y(t)− y∗(t).

The description of the DO based on the model (7) is

ẋ∗(t) = G∗u(t) + J∗y(t) + Ψ∗(y(t), u(t))
+KDr(t),

y∗(t) = x∗(t),

where KD > 0 is a feedback coefficient ensuring the
stability of the observer.

The decision about faults is made based on the matrix
of syndromes S (Gertler, 1998); the rows of this matrix
correspond to residuals and the columns to faults.

Note that it is reasonable to use a fault isolation
procedure even if the matrix L0

1 exists and the condition
(12) is satisfied for all faults. The reason is that the number
of the DOs is less than that of the SOs and the previous
fault isolation allows us to save computational resources
of the UV onboard computer.

5. Fault diagnosis system design

As noted above, the UV thruster is presented by the DC
motor with angular velocity and current sensors (Filaretov
et al., 2012):

ẋ1(t) = −kv
J
x1(t) +

km
J

x2(t)− M(t)

J
+ d1(t),

ẋ2(t) = − kw
Lm

x1(t)− Rm

Lm
x2(t) +

ku
Lm

u(t) + d2(t),

y1(t) = x1(t) + ds(t),

y2(t) = x2(t),

(16)

where x1(t) = ω(t) is the rotor angular speed, x2(t) =
I(t) is the current through the armature circuit of the
electric motor; kv is the coefficient of viscous friction; J
is the moment of inertia of rotating parts of the thruster,
taking into account the connected moment of inertia of
the fluid, Rm and Lm are the resistance and inductance
of the armature circuit of the motor, respectively; kw
is the coefficient of counter-EMF; ku is the gain of the
electric amplifier; km is the torque coefficient; M(t) =
(k1 + k2λ + k3λ

2 + k4λ
3)ρ|ω(t)|ω(t)D5 is the load

moment due to the action of a viscous environment on
the screw propeller; ρ is the density of water; D is the
propeller diameter; λ(t) = η(t)/(ω(t)D), η(t) is the UV
velocity; k1, . . . , k4 are known constant coefficients; u(t)
is the voltage at the input of the power amplifier.
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Note that such a model with a load moment M(t) is
successfully used in the Institute of Marine Technology
Problems (Far Eastern Branch of the Russian Academy of
Sciences) in practical applications (Inzarcev et al., 2018);
this model is based on the paper by Daidola and Johnson
(1992). Note that such a model was comprehensively
tested during numerous experiments with UVs designed
and produced by the Institute of Marine Technology
Problems.

Clearly, the thruster is described by the following
matrices:

F =

(−kv

J
km

J

− kw

Lm
−Rm

Lm

)
,

G =

(
0
ku

Lm

)
,

D1 =

(
1
0

)
,

D2 =

(
0
1

)
, Ds =

(
1
0

)
,

C =
1

J
, Φ(x(t), (t)) = M(t).

It is assumed that when a UV operates autonomously,
the following typical faults may occur in its thrusters:
(i) a fault in the speed sensor, leading to the appearance
of a constant or a variable error ds(t) = ω̃(t) in its
readings; (ii) the fault d1(t) = −M̃(t)/J , corresponding
to the appearance of an additional external torque effect
M̃(t) on the motor shaft, caused, for example, by plants
tangled over a screw propeller; (iii) the fault d2(t) =
−R̃(t)I(t)/Lm, corresponding to the motor overheating
or shorting several turns of the armature winding that
leads to a deviation R̃(t) of the electrical resistance Rm

from its nominal value. The presence of these faults
significantly reduces the performances of the thrusters and
the accuracy of the UV movement along the prescribed
paths.

During the operation of the UV (especially in
stand-alone modes), each fault in any thruster, regardless
of the reason of its appearance, should be timely
detected and its influence on the thruster work should be
eliminated.

Thus, in this section we construct a fault diagnosis
system for the UV thrusters that ensures timely detection
and isolation of the emerging faults (i.e., determining the
fact and time of appearance of nonzero functions d1(t),
d2(t), and ds(t) in system (16)), as well as identification
of the error value ω̃(t) in the signals received from the
speed sensor, and the deviations R̃(t) and M̃(t).

Assume for simplicity that the disturbance ρ(t) is
small and one may let L = 0. Construct the reduced
order model which is invariant with respect to the function
d1(t). Since L = 0, we have L1 = D1 and L0

1 = (0 1).

As a result, R∗ = Φ = L0
1 = (0 1) and

J∗ = L0
1F =

(
− kw

Lm
− Rm

Lm

)
,

G∗ =
ku
Lm

, D∗ = 1,

and the reduced- order model is given by

ẋ∗(t) = − kw
Lm

y1(t)− Rm

Lm
y2(t) +

ku
Lm

u(t) + d2(t),

y∗(t) = x∗(t),
(17)

where x∗ = x2.
By analogy, the model which is invariant with respect

to the function d2(t) is given by

ẋ∗(t) = −kv
J
y1(t) +

km
J

y2(t)− M(t)

J
+ d1(t),

y∗(t) = x∗(t),
(18)

where x∗ = x1.
The first diagnostic observer is constructed based on

the model (17) and takes the form

ẋ∗(t) = − kw
Lm

y1(t)− Rm

Lm
y2(t) +

ku
Lm

u(t) + r1(t),

y∗(t) = x∗(t),
r1(t) = y2(t)− y∗(t).

(19)

For simplicity, we keep the same notation for the state and
output variables as in (17). The description of the second
diagnostic observer is omitted because it is based on (18)
and evident.

Since both models (17) and (18) contain the variable
y1(t), they are sensitive to the function ds(t). Therefore,
the matrix of syndromes is of the form

S =

(
0 1 1
1 0 1

)

that allows to distinguish all faults from one another.
Here the rows correspond to residuals r1(t) and r2(t), the
columns to the faults d1(t), d2(t), and ds(t).

The first sliding mode observer SO1 is constructed
based on the model (17) and takes the form

˙̂x∗(t) = − kw
Lm

y1(t)− Rm

Lm
y2(t) +

ku
Lm

u(t)

+ veq(t)− 0.1e1(t),

ŷ∗(t) = x̂∗(t),
e1(t) = ŷ∗(t)− y2(t).

(20)
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The function veq(t) is given by (10) with D∗ = 1 and
g > |d2(t)|. The function R̃(t) = −Lmd2(t)/I(t) can be
estimated as

ˆ̃R(t) =
gLme1(t)

I(t)(|e1(t)|+ δ)
. (21)

By analogy, the second sliding mode observer is
constructed based on the model (18) and takes the form

˙̂x∗(t) = −kv
J
y1(t) +

km
J

y2(t)− M(t)

J
+ veq(t)− 0.1e2(t),

ŷ∗(t) = x̂∗(t),
e2(t) = ŷ∗(t)− y1(t).

(22)

The function veq(t) is given by (10) with D∗ = 1 and g >

|d1(t)|. The function M̃(t) = −Jd1(t) can be estimated
as

ˆ̃M(t) =
gJe2(t)

|e2(t)|+ δ
. (23)

To construct the third sliding mode observer SO3
estimating the function ds(t), the model (17) should be
used since R∗Ds = 0 for this model while R∗Ds = 1 for
the model (18). The description of the observer is similar
to (20):

˙̂x∗(t) = − kw
Lm

y1(t)− Rm

Lm
y2(t) +

ku
Lm

u(t)

+ veq(t)− 0.1e1(t),

ŷ∗(t) = x̂∗(t),
e1(t) = ŷ∗(t)− y2(t).

The function veq(t) is given by (15) with J∗Ds =
−kw/Lm and g > |ds(t)|. The function ω̃(t) = ds(t)
can be estimated as

ˆ̃ω(t) =
ge1(t)

|e1(t)|+ δ
. (24)

Thus, due to the use of SO1, SO2, and SO3, it is
possible to provide estimates of the errors in the signals
received from the speed sensor and the deviations of
the thruster parameters from their nominal values due to
the faults. It is important to note that the use of the
reduced models (7) and (13) makes it possible to construct
simple first-dimensional observers. Note that the method
suggested by Tan and Edwards (2003) for sensor fault
identification produces a three-dimensional observer.

The structural diagram of the synthesized fault
diagnosis system for the UV thrusters is shown in Fig. 1.
For simulation, consider the system (16) and the observers
(20) and (22) with the following UV thruster parameters:
kv = 67.5610 · 10−5 Nms/rad; J = 0.025 kgm2;
Rm = 0.65Ω; Lm = 0.00026 H; kw = 0.135 Vs/rad;
ku = 27.71; km = 0.135 Nm/A; D = 0.178 m;

Thruster 
of UV

M R
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Fig. 1. System of fault diagnosis of the UV thrusters.
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Fig. 2. Estimate of the function M̃(t).
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Fig. 3. Estimation error ΔM(t).

k1 = 0.015; k2 = 0.02; k3 = 0.0002; k4 = −0.02;
ρ = 1030 kg/m3. The observer (20) has the following
parameters: k = 0.1, g = 5000, and δ = 1; the observer
(22) k = 0.1, g = 100, and δ = 0.01; the third observer
k = 0.1, g = 1, and δ = 1.

The thruster is controlled by the input u(t) = 5 +
sin(t), and single faults are simulated as follows: d1(t) by
introducing the external toque to M̃(t) = 0.2 sin((t −
3)π/4) Nm on the interval from 3 to 7 s, d2(t) by a
smooth change in active resistance 0.1Ω on the interval
from 5 to 10 s, and ds(t) by introducing the constant error
ω̃(t) = 0.2 rad/s in the readings of the speed sensor on the
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Fig. 4. Estimate of the function R̃(t).
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Fig. 5. Estimation error ΔR(t).

interval 4 to 10 s.
Figures 2 and 3 present the estimate of the

function M̃(t) according to (23) and the estimation error,
respectively. Figures 4 and 5 show similar graphs for
the estimate of the function R̃(t) according to (21) and
its estimation error, respectively; Figures 6 and 7 display
the estimate of the function ω̂(t) and the appropriate
estimation errors. We can see from these figures that
the constructed observers allow us to determine the time
of the faults the appearance and also to provide rather
accurate estimates of the appropriate functions. The
identification errors in all three cases do not exceed 0.1%.

Thus, the simulation results show the efficiency and
high quality of the synthesized observers. In all the
cases considered, it was possible to timely detect the fact
of the appearance of the faults, as well as to provide
estimates of their values. Based on the discussed approach
to the construction of the fault diagnosis system for the
UV thruster, highly reliable UV control systems can be
created.

6. Conclusion

The problem of fault diagnosis in the UV thrusters has
been studied. The synthesized fault diagnosis system
using the two-stage method considered in the paper
is simple and has low computational complexity that
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Fig. 6. Estimate of the function ω̃(t).
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Fig. 7. Estimation error Δω(t).

allows us to implement such diagnosis system on typical
on-board computers of the UVs.

The constructed observers provide not only the
timely detection and isolation of the arising typical faults
using a bank of the DOs, but also accurate estimates of the
error in the signals received from the speed sensor and the
deviations of the thrusters parameters from their nominal
values due to the faults appearance. The simulation
results confirm the efficiency and high quality of the
synthesized observers but further investigations before
possible implementation are required.
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