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We study the problem of active reduction of the influence of a disturbance on the output of a linear control system. We
consider a system of linear differential equations under the action of an unknown disturbance and a control to be formed.
Our goal is to design an algorithm for reducing the disturbance by means of an appropriate control on the basis of inaccurate
measurements of the system phase coordinates. This algorithm should form a feedback control that would guarantee that the
trajectory of a given system tracks the trajectory of the reference system, i.e., the system described by the same differential
equations but with zero control and disturbance. We present an algorithm for solving this problem. The algorithm, based
on the constructions of guaranteed control theory, is stable with respect to informational noises and computational errors.

Keywords: disturbance reduction, dynamical controlled system, guaranteed control theory.

1. Introduction

Control problems in the presence of unknown dynamical
disturbances form an important part of control theory. To
solve such problems, it is necessary to apply the principle
of feedback control, which allows us to use all available
current information about the system to make decisions
on its control in real time. One of the actual problems
is that of forming a control providing the reduction
(compensation) of an unknown disturbance acting on the
system.

There are a lot of approaches to investigate this
problem. For example, within the framework of
H2-theory, the control is still a feedback that attenuates
the effect of the disturbance with respect to a suitable cost
functional (Kwakernaak, 2002). The active noise control
uses an estimate of the disturbance acting on the system
in order to remove its effect from the output (Gan and
Kuo, 2002). In some applications, it is possible to measure
directly all the noises and a feed-forward compensator can
be used. Other applications require that, instead of this,
the noises should be estimated based on their effect on
the system. The problem of disturbance reduction with
the information on future values of the disturbance has
also been studied (see Willems, 1982). In addition, it
is possible to construct a disturbance compensator that
optimally shares the stationary state distribution satisfying

given control specifications (see Falsone et al., 2019).
Recently, the active disturbance rejection control method
has been intensively developed, e.g., by Yuan et al. (2019).

In this paper, we consider a control problem for
a system of linear differential equations subject to the
influence of an unknown disturbance. The problem
consists in constructing an algorithm for forming a
feedback control that would guarantee a given quality of
the controlled process. Namely, the trajectory of a given
system influenced by an unknown disturbance should
track the trajectory of a reference system. The latter
system is described by the same differential equations but
with zero control and disturbance. Thus, we consider the
problem of disturbance reduction.

In the present study, we investigate a specific issue: it
is assumed that the phase coordinates of both systems are
measured at discrete, frequent enough, time instants. Due
to this assumption, it is impossible to solve the problem of
disturbance reduction without errors, i.e., it is impossible
to track accurately the trajectory of a reference system by
that of a given controlled system. Taking into account
this feature, we design an algorithm that is stable with
respect to informational noises and computational errors.
It is based on the constructions of the theory of recursive
deconvolution and of feedback control.

The deconvolution problem is fundamental in
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applied sciences and has been studied in numerous
papers. The idea of using a deconvolution technique
in order to identify and then to cancel a disturbance
has been employed in some applications (Gan and Kuo,
2002; Yu and Hu, 2001). It should be noted that all
of these papers are oriented to applications. One of
the approaches to solving the dynamical reconstruction
problem has been developed by Osipov and Kryazhimskii
(1995), Maksimov (2002; 2016), Favini et al. (2004),
Maksimov and Mordukhovich (2017), Pandolfi (2007),
Maksimov and Tröltzsch (2020) or Keesman and
Maksimov (2008). The essence of this approach is that an
input reconstruction algorithm is represented as a control
algorithm for some artificial dynamical system (a model).
Given current observations of the system, the model input
is chosen in such a way that its realization in time obtained
by a regularization principle guarantees the stability of the
numerical method.

Situations in which it is necessary to decrease the
influence of a disturbance or even to nullify its action arise
in applied problems rather frequently. We note only two
papers devoted to this topic; both are supplied with an
extensive bibliography. In the work of Wasilewski et al.
(2019), a new algorithm of adaptive control of torsional
vibrations induced by switched nonlinear disturbances is
suggested. In the paper by Cayero et al. (2019), on the
basis of designing disturbance observers with decreasing
their influence, a method for solving the problem of
control of unmanned aerial vehicles is constructed.

2. Problem statement and the solution
method

Consider the system of linear differential equations

ẋ(t) = Ax(t) +B(u(t)− v(t)) + f(t),

t ∈ T = [0, ϑ], (1)

with the initial state x(0) = x0. Here, 0 < ϑ < +∞, x ∈
R

n, u, v ∈ R
r, f(·) ∈ L2(T ;R

n) is a given function, v is
a disturbance, u is a control, A and B are matrices of the
appropriate dimensions. The problem under consideration
consists in the following. Some unknown disturbance v(·)
acts on the system (1). At discrete, frequent enough, times

τi ∈ Δ = {τi}mi=0 (τ0 = 0, τi+1 = τi + δ, τm = ϑ),

a phase state x(τi) = x(τi;x0, u(·), v(·)) of the system
(1) is measured. Here and below, x(·;x0, u(·), v(·)) is
the solution of the system (1) corresponding to the initial
state x0, control u(·), and disturbance v(·). The states
x(τi), i ∈ [0 : m − 1], are measured with errors. The
measurements results, the vectors ξhi ∈ R

n, satisfy the
inequalities

|x(τi)− ξhi |n ≤ h. (2)

Here, the number h ∈ (0, 1) characterizes the accuracy
of measurements, and the symbol | · |n stands for the
Euclidean norm in the space Rn.

Our goal is to design an algorithm for the reduction
of the unknown disturbance v(·) ∈ L2(T ;R

r) by using
a control u(·) on the basis of inaccurate measurements of
x(τi). In other words, the task is to design a feedback
algorithm that generates in real time a function uh =
uh(·) such that the solution of the system (1) tracks the
solution x1(·) = x1(·;x0, 0, 0) of the system

ẋ1(t) = Ax1(t) + f(t) (3)

with the initial state x1(0) = x0 in the space W 1,2(T ;
R

n) = {p(·) ∈ L2(T ;R
n) : ṗ(·) ∈ L2(T ;R

n)}.
Let us describe a method for solving the problem

under consideration. We assume that the states x1(τi), i ∈
[0 : m− 1], are measured with errors. The measurements
results, the vectors ψh

i ∈ R
n, satisfy the inequalities

|x1(τi)− ψh
i |n ≤ νhi . (4)

For any h ∈ (0, 1), let us fix a family of partitions of the
interval T by control moments of time τh,i:

Δh = {τh,i}mh

i=0, τh,0 = 0,
(5)

τh,mh
= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1).

The control u = uh(·) in the system (1) is defined
by a control law U(·, ·, ·) : T × R

n × R
n �→ R

r, which
is constructed in such a way that the control uh(·) of the
form

uh(t) = uhi = U(τi, ξ
h
i , ψ

h
i ) for a.a. t ∈ [τi, τi+1)

(i ∈ [0 : mh − 1], τi = τh,i) (6)

guarantees a small deviation of the solution xh(·) of the
system (1) from the solution x1(·) of the system (3) in
the metric of the space W 1,2(T ;Rn). Here and below,
xh(·) is the solution of the system (1) generated by
the control u = uh(·) of the form (6), i.e., xh(·) =
x(·;x0, uh(·), v(·)) is the solution of the system

ẋ(t) = Ax(t) +B(uh(t)− v(t)) + f(t), t ∈ T. (7)

3. Solution algorithm

Let us describe the solution algorithm for the above
problem. Let a family Δh (see (5)) and a function α(h) :
(0, 1) → (0, 1) be fixed. Let X (t) be the fundamental
matrix of the system ẋ(t) = Ax(t). Then the inequality

|X (t)| ≤ exp{|A|t}, t ≥ 0, (8)

is valid. Here, the symbol | · | stands for the Euclidean
norm of a matrix. We assume that the matrix A is
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unknown, but its estimate, i.e., the value ω ≥ |A|, is
known.

Before starting the work of the algorithm, we fix the
value h ∈ (0, 1), a number α = α(h) and a partition
Δh = {τh,i}mh

i=0 of the form (5). The work of the
algorithm is decomposed into m − 1 (m = mh) steps.
First, at the time τ0, we select the vector uh0 by the formula

uh0 = U(τ0, ξ
h
0 , ψ

h
0 )

= −α−1 exp{−2ωτ1}(B′B)+B′(ξh0 − ψh
0 ).

Here, the prime means transposition, while the symbol
(B′B)+ stands for the pseudo inverse matrix for the
matrix B′B. Then, for all t ∈ δ0 = [0, δ), the control
uh(t) = uh0 is taken as the input of the system (7). At
the i-th step carried out during the time interval δi =
[τi, τi+1), i ∈ [1 : m− 1], τi = τh,i, the following actions
take place. At the time τi, the vector uhi is calculated by
the formula (6), in which

U(τi, ξ
h
i , ψ

h
i )

= −α−1 exp{−2ωτi+1}(B′B)+B′(ψh
i − ξhi ).

(9)

Then, for all t ∈ δi, the control uh(t) of the form (6), (9)
is taken as the input of the system (7). As a result, under
the action of such control and disturbance v(·), the system
(7) passes from the state xh(τi) to the state xh(τi+1). The
procedure stops at time ϑ.

Let us show that the feedback U(·, ·, ·) of the form
(9) solves the problem of disturbance reduction. Before
proceeding to the proof of the theorem, we present the
following three lemmas.

Lemma 1. (Maksimov, 2011) Let a nonnegative function
φ(t), t ∈ T , satisfy

φ(τi+1) ≤ φ(τi)(1 + qδ) +

τi+1∫

τi

|G(τ)|+ dτ

for all i ∈ [0 : m − 1], where τi ∈ Δ, δ = τi+1 − τi,
q = const > 0, G(·) ∈ L∞(T ;R). Then

φ(τi) ≤
(
φ(0) +

τi∫

0

|G(τ)|+ dτ
)
exp{qτi},

i ∈ [0 : m].

Lemma 2. (Discrete Gronwall inequality (Samarskii,
1971)) Let 0 ≤ φj , 0 ≤ fj for j ∈ [0 : m] and fj ≤ fj+1

for j ∈ [0 : m− 1]. Then

φj+1 ≤ c0δ

j∑
i=1

φi + fj , j ∈ [1 : m− 1]

imply

φj+1 ≤ fj exp{c0jδ}, j ∈ [0 : m− 1],

if c0 = const > 0, φ1 ≤ f0.

Lemma 3. (Maksimov, 2002, p. 47) Let u(·) ∈
L∞(T∗;Rn) and v(·) ∈ W (T∗;Rn), T∗ = [a, b], −∞ <
a < b < +∞,

∣∣∣
t∫

a

u(τ) dτ
∣∣∣
n
≤ ε, |v(t)|n ≤ K, ∀ t ∈ T∗.

Then, for all t ∈ T∗, we have

∣∣∣
t∫

a

(u(τ), v(τ)) dτ
∣∣∣
+
≤ ε(K + var(T∗; v(·))).

Here, the symbol var(T∗; v(·)) means the variation
of the function v(·) over the interval T∗, the symbol
(·, ·) means the scalar product in the corresponding
finite-dimensional Euclidean space, the symbol | · |+
means the absolute value of a number, and the symbol
W (T∗;Rn) means the set of functions y(·) : T∗ → R

n

of bounded variation.
We fix some constants C∗ ∈ (0,+∞), C∗∗ ∈

(0,+∞), ε ∈ (0, 1). We assume that the following
condition holds.

Condition 1 δ(h) = C∗h, α(h) → 0 and δ(h)α−2(h) ≤
C∗∗hε as h→ 0.

Theorem 1. There exist constants d1 > 0 and d2 > 0
such that the inequalities

max
i∈[0:mh]

|x1(τh,i)− xh(τh,i)|n ≤ d1α
1/2(h), (10)

ϑ∫

0

|Buh(τ)|2n dτ ≤
ϑ∫

0

|Bv(τ)|2n dτ + d2h
ε (11)

are fulfilled for any disturbance v(·) ∈ L2(T ;R
r), any

h ∈ (0, 1), any family Δh (see (5)), any realization uh(·)
of feedback U(·, ·, ·) of the form (9), any trajectory of the
real system (1) xh(·) = x(·;x0, uh(·), v(·)) (i.e., any so-
lution of (7)), any measurement ψh

i with the property (4),
and any measurement ξhi with the property (2).

Proof. We estimate the change in the function

εh(t) = λh(t) +α

t∫

0

{|Buh(τ)|2n − |Bv(τ)|2n} dτ, (12)

where

λh(t) = exp{−2ωt}|xh(t)− x1(t)|2n.
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By virtue of the Cauchy formula, we conclude that

x1(t) = X (t− τi)x1(τi) +

t∫

τi

X (t− τ)f(τ) dτ,

xh(t) = X (t− τi)x
h(τi)

+

t∫

τi

X (t− τ){B(uh(τ) − v(τ))f(τ)} dτ

(13)

for all t ∈ δi = [τi, τi+1), τi = τh,i. Note that (see (8))

|X (δ) exp{−ωτi+1}|
≤ exp{|A|δ} exp{−ωτi+1}
≤ exp{−ωτi}, δ = τi+1 − τi.

Therefore,

exp{−2ωτi+1}|X (δ)(x1(τi)− xh(τi))|2n
≤ exp{−2ωτi}|x1(τi)− xh(τi)|2n.

Then, using (13), it is easily seen that for all i ∈ [0 : m−1]
the estimate

εh(τi+1) ≤ exp{−2ωτi}|xh(τi)− x1(τi)|2n + λi + μi

+ α

τi+1∫

0

{|Buh(τ)|2n − |Bv(τ)|2n} dτ

(14)

is valid. Here,

λi = 2

(
Si,

τi+1∫

τi

X (τi+1 − τ)B{uh(τ) − v(τ)} dτ
)
,

(15)
μi = δ exp{−2ωτi+1}

×
τi+1∫

τi

|X (τi+1 − τ)B{uh(τ)− v(τ)}|2n dτ,
(16)

Si = exp{−2ωτi+1}X (τi+1 − τi){xh(τi)− x1(τi)}.
(17)

Using the inequality exp{−2ωδ} ≤ 1 and (14), we
derive the estimate

εh(τi+1) ≤ εh(τi) + λi + μi

+ α

τi+1∫

τi

{|Buh(τ)|2n − |Bv(τ)|2n} dτ.
(18)

Note that the estimate

|X (t) − I| ≤ C0t, C0 = C0(δ∗) ∈ (0,+∞), (19)

is valid for t ∈ [0, δ∗], δ∗ ∈ (0, 1). Here, I is the n × n
identity matrix . Therefore, in virtue of (2), (19) and (4),
we have

|Si − exp{−2ωτi+1}shi |n
≤ exp{−2ωτi+1}|X (δ){shi + (ψh

i − x1(τi))

+ (xh(τi)− ξhi )} − shi |n
≤ δC0 exp{−2ωτi+1}|shi |n + C11h

≤ δC0|shi |n + C1h,

(20)

|Si|n ≤ C12|shi |N + C13h.

Here, shi = ξhi − ψh
i . Taking into account (20), we

get

|(Si,X (δ)Bu) − exp{−2ωτi+1}(shi , Bu)|
≤ |Si|n|X (δ)− I|n|Bu|n + |(Si, Bu)

− exp{−2ωτi+1}(shi , Bu)|
≤ (δC0|shi |n + C11h)|Bu|n + δC0|shi |n|Bu|n
≤ C14(h+ δ|shi |n)|Bu|n.

(21)

Note that

|shi |n ≤ exp{ωϑ}λ1/2h (τi) + 2h. (22)

Consider the function λi (see (15)). In turn, by virtue
of (15), (21) and (22), we obtain the estimate

λi ≤ 2 exp{−2ωτi+1}

×
τi+1∫

τi

(shi , B{uh(τ) − v(τ)}) dτ + ρi,
(23)

where

ρi = C15(h+ δλ
1/2
h (τi))

τi+1∫

τi

|B{uh(τ) − v(τ)}|n dτ.

Therefore,

ρi ≤ C16

{
δ2λh(τi) + h2

+ δ

τi+1∫

τi

{|Buh(τ)|2n + |Bv(τ)|2n} dτ
}
.

(24)

Then we get (cf. (16))

μi ≤ C17δ

τi+1∫

τi

{|Buh(τ)|2n + |Bv(τ)|2n} dτ. (25)

Note that the vector uhi (see (6), (9)) is found from
the condition

uhi = argmin{2 exp{−2ωτi+1}(shi , Bv)
+ α|Bv|2n : v ∈ R

r}. (26)
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Consequently, from (23) and (26) we deduce that

λi + α

τi+1∫

τi

{|Buh(τ)|2n − |Bv(τ)|2n} dτ ≤ ρi. (27)

Hence, by virtue of (18), (25) and (27), we obtain

εh(τi+1) ≤ εh(τi) + C18

{
δ2λh(τi) + h2

+ δ

τi+1∫

τi

{|Buh(τ)|2n + |Bv(τ)|2n} dτ
}
,

(28)

i.e., (see (12))

λh(τi+1) ≤ (1 + C18δ
2)λh(τi) + C18

{
h2

+ δ

τi+1∫

τi

{|Buh(τ)|2n + |Bv(τ)|2n} dτ
}

+ α

τi+1∫

τi

|Bv(τ)|2n dτ.

(29)

The rule for finding the control uhi implies the
inequalities

|uhi |2r ≤ 2|(B′B)+B′|2 exp{−4ωτi+1}
× (exp{2ωϑ}λh(τi) + 4h2)α−2

≤ C19(λh(τi) + h2)α−2.

(30)

In addition, we have

λh(0) = 0. (31)

Using the inequalities δ(h)α−2(h) ≤ C∗∗hε, (29),
(30) and

δ

τi+1∫

τi

|Buh(τ)|2n dτ ≤ C21δ
2(λh(τi) + h2)α−2

≤ C22δ(h)h
ε(λh(τi) + h2),

(32)

we obtain the relation

λh(τi+1) ≤ (1 + C23δ)λh(τi) + C24h
2

+ α

τi+1∫

τi

|Bv(τ)|2n dτ.
(33)

Hence, taking into account (31), (33) and Lemma 1, we
get

λh(τi+1) ≤ C25(α+ h2δ−1). (34)

The inequality (10) follows from (34) and
Condition 1. If δ(h) = C∗h, then by virtue of (28),
(32) and (34), we deduce that

ε(τi+1) ≤ ε(τi) + C26{δ1+ε(h2δ−1 + α) + h2

+ δ

τi+1∫

τi

|Bv(τ)|2n dτ}.

Therefore, we get

ε(τi) ≤ C27{h2δε−1 + δεα+ h2δ−1 + δ}
≤ C28(αδ

ε + h2δ−1 + δ).
(35)

Then, from (35), we have

ϑ∫

0

|Buh(s)|2n ds ≤
ϑ∫

0

|Bv(s)|2n ds+ C28{δε(h)

+ h2α−1(h)δ−1(h) + δ(h)α−1(h)}.
(36)

Using (36), we conclude that

ϑ∫

0

|Buh(s)|2n ds ≤
ϑ∫

0

|Bv(s)|2n ds+ C29h
ε.

The theorem is proved. �

Let

ṽh(t) = Buh(t), ṽ(t) = Bv(t), t ∈ T.

Theorem 2. Let the conditions of Theorem 1 be fulfilled.
Then

xh(·) → x1(·) in W 1,2(T ;Rn) as h→ 0.

Proof. First, we establish the convergence

ṽh(·) → ṽ(·) weakly in L2(T ;R
n) as h→ 0. (37)

Assuming the contrary, we conclude that there exists a
subsequence ṽhj (·) (hj → 0 as j → ∞) such that

ṽhj (·) → ṽ0(·) weakly in L2(T ;R
n) as j → ∞, (38)

ṽ0(t) = Bv0(t),

ṽ0(·) 	= ṽ(·). (39)

In this case, extracting, if necessary, a subsequence from
{hj}+∞

j=1 , we have

xhj (·) → x∗(·) in C(T ;Rn) as j → +∞,
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where xhj (·) = x(·;x0, uhj (·), v(·)), x∗(·) is the solution
of the system

ẋ(t) = Ax(t) +B(v0(t)− v(t)) + f(t), t ∈ T,

with the initial state x(0) = x0, i.e. x∗(·) = x(· :
x0, v0(·), v(·)). Here, C(T ;Rn) is the space of all
continuous functions mapping the set T into the space Rn.
Let C(T ;Rn) be equipped with the sup-norm. By virtue
of Theorem 1 (cf. (10)),

x∗(·) = x1(·).
Hence,

ṽ0(·) = ṽ(·). (40)

Indeed, if the relations (39) were valid, we would
come to a contradiction. On the one hand, x̃(t) =
x∗(t) − x1(t) = 0 ∀t ∈ T , but on the other hand,
˙̃x(t) = ṽ0(t) − ṽ(t) 	= 0 on some subset the interval
T with a nonzero Lebesgue measure. The equality (40)
contradicts the inequality (39). The convergence (37) is
proved. Moreover, by virtue of the known property of the
weak limit, from (37) we derive

lim
h→0

|ṽh(·)|L2 ≥ |ṽ(·)|L2 . (41)

Here, the symbol | · |L2 means the norm in the space
L2(T ;R

n). In its turn, by virtue of (11), the inequality

|ṽh(·)|2L2
≤ |ṽ(·)|2L2

+ d2h
ε

is valid. This implies

lim
h→0

|ṽh(·)|L2 ≤ |ṽ(·)|L2 (42)

and (see (41), (42))

lim
h→0

|ṽh(·)|L2 ≤ |ṽ(·)|L2 ≤ lim
h→0

|ṽh(·)|L2 .

Therefore, there exist a limit limh→0 |ṽh(·)|L2 , and

lim
h→0

|ṽh(·)|L2 = |ṽ(·)|L2 . (43)

Using (37) and (43), we conclude that

ṽh(·) → ṽ(·) in L2(T ;R
n) as h→ 0. (44)

By virtue of the Cauchy formula, we get

|xh(·)− x1(·)|C(T ;Rn) ≤ d(1)|ṽh(·) − ṽ(·)|L2 .

Therefore,

|xh(·)− x1(·)|W 1,2(T ;Rn) ≤ d(2)|ṽh(·)− ṽ(·)|L2 (45)

The statement of the theorem follows from (45) and (44).
The theorem is proved. �

Under some additional conditions, we can obtain the
convergence rate of the algorithm (see Theorem 3 below).

Theorem 3. Let Condition 1 hold. Let also t → Bv(t) ∈
W (T ;Rn). Then

|x1(·)− xh(·)|2W 1,2(T ;Rn) ≤ K0{α1/2(h) + hε}. (46)

Here K0 is a constant independent of h and α.

Proof. By the use of (13), it is easily seen that

λ
1/2
h (t) ≤ c1

{
λ
1/2
h (τi) +

t∫

τi

(|Buhi |n + |Bv(τ)|n) dτ
}

(47)
for t ∈ [τi, τi+1], i ∈ [0 : m− 1]. Here, cj , j = 1, 2, . . . ,
are positive constants not depending on i, h and α. Also,
we have

τi+1∫

τi

|Bv(s)|nds ≤ c2δ
1/2(h) ≤ c3h

1/2, (48)

λh(τi) ≤ c4α(h). (49)

In turn, from (30), (48), and (49) we obtain
τi+1∫

τi

|Buhi |n dτ ≤ c5δα
−1(h+ λ

1/2
h (τi))

≤ c6δα
−1/2(h).

(50)

In this case, from (47) and (50) we get for t ∈ [τi, τi+1]

|zh(t)|n ≤ c7α
1/2(h), (51)

where zh(t) = xh(t)− x1(t). In addition, we see that

∣∣∣
t2∫

t1

(ṽ(t)− ṽh(t)) dt
∣∣∣
n

≤ c8

{
|zh(t2)− zh(t1)|n +

t2∫

t1

|zh(t)|n dt
}

≤ c9α
1/2(h)

for all t1, t2 ∈ T , t1 < t2. Using (11), from Lemma 3 we
get the relations

|ṽ(·)− ṽh(·)|2L2(T ;Rn)

≤ 2|ṽ(·)|2L2(T ;Rn)

− 2

ϑ∫

0

(ṽ(τ), ṽh(τ)) dτ + d2h
ε

≤ c10{α1/2 + hε}.

(52)

From (52) and (45) we derive the inequality (46). The
theorem is proved. �
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4. Numerical example

The algorithm from Section 4 was tested on a model
example. A material particle of unit mass moves along
a line under the action of a tractive force and an
unknown disturbance. The gravity force is ignored. The
displacement of the point is inaccurately measured at
discrete, frequent enough, times. It is required to build an
algorithm of reduction (in real time mode) of the unknown
disturbance. According to the second Newton law, the
motion is described by the equation

Ẍ(t) = u(t)− v(t) + f(t), t ∈ [0, ϑ], (53)

where u(t) is the outer force, v(t) is the disturbance,X(t)
is the particle displacement. Assuming Ẋ(t) = Y (t),
rewrite (53) in the form of the system (1),

ẋ1(t) = x2(t), x1(0) = x0,

ẋ2(t) = u(t)− v(t) + f(t), x2(0) = x1,
(54)

where x1 = X , x2 = Y . The system (3) has the form

ẋ11(t) = x12(t), x11(0) = x0,

ẋ12(t) = f(t), x12(0) = x1.
(55)

The systems (54) and (55) were solved using the
Euler method with some integration step δ. The work of
the algorithm was organized as follows. At the moments
τi = iδ, i ∈ [0 : m − 1], the values uhi are calculated by
the formulas (see (6) and (9))

uhi = α−1 exp{−2τi+1}(ξhi − ψh
i ).

Then, a control of the form

u(t) = uh(t) = uhi

was fed to the system (54). As the result of the
action of this control and the disturbance v(t) of the
form given below, the system (54) passed from the state
{x1(δi), x2(δi)} to the state {x1(δ(i+ 1)), x2(δ(i+ 1)}.
The algorithm was acting until the moment ϑ.

In the numerical experiment, we set ϑ = 2, x0 = 2,
x1 = 2, v(t) = sin t, δ = 0.002, h = 0.001, f(t) =
cos(5t), ξhi = x2(τi)+h cos(10t), ψh

i = x12(τi)+h. The
simulation results are presented in Figs. 1 and 2. Figure 1
corresponds to the case α = 0.001, whereas Fig. 2 to the
case α = 0.01. In the figures, the solid lines represent the
derivative of the function x12(t), while the dotted lines
represent the derivative of the function x2(t). We omitted
the graphs of the functions x12(t) and x2(t) because they
virtually coincide.

5. Conclusions

In the paper, the control problem for a linear system of
differential equations under the influence of an unknown

Fig. 1. Case α = 0.001.

Fig. 2. Case α = 0.01.

disturbance was investigated. An algorithm for reducing
the disturbance by means of forming appropriate feedback
control actions was designed. This algorithm, based on
the constructions of guaranteed control theory, is stable
with respect to informational noises and computational
errors. The algorithm was tested with a model example.
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