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Tennis, as one of the most popular individual sports in the world, holds an important role in the betting world. There
are two main categories of bets: pre-match betting, which is conducted before the match starts, and live betting, which
allows placing bets during the sporting event. Betting systems rely on setting sports odds, something historically done
by domain experts. Setting odds for live betting represents a challenge due to the need to follow events in real-time and
react accordingly. In tennis, hierarchical models often stand out as a popular choice when trying to predict the outcome
of the match. These models commonly leverage a recursive approach that aims to predict the winner or the final score
starting at any point in the match. However, recursive expressions inherently contain computational complexity which
hinders the efficiency of methods relying on them. This paper proposes a more resource-effective alternative in the form
of a combinatorial approach based on a binomial distribution. The resulting accuracy of the combinatorial approach is
identical to that of the recursive approach while being vastly more efficient when considering the execution time, making it
a superior choice for live betting in this domain.
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1. Introduction

Predicting the outcome of sporting events has always
attracted the attention of a large number of people,
from sports professionals and bookmakers to the general
population. With the advancement of the Internet, betting
on sports event outcomes has seen a dramatic surge
in popularity. The Internet provides a more dynamic
and practical way of betting while also offering the
opportunity to place bets for an ongoing sporting event
(so-called “live betting”). The European Gaming and
Betting Association (EGBA) claims that, because of this
technological change, Europe’s online gambling market
is growing at about 10% per year, faster than land-based
gambling. According to the EGBA, the economic size (or
gross gaming revenue) of the EU online sector is expected
to rise frome22.2 billion in 2018 to e29.3 billion in 2022
(EGBA, 2020).

Due to its nature, live betting differs significantly
from pre-match betting. In the latter, a common business
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practice is to calculate the initial odds based on historical
data and adjust them according to the new knowledge
of betting houses. In the former, there is a wealth of
other information to consider, all of which may affect the
change in the betting odds. For example, any change in the
score might result in a change in odds, and those changes
need to be both as accurate as possible as well as executed
very quickly, often milliseconds after each score change.

One of the more popular betting sports is tennis. It
is enjoyed by millions of viewers, who watch numerous
matches throughout the year. Additionally, large and
easily accessible datasets make tennis an attractive
candidate for research in scientific papers. The nature of
tennis itself also contributes to the popularity of tennis
match modeling. Tennis is an example of a sport with
a strongly defined structure and a rigid scoring system,
making it relatively easy to model its matches in the
form of discrete stochastic processes, a typical example of
which is the Markovian process. Due to this fact, tennis
is often categorized as a discrete or Markovian sport.
Another typical example of such a sport is volleyball, also
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a frequent subject of scientific papers.
Betting on a winner is only one type of popular sports

betting. In addition to this, it is possible to bet on the exact
score by which the match will end, on the total number of
games or sets to be played, or on handicap (the difference
in the final number of games or sets).

Previous works published on the subject of
predicting the outcome of tennis matches mainly focus
on predicting the winner of the match (Pollard, 1983;
Liu, 2001; Newton and Keller, 2005; O’Malley, 2008;
Croucher, 1986; Barnett and Clarke, 2002; Barnet et
al., 2006; Wozniak, 2011), and several papers focus on
predicting the final score (Barnett and Brown, 2012).
Among the more popular models for predicting the
above are hierarchical tennis models. These leverage
the structure of the scoring system in tennis and
model the matches as Markov chains with transition
probabilities obtained from historical player service
statistics. Using two recursion approaches (forward
recursion and backward recursion), it is possible to
estimate the probability of a player winning the match
at any time (live) or predict the final score of the
match. However, the effectiveness of methods that rely
on recursive expressions is questionable because of the
computational complexity of these expressions. This
paper proposes a more resource-effective alternative in
the form of a combinatorial approach used to evaluate the
final score of a match, which can then be used to predict
the winner of the match and estimate the total number of
points, games, and sets that will be played in the match.
The approach has been validated in a manner common for
such problems, and it has been demonstrated that, without
compromising the accuracy of recursive approaches, the
combinatorial approach significantly reduces the time
required to generate the results.

Figure 1 gives an overview of the approach proposed
in the paper. The model consists of two levels of formulae:
a game level and a set level. Each receives as inputs
the probabilities of winning points on the players’ own
services. These probabilities are called p and q, and
are calculated from historical data. The probabilities of
winning points on their own service can be updated with
current data from the ongoing match in order to obtain
more accurate statistics. Individual formulae are devised
for predicting the final score in a game or set. In order
to predict the final score in a match, it is necessary to
combine game and set formulae. After evaluating the final
result, it is possible to form predictions for the winner of
the match, the total number of points, or the handicap.

The rest of this paper is organized as follows. In
Section 2 related work and current solutions of the
problem are presented. Section 3 gives a brief description
of the scoring rules in tennis. Understanding the scoring
rules is essential for comprehension of the rest of the
paper. Section 4 describes the hierarchical combinatorial
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Predictive model
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(p and q)
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(p and q)

Game score Set score
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Winner
Total

points
Handicap

Fig. 1. Approach overview.

approach. Mathematical expressions are given and they
are supported by examples. Section 5 evaluates the
performance of the combinatorial approach, and Section 6
concludes the paper.

2. Related work

From a theoretical standpoint, tennis is a very attractive
sport for modeling because it only takes two players into
consideration and only one outcome is possible. It does
not take into account complex interactions within the
team, and, given the high popularity of the sport, there
is also a large amount of readily available data. In recent
years, Jeff Sackmann has released the largest library of
tennis datasets on GitHub (https://github.com/J
effSackmann). Modeling tennis matches has therefore
become an extremely popular subject in scientific papers
over the last few years.

The scientific literature is still mostly focused on
pre-match models for predicting the outcome of tennis
matches. There are several different approaches to
pre-match modeling. The first attempts to model tennis
matches used player rankings (Boulier and Stekler, 1999;
Clarke and Dyte, 2000; Klaassen and Magnus, 2003;
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Radicchi, 2011). In addition to tennis, similar research
has been conducted in other sports, some of which can
be applied to tennis (Boulier and Stekler, 2003; Lebovic
and Sigelman, 2001; Dangauthier et al., 2007; Glickman,
2001). In addition to the official ranking systems, in
pre-match modeling, Elo ranking models also stand out.
Although Elo was originally developed as a chess player
rating system (Elo, 1978), it can also be used as a
match prediction tool in many other sports (Hvattum and
Arntzen, 2010; Leitner et al., 2010; Ryall and Bedford,
2010; Carbone et al., 2016). When talking about the
pre-match group of models, it is important to mention both
hierarchical models and Bradley–Terry models (Bradley
and Terry, 1952; McHale and Morton, 2011; Glickman,
1999; Baker and McHale, 2014; 2017). The evaluation
of 11 different pre-match models was done by Kovalchik
(2016). The paper proved that the FiveThirtyEight.com
Elo rating method (Silver and Fischer-Baum, 2015;
Morris et al., 2016) outperforms other approaches and
shows the best performance. Kovalchik and Reid (2019)
extended this method to live betting.

As mentioned, hierarchical Markov models are very
popular in the modeling of tennis matches. From the
perspective of any player, tennis is a game that involves
a lot of repetition. A player is constantly exposed to a
situation where they have to score a point under roughly
similar rules and conditions. A match is divided into
sets, which are further broken down into games. Each
game is won after earning enough points. By winning
a certain number of games a player wins a set, and
finally after winning a specified number of sets a player
wins the match. It is because of this nature of the
sport that a tennis match can be easily described through
hierarchical Markov models. Much of the literature on
modeling tennis matches uses this approach. Schutz
(1970) describes a tennis match through a Markov chain
with constant probabilities of transition between states.
The states in such a model represent the result in a
game/set/match (depending on what level of the hierarchy
it is done at), while the transitions between states are
constant probabilities of winning points/games at one’s
own service or set. Pollard (1983) presented an analytical
approach to calculate the probability of winning a game
or set and the expected number of points/games to be
played in a match. Liu (2001), Newton and Keller
(2005) or O’Malley (2008) give equivalent hierarchical
expressions to estimate the probability of winning games,
sets and matches only based on the probability of winning
points at their own service, using different approaches.
These formulae can be used to estimate the likelihood
of the outcome of a particular match level before the
match starts (pre-match). Croucher (1986) studied the
conditional probability of winning a game from any score
(live). Barnett and Clarke (2002) as well as Barnett
et al. (2006) present recursive formulae to predict the

winner and duration of each level of a tennis match live.
Due to the computational complexity of the recursive
expressions presented, Wozniak (2011) (based on the
pre-match solution proposed by O’Malley (2008)) offers
an analytical solution for the calculation of the same
probabilities. If one is to predict the likelihood of a
particular score in a tennis match, recursive expressions
can be found in the literature (Barnett and Brown, 2012).
Our paper completes the research area that deals with the
construction of predictive models based on the identical
and independent point distribution assumption, which is
as of yet left unexplored. We offer expressions that can
also be used to estimate the likelihood of a particular score
at any point in the match. These expressions are much
faster than recursive ones. The importance of the terms
is also compounded by the fact that the same terms can
also be used to calculate the probability of winning at any
given moment in the match with the same precision as the
approaches offered in the literature, but at a faster rate.

Given that the likelihood of winning points at one’s
service has proven to be a major and crucial factor in
trying to estimate the likelihood of winning a game,
set or match, several scientific articles have offered
different approaches to pinpoint that parameter (Barnett
and Clarke, 2005; Newton and Aslam, 2009; Spanias
and Knottenbelt, 2013; Knottenbelt et al., 2012). The
probabilities of winning points at one’s service have
proven very important throughout history to model sports
such as squash (Renick, 1976) or racquetball (Keller,
1984). Our approach also uses the probabilities of
winning points on one’s own service as input parameters.

Due to the Markov property, by which the next
state depends only on the current state, the models
presented previously are based on the assumption of
identical and independent point distribution. The term
‘independent’ means that the probability of winning
points at one’s service does not depend on the outcome of
the point previously played. On the other hand, ‘identical
distribution’ means that every point is considered equal,
regardless of whether it is a very important point (e.g.,
break ball or match ball) or a less important point
during the match. Although this assumption greatly
facilitates the modeling of tennis matches, it conflicts with
intuition about psychological momentum and pressure,
known in psychology as the effect of psychological
momentum (Iso-Ahola and Mobily, 1980). The existence
of psychological momentum is a topic of research in
many other sports, such as basketball or baseball, and
in everyday speech it is almost impossible to mishear
expressions such as “hot teams” or “hot hands” (Gilovich
et al., 1985; Green and Zwiebel, 2017; Tversky and
Gilovich, 1989; Albright, 1993; Attali, 2013; Dadelo
et al., 2014; Ballı and Korukoğlu, 2014).

The reassessment of the assumption of an
independent and identical point distribution in tennis
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was started by Klaassen and Magnus (2001). They
showed that players are more likely to score points at
their service if they have previously won a point on their
service (psychological momentum), while the likelihood
is lower when serving a very significant point in the
match (psychological pressure). This means that the
outcomes of a player’s several previous services need
to be taken into account to more accurately predict
whether and with what likelihood the player will win
the next point on his service. So, like in many other
practical applications, when dependence between trials
is present, it is reasonable to assume that the probability
of success on the current trial depends on the outcome of
the number of last trials. Similar research was conducted
by Martin (2006) who presented a recursive method of
computing the distribution of the number of successes
in a sequence of binary trials that are Markovian of
general order is given. Despite the above, the same
scientists have proven that these facts are rather weak
and that the assumption of identical and independent
point distribution is good enough when predicting the
outcome of tennis matches (Klaassen and Magnus, 2001).
For this reason, we also use the assumption of identical
and independent point distribution in this paper. A
lot of scientific papers still try to tackle this area of
research (Šarčević et al., 2021; Percy, 2015; Carrari
et al., 2017; Chang, 2019; Wetzels et al., 2016; Dietl and
Nesseler, 2017).

3. Tennis scoring rules

As stated, in a tennis match, scoring is performed through
points, games, and sets. By winning enough points the
player wins the game. By winning enough games the
player wins the set, and ultimately by winning enough sets
the player wins the match.

Points in the game are given as 0, 15, 30, 40, and
game/Ad1, although functionally they are similar to a
simpler system using just numbers 0 to 4. The player
who first wins 4 points wins the game. The exception is
when both players score 3 points each (the deuce score,
or 40 − 40). Then the game continues until one of the
players achieves a two-point difference. When the server
wins the deuce point, it is called Ad-In, but when he loses
the deuce point, it is called Ad-Out. If the player with the
advantage (Ad-In or Ad-Out) wins another point, he wins
the game, or it goes back to deuce. The same player is
serving throughout the game.

Depending on the rules of the tournament, there are
two types of matches. A match can consist of the best
2 out of 3 sets or the best 3 out of 5 sets. The former
case applies to all women tournaments, while the latter is
played in certain tournaments for men. Each set consists

1The game tag indicates that one of the players has won the game.
The Ad tag indicates that one of the players has the advantage.

of at least 6 games and the winner is the player who wins
the 6 games first. However, if both players win 5 games
each, the winner is the one who wins two games in a row.
The score can reach 6 − 6. Then the tiebreak game is
played. If it is the last set in the match, depending on the
rules of the tournament, instead of playing the tiebreak
game, the set may continue until one of the players
achieves a two-game difference (the so-called advantage
set). The Wimbledon and Australian Open tournaments
depart from these rules. Specifically, in 2019, the rules of
the Wimbledon Tournament changed. If it is not possible
to determine the winner of the set by regular scoring, the
last set will continue until one of the players wins with
a two-game difference, however, only up to a score of
12−12. Only after the result 12−12, is the tiebreak game
played. In Australia, a super-tiebreak will be played if the
deciding set reaches the result 6−6. In the super-tiebreak,
players need to win ten points by a margin of 2. Players
are serving alternately in the set.

The tiebreak game is played until one of the players
scores 7 points. Similar to the set scoring rules, if both
players score 6 points, the game continues until one of the
players achieves a two-point difference. The player who
started serving in the set also starts serving in the tiebreak
game. After this service, the players alternate so that each
player serves two points.

4. Combinatorial model

Tennis is an example of a hierarchical sport since the
match consists of a sequence of sets, a set of a sequence
of games, and a game of a sequence of points. For this
reason, each level of a tennis match is modeled separately.
First, mathematical expressions for modeling a standard
and a tiebreak game are given. Subsequently, similar
terms are given for the tiebreaker and advantage set. The
proposed mathematical formulae are based on a binomial
distribution. To predict the final score at any moment in
the match, it is necessary to combine these formulae.

The following is a description of the main notation
used in the formulae presented in the rest of the paper (the
rest of the notation will be introduced gradually):

• p represents the probability of winning a point on
serve for player A. The definition of player A
depends on the level of the match being modeled.
In the case of standard game modeling, player A is
the player who serves in that game. In the case of
tiebreak game or set modeling, player A is the player
who starts serving in the tiebreak game or set;

• q represents the probability of winning a point on
serve for player B;

• x, y represent the current score in the standard
game/tiebreak game/set (depending on what level of
match is being modeled);
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• a, b represent the final score in the standard
game/tiebreak game/set (depending on what level of
match is being modeled);

• as, bs represent the number of services remaining
from the score (x, y) to the score (a, b) on player’s
(A/B) serve.

Note. All the probabilities calculated below represent the
absorption probabilities of a Markov chain. An explicit
computation of the final probabilities starting from any
current score can be achieved using a simple Markovian
approach. For more details, see the work of Barnett and
Brown (2012).

4.1. Game-level model.

4.1.1. Standard game. To calculate the likelihood that
player A will win a game by a certain score, consider

pg(p, x, y, a, b)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
as − 1

b− y

)

pas−(b−y)(1− p)b−y,

a = 4, b ≤ 2, x ≤ 3, y ≤ 2,
(

as

b− y

)

pas−(b−y)(1− p)b−y p2

p2 + (1 − p)2
,

a = 3, b = 3, x ≤ 3, y ≤ 3.

(1a)

(1b)

Input values (x, y, a, b) are entered as 0(0), 1(15),
2(30), 3(40), 4(game). The variable as represents the
number of services remaining from the score (x,y) to the
score (a,b) and is calculated as as = (a− x) + (b− y).

Because of the tennis scoring rules there is a need
for two formulae, (1a) and (1b). Formula (1a) is used
to calculate the probability of winning the game with the
final score game− 0, game− 15 or game− 30. Formula
(1b) is required to calculate the probability of winning a
game with the final score game − 40. The product of
the first three factors in formula 1b (

(
as

b−y

)
pas−(b−y)(1 −

p)b−y) represents the probability of reaching the score
40 − 40, and the term p2/(p2 + (1− p)2) represents the
probability of winning the game after the score 40 − 40
(see Appendix A for more details).

It is important to note that even though the notation
of the combinatorial model and recursive model differs,
these are equivalent mathematical models that give
identical results in terms of accuracy (see Appendix B for
more details). Both approaches are based on counting all
the paths that lead to the final score and calculating the
probabilities on those paths.
Note. The notation game − 30 means that player A won
the game and player B scored 30 points. The same applies
to other results.

Example 1. (Winning the game with a particular final
score) For easier understanding of the logic behind (1a)
and (1b), an example is given. Assuming the current score
in a game is 0− 15, the probability that the game will end
with the score game−30 is calculated as follows: from the
current score 0−15 to the final score game−30 the player
will serve 5 more times. To reach that particular score,
one of those services must be lost (probability 1 − p),
while the remaining 4 services must be won (probability
p4), with the restriction that the lost service cannot be the
last one. So from the remaining 4 services, 1 is selected
which the player can lose, which can be done in

(
4
1

)

ways. Ultimately, the following expression is obtained:
4 × (1 − p) × p4. This expression is also obtained by
applying (1a). �

Example 2. (Winning the game) Formulae (1a) and (1b)
can also be used to calculate the probability that a player
serving in a game will win that game by simply summing
up all the possible outcomes from the current score. For
example, game − 15, game − 30, and game − 40 are
possible outcomes from the score 0 − 15. By separately
calculating the likelihood of each score using (1a) and
(1b) and subsequently summing the results, it is easy
to ultimately obtain the probability of winning the game
from any score. In the rest of this paper, the probabilities
of winning the game from the score 0− 0 will be referred
to as G(p) and G(q), and the probability of player A
winning the game from the current score ptsA − ptsB
will be referred to as G(p, ptsA, ptsB). The function
arguments p and q denote the probabilities of winning a
point on players’ own serve. �

The same idea was used in modeling other levels of
a tennis match, and the derived formulae will be given
in the following paragraphs. Also, similar formulae can
be written to calculate the probability of losing different
levels of a tennis match by a particular score.

4.1.2. Tiebreak game. The formula for modeling the
tiebreak game is slightly more complicated compared
with that for modeling the standard game because of the
tiebreak serving rules—the player who started serving in
the set also starts serving in the tiebreak game, and, after
that service, the players alternate so that each serves two
points. If one wants to calculate the likelihood that a
tiebreak game will end with a certain score, it is necessary
to go through all the paths which lead to that score
while taking into account these serving rules, therefore
the summation appears in (2a), (2b) and (2c) below. The
parameter k is a simple iterator used to “walk” through
all possible sets of paths leading to the final score and
indicates how many points player A/B has lost on their
own serves on that set of paths. The number of paths in
a set of paths is determined by the binomial coefficient in
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formulae (2a), (2b) and (2c) (similar as in formulae (1a)
and (1b).

A more detailed explanation is given by the example
below.

Example 3. (Explanation of the parameter k and the bi-
nomial coefficient) Suppose a tiebreak game is played and
the current score is 3 − 1, and one wants to calculate the
likelihood that the tiebreak game will end with the score
7− 3. Four points have already been played, and six more
will be played to achieve the score 7 − 3. Considering
the tiebreak serving rules, and assuming that player A has
started serving in the tiebreak game it is easy to see that,
of those remaining 6 points, player A will serve the first,
the fourth, and the fifth point, and player B will serve the
second, the third and the sixth point. There are 3 sets of
paths to get the score 7− 3 from the score 3− 1:

• Player A (player who began to serve in a tiebreak
game) can score 3 points on their own serves (the
first, the fourth, and the fifth point of the remaining
6 points) and 1 point on player B’s serve (the last
point required, i.e., the sixth point of the remaining
6 points). In this set of paths, the value of the
iterator k will be 0 because player A won each point
on their own serves. The binomial coefficient will
be 1 because this set of paths consists of only 1
path—there is only one way to reach the final score.

• Player A can score 2 points on their own serves
(the first and the fourth point, or the first and the
fifth point, or the fourth and the fifth point of the
remaining 6 points) and 2 points on player B’s serves
(the last point required, i.e., the second and the sixth
point, or the third and the sixth point of the remaining
6 points). In this set of paths, the value of the
iterator k will be 1 because player A lost one point
on their own serve. The binomial coefficient will be
6 because this set of paths consists of 6 paths—there
is 6 ways to reach the final score.

• Player A can score 1 point on their own serve (the
first, or the fourth, or the fifth point of the remaining
six points) and 3 points on player B’s serves (the
second, the third, and the sixth point from the
remaining six points). In this set of paths, the value of
the iterator k will be 2 because player A lost 2 points
on their own serves. The binomial coefficient will be
3 because this set of paths consists of 3 paths—there
are three ways to reach the final score.

�
Depending on the likelihood of winning a point on

own services for both players (p and q) and the current
tiebreak score (x and y), (2a), (2b) and (2c) have been
given to calculate the likelihood of player A winning the
tiebreak game with a particular score (a and b).

Remark 1. the summation sign in formulae (2a), (2b),
(2c), (3a), (3b), (4) and (5) can be interpreted as follows:
the iterator k varies from 0 to n (n ∈ N) provided that
x′(k), y′(k), z′(k) and w′(k) are greater than or equal to
zero:

ps (p, q, x, y, a, b)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as − 1

x′(k)− 1

)(
bs

w′(k)

)

px
′(k)

× (1− p)y
′(k)qz

′(k)(1 − q)w
′(k),

a = 7, b ≤ 5, (a+ b)mod 4 ∈ [0, 1],

x < 7, y ≤ 5

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as

x′(k)

)(
bs − 1

w′(k)− 1

)

px
′(k)

× (1− p)y
′(k)qz

′(k)(1 − q)w
′(k),

a = 7, b ≤ 5, (a+ b)mod 4 ∈ [2, 3],

x < 7, y ≤ 5,

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as

x′(k)

)(
bs

w′(k)

)

px
′(k)

× (1− p)y
′(k)qz

′(k)(1 − q)w
′(k)

× p(1− q)

p(1− q) + (1− p)q
,

a = 6, b = 6, x ≤ 6, y ≤ 6,

(2a)

(2b)

(2c)

The functions x′(k), y′(k), z′(k) and w′(k) are
calculated as follows:

• in (2a) and (2c):

x′(k) = min(as, a− x)− k,

y′(k) = b− y − z′(k),
z′(k) = min(bs, b− y)− k,

w′(k) = a− x− x′(k),

• in (2b):

x′(k) =

{
as − k, as < (a− x),

a− x− k − 1, otherwise,

y′(k) = b − y − z′(k),

z′(k) =

{
b− y − k, (b− y) < bs, as < (a− x),

bs − k − 1, otherwise,

w′(k) = a− x− x′(k).
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Each term in the summation represents a set of
possible paths from the current to the final score, and the
functions x′(k), y′(k), z′(k) and w′(k) determine how
many points player A/ B must win/ lose on that set of paths
in order for the tiebreak game to end with the given final
score (from a given current score). In more details:

• x′(k) represents the number of points that player A
must score on their own serves in order to reach the
given final score;

• y′(k) represents the number of points that player A
must lose on their own serves in order to reach the
given final score;

• z′(k) represents the number of points that player B
must score on their own serves in order to reach the
given final score;

• w′(k) represents the number of points that player B
must lose on their own serves in order to reach the
given final score.

The derivation of the formulae x′(k), y′(k), z′(k)
and w′(k) in the case of using the Eqns. (2a) and (2c) is
explained below. The same principle can be used to derive
the formulae in the case of using Eqn. (2b).

For player A to win the tiebreak game with the score
a − b from the score x − y, player A needs to win a − x
points and will serve as times. If player A needs fewer
points to reach the final score (a − x) than the number
of remaining services (as), player A cannot win all points
on their own serves. The maximum number of points that
player A can win on their own serves in this case is a− x.
Otherwise, player A can win every point on their own
serves (as). Therefore, in calculating the value of x′(k)
it is necessary to take the minimum between the variables
as and a − x. The iterator k is used to go through other
possible sets of paths leading to the final score from the
given current score. We start with k = 0. If player A has
not achieved the required number of points by winning
points on their own serves, player A can acquire those
points if the opposing player loses points on their own
serves. The number of points that player B must lose
on their own serves in order for player A to achieve the
predetermined final number of points is determined by
calculating the function w′(k) as the difference between
the required points (a − x) and the points player A has
won/will win on their own serves (x′(k)). The formulae
for calculating y′(k) and z′(k) are derived in a similar
way.

Again, because of the rules in the tiebreak game, the
formula for calculating the likelihood of a particular score
in a tiebreak game needs to be written in three terms: (2a),
(2b) and (2c). Formulae (2a) and (2b) can be used to
calculate the likelihood of winning a tiebreak game with
scores 7−0, 7−1, 7−2, 7−3, 7−4, and 7−5, depending

on which player serves the last point in the tiebreak game.
The case when the tiebreak game does not end with one
of the above scores, but the tiebreak game continues until
player A wins the tiebreak game with a 2 point difference,
is covered by (2c). Similarly to (1b), the first 6 product
factors in (2c) represent the probability of reaching the
score 6− 6, and the term p(1− q)/(p(1− q) + (1− p)q)
is the probability of player A winning the tiebreak game
after the score 6 − 6 (see Appendix (A) for more details,
although Appendix A describes the derivative of formula
(1b), a similar approach is used to derive formula (2c)).

4.2. Set-level model. The formulae for modeling the
set are similar to those for modeling the tiebreak game.
However, when modeling a set, there are two possible
scoring rules to consider. If the set does not finish with
the scores 6 − 0, 6 − 1, 6 − 2, 6 − 3 or 6 − 4, the
set may continue until one of the players wins the set by
two games difference (the so-called advantage set) or the
so-called tiebreak game is played to decide the winner of
the set. Accordingly, the set modeling formula consists
of a combination of three formulae: (3a), (3b) and (4) in
the case of playing an advantage set, or (3a), (3b) and (5)
when a tiebreak game is played to decide the winner of
the set. The summation and the iterator k also appear in
formulae (3a), (3b), (4) and (5). The reason is again to
pass all possible paths from the current to the final score:

ps (p, q, x, y, a, b)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as − 1

x′(k)− 1

)(
bs

w′(k)

)

×G(p)x
′(k)(1 −G(p))y

′

×G(q)z
′(k)(1−G(q))w

′(k),

a = 6, b ≤ 4, (a+ b)mod2 �= 0,

x < 6, y ≤ 4,
n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as

x′(k)

)(
bs − 1

w′(k)− 1

)

×G(p)x
′(k)(1 −G(p))y

′(k)

×G(q)z
′(k)(1−G(q))w

′(k),

a = 6, b ≤ 4, (a+ b)mod 2 = 0, x < 6,

y ≤ 4.

(3a)

(3b)

If we change the conditional expressions in (2a) and
(2b), and replace the probabilities of winning the point
on service (p and q) with the probabilities of winning a
game on service (G(p) and G(q)—the calculation of these
values is explained in Example 2), we get (3a) and (3b).
Values x′(k), y′(k), z′(k) and w′(k) in (3a) are calculated
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according to the same rules as in (2a). In (3b) values
x′(k), y′(k), z′(k) and w′(k) are calculated according the
same rules as in (2b). Formulae (3a) and (3b) are used to
calculate the probability of winning a set with scores 6−0,
6− 1, 6− 2, 6− 3, 6− 4.

4.3. Advantage set. If the advantage set is played,
in addition to (3a) and (3b), (4) is used to calculate the
probability of winning the set—an analogy with (2c) can
be observed:

psA (p, q, x, y, a, b)

=

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as

x′(k)

)(
bs

w′(k)

)

G(p)x
′(k)

× (1−G(p))y
′(k)G(q)z

′(k)(1−G(q))w
′(k)

× G(p)(1 −G(q))

G(p)(1 −G(q)) + (1 −G(p))G(q)
,

a = 5, b = 5, x ≤ 5, y ≤ 5.

(4)

The fraction in formula (4) represents the probability
that player A will win the set if the score is 5− 5. The
rest of formula (4) represents the probability of reaching
the score 5− 5 from any score.

4.4. Tiebreak set. To complete the set modeling
formula, it is still necessary to cover the case of the
tiebreak set with

psT (p, q, x, y, a, b)

=

n∑

k=0
x′(k),y′(k)≥0,
z′(k),w′(k)≥0

(
as

x′(k)

)(
bs

w′(k)

)

G(p)x
′(k)

× (1−G(p))y
′(k)G(q)z

′(k)

× (1−G(q))w
′(k)(G(p)G(q)

+ (1−G(p))(1 −G(q)))pt,

a = 5, b = 5, x ≤ 5, y ≤ 5.

(5)

The first six product factors in (5) represent the
probability of reaching the score 5− 5 from any given
score. The term G(p)G(q) + (1 − G(p))(1 − G(q)) in
(5) represents the probability of reaching the score 6− 6
from the score 5− 5. Finally, pt in (5) represents the
probability of player A winning the tiebreak game (2a),
(2b) and (2c).

By combining formulae for winning a game (1a),
(1b), (2a), (2b) and (2c) and winning a set (3a), (3b), (4)
and (5), it is possible to take into account the current score
in a game when calculating the probability of a particular
outcome of a set. This can, at any point in the match,
calculate the probability of a particular outcome in the set.

4.5. Winning the match. Match modeling formulae
vary depending on the tournament being played (see
Section 3). This section gives an example for calculating
the probability of winning a best-of-3 all tiebreak set
match. First, we repeat/introduce some additional
notation:

• G(p, ptsA, ptsB) represents the probability of
player A (player who serves in the game) winning
the game from the current score ptsA − ptsB (see
Example 2).

• S(p, q, gA, gB) represents the probability of
player A (player who started serving in the set)
winning the tiebreak set from the current score
gA− gB. It is calculated similarly as the probability
of winning the game from a given score (see
Example 2).

Assume the current score is ptsA ∗−ptsB gA− gB
sA − sB = 15 − 0 3 − 1 1 − 0, where ptsA ∗ −ptsB
denotes the score in the currently played game (the star
sign denotes the player on serve), gA − gB denotes the
score in the set being played, and sA − sB denotes the
number of sets won by both players. There are four
possible ways for player A to win the match:

• Player A can win the currently played game with the
probability G(p, 15, 0), and then win the currently
played set with the probability S(p, q, 4, 1). The total
probability in this case is G(p, 15, 0)× S(p, q, 4, 1).

• Player A can lose the currently played game with the
probability 1−G(p, 15, 0), and then win the currently
played set with the probability S(p, q, 3, 2). The
total probability in this case is (1 − G(p, 15, 0)) ×
S(p, q, 3, 2).

• Player A can win the currently played game with the
probability G(p, 15, 0) and then lose the currently
played set with the probability 1 − S(p, q, 4, 1), and
after that player A can win the next set with the
probability S(p, q, 0, 0). The total probability in this
case is G(p, 15, 0)×(1−S(p, q, 4, 1))×S(p, q, 0, 0).

• Player A can lose the currently played game with the
probability 1−G(p, 15, 0) and then lose the currently
played set with the probability 1 − S(p, q, 3, 2), and
after that player A can win the next set with the
probability S(p, q, 0, 0). The total probability in this
case is (1 − G(p, 15, 0)) × (1 − S(p, q, 3, 2)) ×
S(p, q, 0, 0).

The total probability that player A will win the match
can be obtained by summing the probabilities of all four
cases. Note that in the third and the fourth case we used
S(p, q, 0, 0) to denote the probability of player A winning
the set from the score 0 − 0. It is unknown which player
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will start serving in the next set. However, the outcome of
the set is not influenced by the choice of the first serving
player. That is why we assumed player A will start serving
in the next set.

5. Evaluation

In this section, we demonstrate the execution times of
both approaches and prove the existence of a relative
difference between them. The combinatorial approach is
first compared with forward recursion to estimate the final
score of the match. Then, it is compared with backward
recursion to predict the winner of the match.

Formulae for predicting the outcome of tennis
matches were implemented in the programming language
C++, using the Visual Studio Code development
environment. The computer features for conducting the
experiment are

• operative system: Windows 10,

• processor: Intel(R) Core(TM) i7-6700HQ CPU @
2.60 GHz 2.59 GHz,

• RAM: 16 GB,

• disk: 256 GB SSD.

It is important to note that each execution time
presented in this section represents the time required
for 100000 random predictions. The execution time
measurements were performed 100 times and the paper
presents the minimum and maximum execution time,
median, and arithmetic mean. Times are expressed in
seconds.

Formulae for each level of a tennis match (game, set)
were tested separately. First, times required to predict the
final score and the winner of the game were compared.
Then we analyzed the same at the set level.

Except measuring the execution times of both
approaches, it is easy to see that the complexity of
recursive approaches is exponential regardless of the
match level being modeled (see the formulae in the work
of Barnett and Brown (2012)). The complexity of the
combinatorial approach is linear at the game level and
quadratic at the set level (see formulae (1a), (1b), (2a),
(2b), (2c), (3a), (3b), (4) and (5).

5.1. Predicting the final score of the match.

5.1.1. Game level. The execution time presented in
Table 1 represents the time required to predict 100000
different probabilities that a standard game will end with
the score game − 30 from randomly selected scores
(execution time test of (1a)), and the execution time
required to predict 100000 different probabilities that

Table 1. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the game will end with the
score game− 30.

Approach Min Max Median Mean
Recursion 0.02094 0.03991 0.02293 0.02293

Combinatorics 0.00896 0.03889 0.00997 0.01058

Table 2. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the game will end with the
score game− 40.

Approach Min Max Median Mean
Recursion 0.03354 0.07979 0.03890 0.03953

Combinatorics 0.01496 0.03590 0.01695 0.01733

Table 3. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the tiebreak game will end with
the score 7− 4.

Approach Min Max Median Mean
Recursion 1.243 1.396 1.267 1.281

Combinatorics 0.02893 0.05783 0.03193 0.03266

the standard game will finish after deuce from randomly
selected scores is shown in Table 2 (execution time test of
(1b)).

The combinatorial approach is on the average two
times faster than the recursive one in both cases.

Tables 3 and 4 show the execution time required
to predict the final score in a tiebreak game from
100000 randomly selected current scores. Table 3 shows
the execution time required to predict 100000 different
probabilities that a tiebreak game will end with the score
7−4 from randomly generated scores, while the execution
time required to predict 100000 different probabilities
that a tiebreak game will end with the score 8 − 6 from
randomly generated scores is shown in Table 4.

A much shorter execution time compared with the
recursive approach is now noticeable. The combinatorial
approach gives on the average almost 39 times shorter
execution time than the recursive one when it comes to
predicting the final score in a tiebreak game. An even
bigger time difference is evident when the tiebreak is
predicted not to end within 14 points played. Then the
combinatorial approach is on the average almost 163 times
faster than the recursive one. Greater acceleration of the
combinatorial model in comparison with the recursive
model in the tiebreak game prediction was expected
because the tiebreak game formula must cover more cases
than the standard game formula.

5.1.2. Set level. The execution times required to
predict the final score in a set are shown in Tables 5, 6
and 7. The execution time required to predict 100000
different probabilities that a set will end with the score
6 − 2 from randomly generated scores is shown in Table
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5, which presents the execution time measured using
the tiebreak set recursion formula (Recursion T), the
advantage set recursion formula (Recursion A), as well as
the combinatorics formula (Combinatorics).

When modeling a set, recursive expressions can be
found in the literature that, instead of the probabilities
of winning points at their own service (p and q), receive
the probabilities of winning games at their own service
(G(p) and G(q)) as input parameters. The execution
times required to generate the probability of reaching
a particular score in a set with such modification are
also shown in Table 5 (Recursion’ T, Recursion’ A).
With such a modification, the prediction times using
the modified recursive approaches become faster than
the execution times obtained using the combinatorial
technique. However, if the proposed combinatorial
formula is adjusted in the same way (Combinatorics’),
a faster execution time is obtained when compared
to the modified recursive approaches. The modified
combinatorial technique is on average almost 1.5 times
faster than the modified recursive approach when using
the tiebreak set recursion formula, and almost on average
5 times faster than the modified recursive technique when
using the advantage set recursion formula.

Table 6 presents the time in which the set ends in
a tiebreak game from 100000 randomly selected current
scores. In addition to pre-calculating the probabilities of
winning a service game for both players, the recursive
function is further modified and uses a significantly
faster backward recursion to calculate the likelihood of
winning the tiebreak game (needed to generate the final
probability). Despite the shortening of the prediction
time relative to the initially defined recursive approach,
the modified recursive technique (Recursion’) still did
not reach the time of the initial combinatorial approach.
If the combinatorial approach is modified as previously
described, the time of the proposed combinatorial
technique is further reduced (Combinatorics’). Even with
the acceleration of the recursive technique. It is still on the
average 3 times slower than the combinatorial approach
without the proposed modification.

Finally, the time required to generate 100000
different probabilities that the advantage set will end with
the score 8 − 6, from randomly selected current scores,
is given in Table 7. The combinatorial and recursive
approach modifications were performed as described
above, and the combinatorial technique without and with
the modification is faster than both recursive approaches.

5.2. Predicting the winner of the match. In
the previous subsection was proved that the proposed
combinatorial approach is significantly faster than
forward recursion if one wants to predict the final score
of each level of a tennis match. Below, the proposed
combinatorial approach is compared with backward

Table 4. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the tiebreak game will end with
the score 8− 6.

Approach Min Max Median Mean
Recursion 5.894 6.666 6.021 6.045

Combinatorics 0.03291 0.05887 0.03686 0.03698

Table 5. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the set will end with the score
6− 2.

Approach Min Max Median Mean
Recursion T 2.482 2.657 2.535 2.544
Recursion’ T 0.02394 0.03493 0.02694 0.02721
Recursion A 7.767 8.449 7.853 7.899
Recursion’ A 0.09972 0.14860 0.10372 0.10503

Combinatorics 0.2005 0.2475 0.2045 0.2075
Combinatorics’ 0.01895 0.04388 0.02194 0.02206

Table 6. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the set will end with the score
7− 6.

Approach Min Max Median Mean
Recursion 38.77 39.97 39.26 39.28
Recursion’ 2.490 2.902 2.520 2.535

Combinatorics 0.7460 0.8228 0.7631 0.7704
Combinatorics’ 0.2947 0.3487 0.3141 0.3161

Table 7. Execution time (in [s]) required to predict 100000 dif-
ferent probabilities that the set will end with the score
8− 6.

Approach Min Max Median Mean
Recursion 86.97 88.94 87.72 87.68
Recursion’ 1.234 1.414 1.257 1.260

Combinatorics 0.4695 0.5349 0.4855 0.4871
Combinatorics’ 0.01667 0.04357 0.02995 0.03057

recursion to predict the winner of each level of a tennis
match.

The execution time required to predict the winner of
a standard game from 100000 randomly generated current
scores is shown in Table 8. The combinatorial approach in
the case of predicting the outcome of the standard game is
almost on the average 2 times faster when compared with
the backward recursion one.

The execution time in the case of predicting the
winner of a tiebreak game from 100000 randomly selected
current scores is shown in Table 9. When predicting the
outcome of a tiebreak game, the combinatorial approach
is almost on average 1.5 times faster than the backward
recursive one.

If the recursive or the combinatorial approach is used
to predict the winner of the tiebreak or the advantage
set from 100000 randomly generated current scores, this
will require times shown in Tables 10 and 11. The
combinatorial approach is on average 93 times faster
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Table 8. Execution time (in [s]) required to predict the winner
of a standard game 100000 times.

Approach Min Max Median Mean
Recursion 0.03787 0.05286 0.03991 0.04043

Combinatorics 0.02197 0.03989 0.02396 0.02440

Table 9. Execution time (in [s]) required to predict the winner
of a tiebreak game 100000 times.

Approach Min Max Median Mean
Recursion 0.1661 0.2034 0.1815 0.1808

Combinatorics 0.1036 0.1598 0.1194 0.1198

Table 10. Execution time (in [s]) required to predict the winner
of a tiebreak set 100000 times.

Approach Min Max Median Mean
Recursion 154.1 164.2 157.6 157.9

Combinatorics 1.660 1.843 1.686 1.699

Table 11. Execution time (in [s]) required to predict the winner
of a advantage set 100000 times.

Approach Min Max Median Mean
Recursion 39.32 41.95 40.06 40.17

Combinatorics 1.070 1.254 1.088 1.095

than the recursive one when predicting the winner of the
tiebreak set.

In the case of predicting the winner of the advantage
set, the combinatorial approach is on average 37 times
faster than the recursive one.

In conclusion, if one wants to predict the winner of
each level of a live tennis match or the score by which
each level will end, it is not necessary to use two different
recursive approaches; backward and forward recursion.
With one combinatorial approach, it is possible to predict
all of the above with the same accuracy and significantly
less execution time.

6. Conclusion

Building predictive models that try to forecast the
outcome of sporting events have become extremely
popular in recent years. The nature of the chosen
sport plays an important role in the selection of sports
event modeling methods. Tennis is an example of
a sport with a strongly defined structure and a rigid
scoring system, making it relatively easy to model its
matches in the form of discrete stochastic processes,
such as Markovian. In the scientific literature, several
approaches to modeling tennis matches are presented,
with hierarchical recursive Markov models being amongst
the more popular ones. Using the combination of two
recursive approaches (backward and forward recursion) it

is possible to determine the winner of the match and to
predict the final score in the match. This paper has shown
that, by leveraging the provided combinatorial model to
estimate these probabilities, identical accuracy can be
gained, but with a significant improvement in execution
time, making it a superior alternative in environments that
require real-time adjustment of betting odds.

This paper offers an overview of the theoretical
foundation for this approach in the form of mathematical
formulae which are supported by concrete examples.
A detailed evaluation of the proposed combinatorial
model was performed. The paper shows that the
combinatorial approach gains a significant advantage
when it comes to execution time—in some cases time
is decreased by two orders of magnitude. Furthermore,
the combinatorial approach offers a noticeable decrease
in general complexity, since recursive models require
implementing two different recursive technique, which
can both be efficiently replaced by using the proposed
combinatorial formulae. The future work will be focused
on building more refined models that will loosen the
i.i.d. (identical and independent distribution) assumption
on the point spread and integrate the concept of sport
momentum.

While this paper focuses mainly on tennis, the
approach can easily be transferred to similarly structured
sports, such as volleyball, badminton, table tennis, etc. By
leveraging the combinatorial approach, real-time betting
systems can achieve better efficiency and faster reaction
times, without the need for scaling up the underlying
hardware and software architecture.
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Appendix A

Let us assume the probability of winning a point on
service of a chosen player A is equal to p. The probability
that this player will lose a point on his service is therefore
1 − p. Player A will serve exactly as times to get from
the current score x, y to the final score a, b. Out of these
as services, player A must lose exactly b − y points. The
probability of this event is (1 − p)b−y . Player A must
win all the remaining points on his serve. The probability
of this event is (p)as−(b−y). The binomial coefficient
counts all possible paths from the current score x, y to
the final score a, b. From as − 1 services (note that
player A can not lose the last serve) it is necessary to
choose b − y services that player A will lose. This can
be done in

(
as−1
b−y

)
ways. When all this is multiplied,

formula (1a) is obtained. Formula (1b) can be interpreted
in the same way. The product of the first three factors in
formula (1b) (

(
as

b−y

)
pas−(b−y)(1 − p)b−y) represents the

probability of reaching the score 40 − 40, and the term
p2

p2+(1−p)2 represents the probability of winning the game
after the score 40− 40. This mathematical expression can
be derived by taking into account Fig. A1, which shows all
possible changes of scores after the score 40−40 (deuce).
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p

p

p

1-p

1-p

1-p

Deuce 
(40-40)

Ad-In
(Ad-40)

Ad-Out
(40-Ad)

Win
(game-40)

Lose
(40-game)

Fig. A1. Markov chain with possible changes of scores after
deuce.

Let d denote the probability that player A will win
the game if the current score is 40 − 40. Looking at Fig.
A1, it is possible to spot 3 ways to get from the Deuce
state to the Win state. The first way is a direct path from
the Deuce state to the Win state with a probability of p×p.
The second way is that player A first wins one point and
goes into the Ad-In state with probability p. After that,
player A loses a point and returns to the Deuce state with
probability 1 − p. From the Deuce state, player A will
win the game with probability d. The overall probability
for this path is p × (1 − p) × d. The last option is for
player A to go from the state Deuce to the state Ad-Out by
losing a point on his own serve with the probability 1− p.
After that, player A wins a point on his own serve with
a probability p and returns to the Deuce state, and finally
wins the game with the probability d from deuce. The
overall probability for this described case is (1−p)×p×d.
Summarizing all 3 cases gives the equation d = p × p +
p× (1−p)×d+(1−p)×p×d. By drawing the variable
d from the given equation, the expression is obtained that
player A will win the game if the current score is 40− 40.

Appendix B

This appendix compares the accuracies of the
combinatorial approach and the recursive techniques. The
comparison is made at the standard game level, and the
same can be done for other levels of a tennis match. The
combinatorial approach is first compared with forward
recursion to estimate the final score of the standard game,
and then with backward recursion to predict the winner of
the standard game.

Table B1 shows the likelihood that a standard game
will end with the score game−30 from randomly selected

Table B1. Score game− 30 from random scores.
Random score Recursion (forward) Combinatorics

0-15 0.207 0.207
30-15 0.288 0.288
40-15 0.240 0.240
0-0 0.207 0.207

15-30 0.216 0.216
0-30 0.130 0.130
40-0 0.096 0.096

Table B2. Score game− 40 from random scores.
Random score Recursion (forward) Combinatorics

15-15 0.239 0.239
0-40 0.150 0.150
0-30 0.239 0.239

30-40 0.415 0.415
0-15 0.239 0.239
0-0 0.191 0.191
40-0 0.044 0.044

Table B3. Standard game.
Random score Recursion (back) Combinatorics

0-15 0.576 0.576
30-15 0.847 0.847
40-15 0.951 0.951

0-0 0.736 0.736
15-30 0.515 0.515
0-30 0.369 0.369
40-0 0.980 0.980

scores (accuracy test of (1a)). The probabilities that the
standard game will finish after deuce (the score 40 − 40)
from randomly selected scores are shown in Table B2
(accuracy test of (1b)). As shown, the accuracy of both
approaches (recursive and combinatorial) is identical on
the game level. The same can be proven for the tiebreak
game, the set and the match.

The accuracy of the results when predicting the
match winner can be directly compared with the results
of Barnett and Brown (2012). In this book, the evaluation
of the standard game was made with the input parameter
p = 0.6, therefore the same values were chosen in this
paper.

When comparing the combinatorial and backward
recursive approaches, the accuracy is identical at the
standard game level. The same can be proven for a
tiebreak game, set and match.
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