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Multiple criteria decision making (MCDM) problems in practice may simultaneously contain both redundant and incom-
plete information and are difficult to solve. This paper proposes a new decision-making approach based on soft set theory
to solve MCDM problems with redundant and incomplete information. Firstly, we give an incomplete soft set a precise
definition. After that, the binary relationships of objects in an incomplete soft set are analyzed and some operations on it are
provided. Next, some definitions regarding the incomplete soft decision system are also given. Based on that, an algorithm
to solve MCDM problems with redundant and incomplete information based on an incomplete soft set is presented and il-
lustrated with a numerical example. The results show that our newly developed method can be directly used on the original
redundant and incomplete data set. There is no need to transform an incomplete information system into a complete one,
which may lead to bad decision-making due to information loss or some unreliable assumptions about the data generating
mechanism. To demonstrate its practical applications, the proposed method is applied to a problem of regional food safety
evaluation in Chongqing, China.
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1. Introduction

Many practical problems in engineering, economics,
social science, medical science, etc. are difficult to solve
because they involve vagueness and uncertainty. Various
mathematical theories have been proposed by researchers,
such as fuzzy set theory (Zadeh, 1965; Goguen, 1967),
rough set theory (Pawlak, 1984; 1985), and vague set
theory (Gau and Buehrer, 1993; Hong and Choi, 2000).
These approaches have been successfully applied to many
practical problems to eliminate vagueness and uncertainty
in the modeling. It should be pointed out, however,
that each of the above theories has its inherent limitation
in providing adequate parametrization tools (Molodtsov,
1999).

Soft set theory is a new mathematical tool to deal
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with vagueness and uncertainty in practical problems that
was initiated by Molodtsov (1999). In a soft set, the
value domain of the mapping function is a set of all
subsets of objects in the initial finite universe, and it
can be a classical set, fuzzy set, or intuitive fuzzy set,
among others. Therefore, a soft set is free from the
limitation of the inadequacy of the parameterization tools.
It has been generalized into fuzzy soft sets (Roy and
Maji, 2007; Majumdar and Samanta, 2010), rough soft
sets (Meng et al., 2011), vague soft sets (Xu et al., 2019),
interval-valued fuzzy soft sets (Alkhazaleh and Salleh,
2012; Yang and Yao, 2020), interval-valued intuitionistic
fuzzy soft sets (Jiang et al., 2010), bijective soft sets
(Gong et al. 2010; 2017), hybrid rough-bijective soft
set (Inbarani et al., 2018), and other hybrid soft sets in
combination with various theories.

Potential applications of soft set theory include
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smoothing, game theory, operational analysis, integration,
probability theory, measurement theory (Molodtsov,
1999), forecasting (Xu et al., 2019), decision-making
(Petchimuthu et al., 2020; Sun et al., 2020; Yang and
Yao, 2020), evaluation (Li et al., 2018), medical diagnosis
(Akram et al., 2020), and concept selection (Tiwari et al.,
2017; 2019), to name a few. The application of soft set
in decision-making problems is of great interest to many
researchers (Zhang and Zhang, 2013; Li et al., 2015; Peng
and Yang, 2017; Das et al., 2018; Garg and Arora, 2018).

An MCDM problem is usually characterized by the
ratings of several alternatives with respect to certain
criteria and weights assigned to each criterion. In a
classical MCDM problem, all criteria are indispensable
and independent of each other, and they are attached with
different weights to describe their relative importance.
However, in real-life MCDM problems, it is usually
impossible to find indispensable and independent criteria.
Searching for the solution to an MCDM problem is
hampered by redundant and interrelated information,
which is a typical feature of information in the
era of information explosion. Moreover, practical
decision-making problems are also characterized by
incomplete information for some reasons, such as limited
approaches in data collection, data missing in storage,
and so on. Therefore, the combination of redundant
and incomplete information in practical MCDM problems
makes decision-making difficult.

For redundant information in practical MCDM
problems, some effective parameter reduction methods of
soft sets have been proposed to solve complex MCDM
problems with complete information (Maji and Roy, 2002;
Chen et al., 2005; Kong et al., 2008; Khan and Zhu, 2020),
which not only simplifies MCDM problems, but also
improves the decision-making efficiency. However, these
methods cannot be applied to MCDM problems with
incomplete information.

For incomplete information in practical MCDM
problems, there are two main solution methods, that is,
deletion and data filling (Kryszkiewicz, 1999). Both are
aimed at transforming incomplete information into the
complete kind. In deletion, objects with missing values
are deleted directly. This method creates a complete
information system at the cost of discarding valuable
information in deletion, which may lead to a suboptimal
solution to the MCDM problem because the deleted
objects with missing values may happen to be the optimal
objects. In data filling, no object is deleted. Instead, the
missing values are filled with some estimated values, such
as through experts’ opinion, sample mean, or machine
learning algorithms.

Even though the combination of a soft set with a
data filling method can be used effectively to process
incomplete information and all objects are retained (Zou
and Xiao, 2008; Qin et al., 2012; Deng and Wang,

2013; Liu et al., 2017), each data filling method has
its limitations. For example, data filling by experts
is relatively subjective; data filling by sample mean is
built on the assumption of a uniform distribution for the
variable with a missing value, which may be too restrictive
in some circumstances; and data filling by Bayesian
inference (one of the machine learning methods) requires
an arbitrarily chosen prior distribution for the parameters.
Moreover, based on these data filling methods, MCDM
problems are solved by choosing optimal objects with the
maximal choice values calculated by all parameters.

As mentioned above, the information we collect
may be interrelated and redundant. That means that
not all the parameters are essential for decision-making,
including these with missing values. Filling all the
missing values cannot render decision-making more
efficient, but it may generate excessive parameters and
unnecessarily complicate MCDM problems. Therefore,
for an MCDM problem with redundant and incomplete
information, the main task is to remove redundant
information by parameter reduction to find the core
parameters, instead of filling the missing data based
on some subjective and arbitrary methods to obtain a
complete information system. The existing approaches
of incomplete data analysis in a soft set do not provide
an effective method of parameter reduction, which makes
these approaches inappropriate to addressing MCDM
problems with redundant and incomplete information.

In this paper, we propose a new MCDM method
based on soft set theory to deal with redundant and
incomplete information in the decision-making process.
This new method can reduce redundant information
appropriately to make decisions more effectively, and,
in the meantime, it can process incomplete information
axiomatically to avoid the subjectiveness and arbitrariness
in the previous methods.

The main contributions of this work can be
summarized as follows. Firstly, to describe the incomplete
information in MCDM problems, we give a specific
definition of a soft set with incomplete information
(incomplete soft set) according to its own data structure.
Based on that, its characteristics and operations are
analyzed. Secondly, to process the redundant information
in MCDM problems, this paper provides a parameter
reduction approach of incomplete soft sets, which can
be used in incomplete information circumstances, while
the other parameter reduction approaches of soft sets
can only be applied to MCDM problems with complete
information. Thirdly, instead of using data filling or
deleting methods to transform an incomplete data set
into a complete one as in previous studies, our work
develops a new method to process incomplete information
in MCDM problems by comparing each pair of objects
directly (including objects with incomplete information)
to classify them and generate a series of decision rules.
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The rest of this paper is organized as follows.
After introducing the basic definition of soft sets in
Section 2, the concepts of incomplete soft sets are
defined in Section 3. In Section 4, the incomplete
soft decision system is analyzed. Section 5 proposes
a decision-making approach of MCDM problems with
redundant and incomplete information based on an
incomplete soft set. Section 6 presents some results of
food safety evaluation from Chongqing, China, by using
the newly developed methods. Section 7 summarizes and
concludes this paper.

2. Preliminaries

For subsequent discussion, we briefly recall the concept
of a soft set in this section.

Suppose that U = {h1, h2, . . . , hn} is a common
universe set and A = {e1, e2, . . . , em} is a set of
parameters.

Definition 1. (Soft set (Molodtsov, 1999)) Let P (U) be
the set of all subsets of U . We call a pair (F,A) a soft set
over U , where F is a mapping given by F : A → P (U).

In other words, the soft set is a parameterized family
of subsets of the set U . Every set F (e), where e ∈ A,
from this family can be considered a set of e-approximate
elements of the soft set (F,A), and it is a subset of U .

Example 1. (Soft set) Suppose that U =
{h1, h2, . . . , h6} is a set of houses under consideration;
A = {e1, e2, . . . , e5} is a set of parameters which stand
for cheap, beautiful, size, location, and in the green
surroundings, respectively; and each parameter is a word
or a sentence. Then

U = {h1, h2, . . . , h6},

and

A = {e1, e2, . . . , e5}
= {cheap, beautiful, size, location,

in the green surroundings}.

In this case, to define a soft set means to point out
cheap houses, beautiful houses, and so on. The soft set
(F,A) describes the “attractiveness of the houses” which
Mr. X is going to buy and consists of five subsets of U as
follows:

(F,A) =
{
F (e1) = {cheap houses} = {h3, h5},

F (e2) = {beautiful houses}
= {h1, h2, h4, h6},
F (e3) = {big houses} = {h4, h6},

F (e4) = {good location houses}
= {h4, h5, h6},
F (e5) = {in the green suroundings houses}
= {h1, h4, h6}

}
.

To store a soft set on a computer and facilitate
calculation, we can represent the soft set of the
attractiveness of houses in the form of Table 1. �

3. Incomplete soft set

3.1. Concept of incomplete soft sets. In many
practical MCDM problems, incomplete information in
soft sets is inevitable for some objective reasons. In this
case, the soft set (F,A) contains missing values. This
leads to a situation that the results of mapping F from A
to P (U) in the soft set (F,A), that is, F (e) (∀e ∈ A), may
contain uncertain or unknown objects. Thus, mapping F
in (F,A) might be inaccurate, and the soft sets defined
from the mapping F are inappropriate as well.

The data structure of a soft set that contains
incomplete information is different from that of a soft
set with complete information, and the mapping roles on
the soft set with complete information cannot be applied
directly on the soft set with incomplete information.
Currently, there is no clear definition of a soft set with
incomplete information and its mapping in terms of its
data structure. Therefore, it is necessary to present an
accurate definition of an incomplete soft set and discuss
its unique data structure characteristics.

Definition 2. (Incomplete soft set) A soft set (F,A) is
called a complete soft set if and only if F (e) does not
contain uncertain or unknown objects; otherwise, it is
called an incomplete soft set and denoted by (F ′, A).

In an incomplete soft set (F ′, A), each set F ′(e)
can be regarded as e-approximate elements of (F ′, A).
However, unlike F (e) in a complete soft set, F ′(e)
contains two parts, that is, the deterministic and the
nondeterministic part. Therefore, the incomplete soft set
(F ′, A) can be denoted by

(F ′, A) = {F ′(e) = {hi} ∪ {hj}}, (1)

Table 1. Tabular representation of the soft set (F,A).
U e1 e2 e3 e4 e5
h1 0 1 0 0 1
h2 0 1 0 0 0
h3 1 0 0 0 0
h4 0 1 1 1 1
h5 1 0 0 1 0
h6 0 1 1 1 1
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where e ∈ A, hi, hj ∈ U , {hi} is the set of objects
with known information on attribute e, which belong to
F ′(e) explicitly; and {hj} denotes the set of objects with
incomplete information on attribute e, which may or may
not belong to F ′(e).

Example 2. (Incomplete soft set) For better
understanding, reconsider Example 1. Suppose that in the
soft set (F,A) the unknown values are the information of
object h2 on attributes e2, object h3 on attributes e1 and
e4, object h5 on attribute e4, and object h6 on attribute e3.
Then, the incomplete soft set (F ′, A) can be denoted by

(F ′, A) =
{
F ′(e1) = {cheap houses} = {h5} ∪ {h3},

F ′(e2) = {beautiful houses}
= {h1, h4, h6} ∪ {h2},
F ′(e3) = {big houses} = {h4} ∪ {h6},
F ′(e4) = {good location houses}
= {h4, h6} ∪ {h3, h5},
F ′(e5) = {in the green suroundings houses}
= {h1, h4, h6} ∪ ∅

}
.

In (F ′, A), F ′(e1), for example, denotes the set of
houses that may be cheap. Among them, h5 is absolutely
a cheap house and h3 is possibly a cheap house. Its tabular
representation is shown in Table 2, in which the special
symbol ‘*’ is used to indicate incomplete information on
attributes. �

It should be noted that, in an incomplete soft set, an
unknown value does not mean it is useless; instead, it has
increased the uncertainty and difficulty in data analysis.

Definition 3. (Incomplete soft subset) Let (F ′, A) and
(G′, B) be two incomplete soft sets. (F ′, A) is said to
be an incomplete soft subset of (G′, B), which is denoted
by (F ′, A) ⊆ (G′, B), if and only if A ⊆ B, and ∀e ∈
A,F ′(e) ⊆ G′(e).

Correspondingly, (G′, B) is said to be an incomplete
soft superset of (F ′, A) if (F ′, A) is an incomplete soft
subset of (G′, B). We denote it by (G′, B) ⊇ (F ′, A).

Table 2. Tabular representation of the soft set (F ′, A).
U e1 e2 e3 e4 e5
h1 0 1 0 0 1
h2 0 * 0 0 0
h3 * 0 0 * 0
h4 0 1 1 1 1
h5 1 0 0 * 0
h6 0 1 * 1 1
[*] Note that * means incomplete information

Example 3. (Incomplete soft subset) Given two
incomplete soft sets (F ′, A) and (G′, B), suppose that

U = {h1, h2, h3, h4, h5, h6} is a set of houses,

A = {e1, e2} = {cheap, beautiful},
B = {e1, e2, e3} = {cheap, beautiful, size}.
Here, A and B are two sets of parameters, and an

incomplete soft set (F ′, A) and (G′, B) can be defined by

(F ′, A) = {F ′(e1) = {h5} ∪ {h3},
F ′(e2) = {h1, h4, h6} ∪ {h2}},

(G′, B) = {G′(e1) = {h4, h5} ∪ {h3},
G′(e2) = {h1, h4, h6} ∪ {h2, h5},
G′(e3) = {h1, h4, h6} ∪ ∅}.

Therefore, we have (F ′, A) ⊆ (G′, B). �

Definition 4. (Incomplete soft equal) Let (F ′, A) and
(G′, B) be two incomplete soft sets. If, and only if,
(F ′, A) ⊆ (G′, B) and (F ′, A) ⊇ (G′, B), then (F ′, A)
and (G′, B) are called incomplete soft equal, which is
denoted by (F ′, A) = (G′, B).

3.2. Operations on incomplete soft sets.

3.2.1. Binary relationships. Accurate classification of
all alternatives is a precondition for decision making. This
section analyzes the binary relationships of each pair of
objects in an incomplete soft set to judge whether they
have the same properties and can be categorized into
one class. Before discussing the binary relationships of
objects in incomplete soft sets, the binary relationships of
objects in complete soft sets are first presented.

Definition 5. (Indiscernibility relation) Let (F,A) be
a complete soft set over a common universe U , and
each subset of attributes B ⊆ A determines a binary
indiscernibility relation IND(B) on U as follows:

IND(B) = {(hi, hj) ∈ U × U | ∀e ∈ B,

hi, hj ∈ F (e) or hi, hj ∈ F (e)}, (2)

where hi and hj denote two objects on U ; F (e) is the set
of e-approximate elements of (F,A), which means the set
of objects whose values on attribute e are 1; F (e), which
is the complement set of F (e), denotes the set of objects
whose values on attribute e are 0.

Since the information in the soft set (F,A) is
complete, it is certain whether or not each object belongs
to the set F (e). That is to say, if one object belongs to
F (e), then it would not belong to F (e), that is, F ′(e) ∩
F (e) = ∅.



An incomplete soft set and its application in MCDM problems . . . 421

According to Definition 5, it is clear that, if a pair
of objects (hi, hj) from U × U belongs to F (e) or F (e)
in the soft set (F,A), then they are in IND(B) and can
be perceived as indiscernible. In other words, they may
have the same properties with respect to B in reality. The
indiscernibility relation IND(B) is an equivalence one and
generates a partition of U . Each partition can be called an
indiscernibility class IB(hi) and is defined as

IB(hi) = {hj ∈ U | (hi, hj) ∈ IND(B)}. (3)

Here, IB(hi) describes the objects that are indiscernible
from hi in terms of B.

Example 4. (Indiscernibility relation) In Example 1,

(F,A)

=
{
F (e1) = {cheap houses} = {h3, h5},
F (e2) = {beautiful houses}
= {h1, h2, h4, h6},
F (e3) = {big houses} = {h4, h6},
F (e4) = {good location houses}
= {h4, h5, h6},
F (e5) = {in the green suroundings houses}
= {h1, h4, h6}

}
.

Complementary to the soft set (F,A) we have

F (e1) = {h1, h2, h4, h6},
F (e2) = {h3, h5},
F (e3) = {h1, h2, h3, h5},
F (e4) = {h1, h2, h3},
F (e5) = {h2, h3, h5}.

Then, according to Definition 5,

IND(A) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h4, h6), (h6, h4)},
IA(h1) = {h1}, IA(h2) = {h2},
IA(h3) = {h3}, IA(h4) = {h4, h6},
IA(h5) = {h5}, IA(h6) = {h4, h6}.

�
However, in incomplete soft sets, the situation

becomes somewhat different and much more complicated.
For example, in an incomplete soft set (F ′, A), each set
F ′(e)(e ∈ A) contains two parts, that is, the subset {hi}
that contains alternatives with complete information and
the subset {hj} that contains alternatives with incomplete

information on attribute e. Thus, F ′(e) means the set of
objects whose values on attribute e may be 1, and F ′(e),
which is a complementary set of F ′(e), means the set
of objects whose values on attribute e may be 0. If the
information on attribute e for some objects is unknown,
then these objects can be simultaneously classified as
F ′(e) and F ′(e). As a result, F ′(e) ∩ F ′(e) 
= ∅, but
it equals the set of objects with unknown information on
attribute e.

For example, in the incomplete soft set (F ′, A) of
Example 2,

F ′(e1) = {h5} ∪ {h3} = {h3, h5},
F ′(e1) = {h1, h2, h4, h6} ∪ {h3}

= {h1, h2, h3, h4, h6},

thus F ′(e1) ∩ F ′(e1) = {h3} 
= ∅.
Considering that F ′(e1)∩F ′(e1) 
= ∅, an object with

incomplete information on attribute e can belong to F ′(e)
and F ′(e) at the same time. Therefore, the relationship
between objects with incomplete information cannot be
defined through IND(B). Therefore, we propose to
use binary similarity relations in Definition 6 instead to
describe the incomplete soft sets.

Definition 6. (Similarity relation) Let (F ′, A) be an
incomplete soft set over a common universe U , B ⊆ A,
and a similarity relation SIM(B) on U be defined as

SIM(B) = {(hi, hj) ∈ U × U | ∀e ∈ B,

hi, hj ∈ F ′(e) or hi, hj ∈ F ′(e)}. (4)

where hi and hj denote the objects on U ; F ′(e) is the set
of e-approximate elements of (F ′, A), which denotes the
set of objects whose values on attribute e may be 1; and
F ′(e) denotes the set of objects whose values on attribute
e may be 0.

Correspondingly, we can define the similarity class
SB(hi) as the objects that may be similar to hi in terms of
the attributes in B in the incomplete soft sets as

SB(hi) = {hj ∈ U | (hi, hj) ∈ SIM(B)}. (5)

Example 5. (Similarity relation) In Example 2, for the
incomplete soft set (F ′, A) we have

(F ′, A)

=
{
F ′(e1) = {h5} ∪ {h3} = {h3, h5},

F ′(e2) = {h1, h4, h6} ∪ {h2}
= {h1, h2, h4, h6},
F ′(e3) = {h4} ∪ {h6} = {h4, h6},
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F ′(e4) = {h4, h6} ∪ {h3, h5}
= {h3, h4, h5, h6},
F ′(e5) = {h1, h4, h6} ∪ ∅ = {h1, h4, h6}

}
.

Complementary to the incomplete soft set (F ′, A) we
have

F ′(e1) = {h1, h2, h3, h4, h6},
F ′(e2) = {h2, h3, h5},
F ′(e3) = {h1, h2, h3, h5, h6},
F ′(e4) = {h1, h2, h3, h5},
F ′(e5) = {h2, h3, h5}.

Then, according to Definition 6,

SIM(A) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h2, h3), (h3, h2),

(h3, h5), (h5, h3), (h4, h6), (h6, h4)}.
In SIM(A), for example, the pair (h3, h5) belongs to

F ′(e1), F ′(e2), F ′(e3), F ′(e4), F ′(e4) and F ′(e5), and
thus it is in SIM(A), in which A = {e1, e2, e3, e4, e5}.
In contrast, the relationship between h3 and h5 cannot
be defined through IND(A) because of incomplete
information.

Moreover, we can have

SA(h1) = {h1}, SA(h2) = {h2, h3},
SA(h3) = {h2, h3, h5}, SA(h4) = {h4, h6},
SA(h5) = {h3, h5}, SA(h6) = {h4, h6}.

�

3.2.2. Restricted/relaxed AND operation. The
operations on incomplete soft sets can be discussed based
on the definition of incomplete soft set and its binary
relationships.

Definition 7. (Restricted AND operation) Given that
(F ′, A) is an incomplete soft set and X ⊆ U , the
operation of “(F ′, A) restricted AND X” denoted by
(F ′, A)∧X is defined as

(F ′, A)∧X = {hi ∈ U | SA(hi) ⊆ X}. (6)

Definition 8. (Relaxed AND operation) Given that
(F ′, A) is an incomplete soft set and X ⊆ U , the
operation of “(F ′, A) relaxed AND X ” denoted by
(F ′, A)∧̄X is defined as

(F ′, A)∧̄X = {hi ∈ U | SA(hi) ∩X 
= ∅}. (7)

Example 6. (Restricted/relaxed AND operation)
Consider Example 2 and suppose that X = {h3, h5} is a
subset of the universe U ; then, according to Definitions 7
and 8,

(F ′, A)∧X = {h5},
(F ′, A)∧̄X = {h2, h3, h5}.

�
It can be concluded that the result of the restricted

AND operation is a set of objects whose similarity class
belongs to X with certainty, while the result of relaxed
AND operation is a set of objects whose similarity class
possibly belongs to X .

Theorem 1. Let U be a common universe set and (F ′, A)
be an incomplete soft set. Then (F ′, B1) and (F ′, B2) are
two incomplete soft subsets of (F ′, A), and (F ′, B1) ⊆
(F ′, B2) ⊆ (F ′, A). For X ⊆ U , we have

(F ′, B1)∧X ⊆ (F ′, B2)∧X (8)

(F ′, B1)∧̄X ⊇ (F ′, B2)∧̄X. (9)

Proof. With ∀hi ∈ U , if (F ′, B1) ⊆ (F ′, B2), then
SB1(hi) ⊇ SB2(hi). Assume that SB1(hi) ⊆ X , where
X ⊆ U , and then SB2(hi) ⊆ X . At the same time,
there may be hj ∈ U , SB1(hj) 
⊆ X and SB2(hj) ⊆ X .
Therefore, (F ′, B1)∧X ⊆ (F ′, B2)∧X .

Similarly, ∀hi ∈ U , and we assume that SB2(hi) ∩
X 
= ∅. Then SB1(hi) ∩X 
= ∅. At the same time, there
may be hj ∈ U , SB2(hj)∩X = ∅ and SB1(hj)∩X 
= ∅.
Therefore, (F ′, B1)∧̄X ⊇ (F ′, B2)∧̄X . �

4. Incomplete soft decision system

To develop an MCDM method based on incomplete soft
sets, it is necessary to introduce incomplete soft decision
systems based on incomplete soft sets.

4.1. Concept of an incomplete soft decision system.
In this section, the definitions of the soft decision system
and incomplete soft decision system are first proposed.

Definition 9. (Soft decision system) Suppose that (F,A)
and (G,B) are two soft sets over a common universe U
and A ∩ B = ∅. Then, the triple ((F,A), (G,B), U)
is defined as a soft decision system over the common
universe U , where (F,A) is the condition soft set and
(G,B) is the decision soft set.

Example 7. (Soft decision system) Let the soft set (F,A)
in Example 1 be the condition soft set, and soft set (G,B)
be the decision soft set, where

(G,B) = {G(ε1) = {h3, h5},
G(ε2) = {h1, h2, h4, h6}}.
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Here, ε1 and ε2 are two attributes in the attribute set B
and denote “unattractive houses” and “attractive houses”,
respectively.

Then, the triple ((F,A), (G,B), U) is a soft decision
system. �

Definition 10. (Incomplete soft decision system) In the
soft decision system ((F,A), (G,B), U), if there is any
∗ ∈ F (e) for some e ∈ A and ∗ /∈ G(ε), ∀ε ∈ B, then it
is called an incomplete soft decision system and denoted
by ((F ′, A), (G,B), U).

It should be noted that, in an incomplete soft decision
system ((F ′, A), (G,B), U), the incomplete information
only exists in the condition soft set (F ′, A) but not in the
decision soft set (G,B).

Example 8. (Incomplete soft decision system) Let the
incomplete soft set (F ′, A) in Example 2 be the condition
soft set and the soft set (G,B) be the decision soft set.

Then, the triple ((F ′, A), (G,B), U) is an
incomplete soft decision system. �

4.2. Significance of an attribute subset. This section
presents the definition of significance of an attribute
subset in an incomplete soft set, which is an important
indicator for parameter reduction.

Definition 11. (Significance of an attribute set) Let
((F ′, A), (G,B), U) be an incomplete soft decision
system, (F ′, A) an incomplete soft set, and C ⊆ A an
attribute subset. The significance of the attribute subset C
is denoted by SIG(C) and defined as

SIG(C) =

∣∣∣∣
⋃

εi∈B

(F ′, C)∧G(εi)

∣∣∣∣, (10)

where | · | means the cardinal number of a set.
From Definition 11, the quantity of valid information

that an attribute subset in an incomplete soft set contains
can be measured by comparing the condition soft set and
the decision soft set in an incomplete soft information
system based on the restricted AND operation.

Example 9. (Significance of an attribute set) In
Example 8, according to Definition 11, the significance
of the attribute set A in (F ′, A) can be computed by

SIG(C) =

∣∣∣∣
⋃

εi∈B

(F ′, A)∧G(εi)

∣∣∣∣

=| (F ′, A)∧G(ε1) ∪ (F ′, A)∧G(ε2) |
=| {h5} ∪ {h1, h4, h6} |= 4.

Theorem 2. Let ((F ′, A), (G,B), U) be an incomplete
soft decision system and C1 ⊆ C2 ⊆ A; then, we have

SIG(C1) ≤ SIG(C2). (11)

Proof. We have

SIG(C1) =

∣∣∣∣
⋃

εi∈B

(F ′, C1)∧G(εi)

∣∣∣∣,

SIG(C2) =

∣∣∣∣
⋃

εi∈B

(F ′, C2)∧G(εi)

∣∣∣∣.

From Theorem 1, for each εi ∈ B,

(F ′, C1)∧G(εi) ⊆ (F ′, C2)∧G(εi),

so that
∣∣∣∣
⋃

εi∈B

(F ′, C1)∧G(εi)

∣∣∣∣ ≤
∣∣∣∣
⋃

εi∈B

(F ′, C2)∧G(εi)

∣∣∣∣,

i.e., SIG(C1) ≤ SIG(C2). �

Theorem 2 shows that the significance of an attribute
subset monotonically increases with the number of
attributes, which means that adding a new attribute in an
attribute subset at least does not decrease its significance.
This property is very important for parameter reduction.

4.3. Parameter reduction. Based on the definition
of significance of attribute subset, the reduct attribute
set, optimal reduct attribute set, core attribute, and core
attribute set can be defined.

Definition 12. (Reduct attribute set) If
((F ′, A), (G,B), U) is an incomplete soft decision
system and C ⊆ A, then C is a reduct attribute set of
((F ′, A), (G,B), U) if

SIG(C) = SIG(A). (12)

Definition 13. (Optimal reduct attribute set) If, for any
subset of C, D ⊂ C ⊆ A, SIG(D) < SIG(C) = SIG(A),
then C is an optimal reduct attribute set of soft decision
system ((F ′, A), (G,B), U).

Example 7 can be reconsidered and the significance
of attribute subset A1 = {e2, e3, e4, e5} can be computed
as follows:

(F ′, A1) = {F ′(e2), F ′(e3), F ′(e4), F ′(e5)},
when

F ′(e2) = {h1, h4, h6} ∪ {h2}
= {h1, h2, h4, h6},
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F ′(e3) = {h4} ∪ {h6} = {h4, h6},
F ′(e4) = {h4, h6} ∪ {h3, h5} = {h3, h4, h5, h6},
F ′(e5) = {h1, h4, h6} ∪ ∅ = {h1, h4, h6}.

Then

SIM(A1) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h2, h3), (h3, h2),

(h2, h5), (h5, h2), (h3, h5), (h5, h3),

(h4, h6), (h6, h4)},

SA1(h1) = {h1}, SA1(h2) = {h2, h3, h5},
SA1(h3) = {h2, h3, h5}, SA1(h4) = {h4, h6},
SA1(h5) = {h2, h3, h5}, SA1(h6) = {h4, h6}.

SIG(A1) =

∣∣∣∣
⋃

εi∈B

(F ′, A1)∧G(εi)

∣∣∣∣

= |(F ′, A1)∧G(ε1) ∪ (F ′, A1)∧G(ε2)|
= |∅ ∪ {h1, h4, h6}| = 3 < SIG(A).

Thus, A1 is NOT a reduct attribute subset of
((F ′, A), (G,B), U). Reconsider the attribute subset
A2 = {e1, e3, e4, e5}, and compute the significance of
A2 according to Definition 11:

(F ′, A2) = {F ′(e1), F ′(e3), F ′(e4), F ′(e5)},
where

F ′(e1) = {h5} ∪ {h3} = {h3, h5},
F ′(e3) = {h4} ∪ {h6} = {h4, h6},
F ′(e4) = {h4, h6} ∪ {h3, h5} = {h3, h4, h5, h6},
F ′(e5) = {h1, h4, h6} ∪ ∅ = {h1, h4, h6}}.

Then

SIM(A2) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h2, h3), (h3, h2), (h3, h5),

(h5, h3), (h4, h6), (h6, h4)},

SA2(h1) = {h1}, SA2(h2) = {h2, h3},
SA2(h3) = {h2, h3, h5}, SA2(h4) = {h4, h6},
SA2(h5) = {h3, h5}, SA2(h6) = {h4, h6}.

SIG(A2) =

∣∣∣∣
⋃

εi∈B

(F ′, A2)∧G(εi)

∣∣∣∣

= |(F ′, A2)∧G(ε1) ∪ (F ′, A2)∧G(ε2)|
= |{h5} ∪ {h1, h4, h6}| = 4 = SIG(A).

Thus, A2 is a reduct attribute subset of
((F ′, A), (G,B), U), but it may be not the optimal
reduct attribute set, because there may be a subset
A2∗ ⊂ A2 and SIG(A2∗) = 4.

Based on the definition of the reduction of an
incomplete soft decision system, we give the definitions
of the core attribute and the core attribute set of an
incomplete soft decision system as follows.

Definition 14. (Core attribute) An attribute e is a
core attribute of an incomplete soft decision system if it
belongs to every reduction of the incomplete soft decision
system ((F ′, A), (G,B), U).

Definition 15. (Core attribute set) An attribute set
C (C ⊆ A) is a core attribute set of incomplete soft
decision system ((F ′, A), (G,B), U) if all of the elements
in C are core attributes of incomplete soft decision system
((F ′, A), (G,B), U).

4.4. Decision rules. Decision rules of the soft decision
system ((F,A), (G,B), U) can be established according
to the attributes set A as follows:

∧ (ei, v) → ∨(εi, w), (13)

where ei ∈ A, εi ∈ B, v = F (ei)/hi, w = G(εi)/hi, ∧
means “and”, ∨ means “or”, ∧(ei, v) is the condition part
of the rule, ∨(εi, w) is the decision part of the rule.

Example 10. (Decision rules from soft decision systems)
In Example 7, the decision rules of ((F,A), (G,B), U)
from the attributes set A are

r1 : (e1, 0)∧ (e2, 1)∧ (e3, 0)∧ (e4, 0)∧ (e5, 1) → (ε2, 1)
(attractive house),

r2 : (e1, 0)∧ (e2, 1)∧ (e3, 0)∧ (e4, 0)∧ (e5, 0) → (ε2, 1)
(attractive house),

r3 : (e1, 1)∧ (e2, 0)∧ (e3, 0)∧ (e4, 0)∧ (e5, 0) → (ε1, 1)
(unattractive house),

r4 : (e1, 0)∧ (e2, 1)∧ (e3, 1)∧ (e4, 1)∧ (e5, 1) → (ε2, 1)
(attractive house),

r5 : (e1, 1)∧ (e2, 0)∧ (e3, 0)∧ (e4, 1)∧ (e5, 0) → (ε1, 1)
(unattractive house),

r6 : (e1, 0)∧ (e2, 1)∧ (e3, 1)∧ (e4, 1)∧ (e5, 1) → (ε2, 1)
(attractive house).

For an incomplete soft decision system, the decision
rules can be obtained from the attributes set using the same
method.

Example 11. (Decision rules from incomplete soft
decision systems) In Example 8, the decision rules of
((F ′, A), (G,B), U) from the attributes set A are
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r1 : (e1, 0)∧ (e2, 1)∧ (e3, 0)∧ (e4, 0)∧ (e5, 1) → (ε2, 1)
(attractive house),

r2 : (e1, 0)∧ (e2, ∗)∧ (e3, 0)∧ (e4, 0)∧ (e5, 0) → (ε2, 1)
(attractive house),

r3 : (e1, ∗)∧ (e2, 0)∧ (e3, 0)∧ (e4, ∗)∧ (e5, 0) → (ε1, 1)
(unattractive house),

r4 : (e1, 0)∧ (e2, 1)∧ (e3, 1)∧ (e4, 1)∧ (e5, 1) → (ε2, 1)
(attractive house),

r5 : (e1, 1)∧ (e2, 0)∧ (e3, 0)∧ (e4, ∗)∧ (e5, 0) → (ε1, 1)
(unattractive house),

r6 : (e1, 0)∧ (e2, 1)∧ (e3, ∗)∧ (e4, 1)∧ (e5, 1) → (ε2, 1)
(attractive house).

where ‘*’ denotes incomplete information in
((F ′, A), (G,B), U).

The decision rules generated above used all the
information in attribute set A. When there is too much
or redundant information contained in A, such a decision
rules generating method cannot be efficient in solving a
practical MCDM problem. On the contrary, based on the
optimal reduct attribute set of a soft information system
we propose, the optimal decision rules that not only
cast off redundant information but also improve decision
making efficiency can be derived. �

5. Method based on incomplete soft sets

5.1. Algorithm and a numerical example. In this
section, a new decision-making method of MCDM
problems that contain redundant and incomplete
information based on incomplete soft sets is proposed and
illustrated with a numerical example. The new approach
can not only tackle the problem of the inadequacy of
parameterization in practical MCDM problems, but also
provide a direct way to process redundant and incomplete
information simultaneously in MCDM.

For the incomplete information in MCDM, it is not
crucial or even necessary to fill each missing datum with
an arbitrarily determined data filling mechanism in the
process of decision making. The optimal objects can be
deduced by a series of optimal decision rules proposed in
this paper without data filling.

For the redundant information in MCDM, parameter
reduction is the key step for decision-making. The
parameter reduction rules developed in this paper are
based on the significance of each attribute subset in the
incomplete soft set defined above. These rules can be used
for both complete and incomplete soft sets.

The algorithm to solve MCDM problems with
both redundant and incomplete information based on an
incomplete soft set is given below. This new algorithm
can be applied to Example 2.

Algorithm 1. Algorithm to solve MCDM problems
with redundant and incomplete information based on
incomplete soft set.
Step 1. Construct an incomplete soft decision system
((F ′, A), (G,B), U).

Step 2. Calculate SIG(A) according to Definition 11.

Step 3. Calculate SIG(Ai), where Ai is an attribute subset
in ((F ′, A), (G,B), U).

Step 4. Find the optimal reduct attribute set according to
Definition 13.

Step 5. Derive the optimal decision rules and make a
decision.

In Step 1, an incomplete soft decision system named
((F ′, A), (G,B), U) is established through the initial data
set.

In Step 2, the significance of the attribute set A in
((F ′, A), (G,B), U) is given by

SIG(A) =

∣∣∣∣
⋃

εi∈B

(F ′, A)∧G(εi)

∣∣∣∣

= |(F ′, A)∧G(ε1) ∪ (F ′, A)∧G(ε2)|
= |{h5} ∪ {h1, h4, h6}| = 4.

In Step 3, the significance of each attribute subset in
((F ′, A), (G,B), U) can be calculated in the same way:

A2345 = {e1},

SIG(A2345) =

∣∣∣∣
⋃

εi∈B

(F ′, A2345)∧G(εi)

∣∣∣∣

= |{h5} ∪ ∅| = 1 
= 4;

A1345 = {e2},

SIG(A1345) =

∣∣∣∣
⋃

εi∈B

(F ′, A1345)∧G(εi)

∣∣∣∣

= |∅ ∪ {h1, h4, h6}| = 3 
= 4;

A1245 = {e3},

SIG(A1245) =

∣∣∣∣
⋃

εi∈B

(F ′, A1245)∧G(εi)

∣∣∣∣

= |∅ ∪ {h4}| = 1 
= 4;

A1235 = {e4},

SIG(A1235) =

∣∣∣∣
⋃

εi∈B

(F ′, A1235)∧G(εi)

∣∣∣∣

= |∅ ∪ ∅| = 0 
= 4;

A1234 = {e5},
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SIG(A1234) =

∣∣∣∣
⋃

εi∈B

(F ′, A1234)∧G(εi)

∣∣∣∣

= |∅ ∪ {h1, h4, h6}| = 3 
= 4;

A234 = {e1, e5},

SIG(A234) =

∣∣∣∣
⋃

εi∈B

(F ′, A234)∧G(εi)

∣∣∣∣

= |{h5} ∪ {h1, h4, h6}| = 4.

In Step 4, the optimal reduct attribute set of
((F ′, A), (G,B), U) can be found. According to
Definitions 12 and 13, it can be concluded that attribute
subset A234 = {e1, e5} is an optimal reduct attribute set
of ((F ′, A), (G,B), U).

In Step 5, the optimal decision rules can be derived
as follows:

r1 : (e1, 0) ∧ (e5, 1) → (ε2, 1) (attractive house),

r2 : (e1, 0) ∧ (e5, 0) → (ε2, 1) (attractive house),

r3 : (e1, ∗) ∧ (e5, 0) → (ε1, 1) (unattractive house),

r4 : (e1, 0) ∧ (e5, 1) → (ε2, 1) (attractive house),

r5 : (e1, 1) ∧ (e5, 0) → (ε1, 1) (unattractive house),

r6 : (e1, 0) ∧ (e5, 1) → (ε2, 1) (attractive house).

That is to say, if a house is not cheap or e1 = 0,
then it is attractive. If a house is cheap or its price is
unknown, which means e1 = 1 or e1 = ∗, then it is
unattractive. Therefore, it can be inferred that h1, h2, h4,
and h6 in Example 2 are attractive houses, while h3 and
h5 are unattractive ones. The rules can also be applied to
other alternative houses.

5.2. Comparative analysis. The advantages of this
approach to solve MCDM problems with redundant
and incomplete information can be demonstrated by
comparing it with other similar methods. One of them
is the data analysis approach of soft sets under incomplete
information (DASI) proposed by Zou and Xiao (2008),
and another is the data filling approach for incomplete
soft sets (DFIS) developed by Qin et al. (2012). To deal
with incomplete information in MCDM, both of these two
methods rely on data filling to transform the incomplete
information system into a complete one.

5.2.1. Results from DASI. Here, ∀e ∈ A, and let
pe = n1/(n1 + n0) stand for the probability that an
object belongs to F (e), where n1 and n0 are the number
of objects that do and do not belong to F ′(e), respectively.

Zou and Xiao (2008) proposed to replace the missing
value hij = ∗ by pe. Then, all the alternatives are ranked
by their decision values which are the summation of all

values under each attribute, and the alternatives with the
highest decision value are selected as the optimal.

Example 2 can be reconsidered, and its tabular
representation is given in Table 2. By using the DASI
method, for object h1, there is no incomplete data, and
thus its decision values d1 = 2; for object h2, information
about attribute e2 is missing. We have pe = 3/5 =
0.6; thus, h21 = 0.6 and d2 = 0.6. Following the
same method, the decision values for other objects can be
calculated, and all the decision values are listed in Table 3.
Then, it can be concluded that h4 is Mr. X’s favorite house
because it gets the highest decision value.

5.2.2. Results from DFIS. Qin et al. (2012) pointed
out that each choice value of objects is independent of
those of other objects. Consequently, it is inappropriate to
use the distribution of other available objects to decide the
weight of each possible choice value. To overcome these
problems, Qin et al. (2012) proposed the novel DFIS,
which is based on the maximum association degree of the
parameter.

In an incomplete soft set (F ′, A), F (ei)(x), ei ∈
A, x ∈ U denotes the information of objects x on attribute
ei and supposes it is missing, that is, F (ei)(x) = ∗. Then,
according to the DFIS method proposed by Qin et al.
(2012), F (ei)(x) can be filled based on the maximum
association degree of ei as follows: ∀ei ∈ A and ∀ej ∈
A, i 
= j. The set Uij that yields the objects with complete
information on ei and ej is given by

Uij = {x|F (ei)(x) 
= ∗ ∧ F (ej)(x) 
= ∗, x ∈ U}. (14)

Let CNij and INij denote the consistent association
number and the inconsistent association number between
ei and ej , respectively, where

CNij = |{x|F (ei)(x) = F (ej)(x), x ∈ Uij}|, (15)

INij = |{x|F (ei)(x) 
= F (ej)(x), x ∈ Uij}|, (16)

and | · | signifies the number of elements in a set.
Then the consistent association degree CNij and

inconsistent association degree IDij between ei and ej can
be obtained as follows:

CNij =
CNij

|Uij | , (17)

IDij =
INij

|Uij | . (18)

Table 3. Decision value of each object.
U h1 h2 h3 h4 h5 h6

d 2 0.6 0.7 4 1.5 3.2
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The association degree Dij between ei and ej , is
defined as

Dij = max{CDij , IDij}. (19)

Then the maximal association degree of parameter ei
is

Di = max{Dij}. (20)

A threshold λ can be set to judge whether the
association degree between ei and other parameters is big
enough. If Di ≥ λ, then parameter ej , which has the
maximal association degree with ei, can be used to fill the
missing value of ei. If there is a consistent association
between ei and ej , then F (ei)(x) = F (ej)(x); otherwise,
there is an inconsistent association between ei and ej , and
F (ei)(x) = 1 − F (ej)(x). If Di<λ, then the missing
value F (ei)(x) is calculated by DASI.

The DFIS method can be applied to the data set of
Example 2, and the association degrees for the incomplete
soft set (F ′, E) are listed in Table 4. According to DFIS,
for example, the missing value of h31 can be filled by the
maximal association degrees of e1. Apparently, D12 = 1
is the maximal association degree. Therefore, h31 can be
filled according to the value of h32. Because h32 = 0 and
there is an inconsistent association between parameters e1
and e2, we assign 1 to h31. Similarly, the other missing
value can be filled, and then the decision values of each
house can be obtained.

Although DFIS is an improvement of DASI, one
important drawback is that there might be more than one
maximum association degree, which leads to inconsistent
filling of the missing values. For example, the value of h22

is missing. From Table 4 we can see that D21 = D25 = 1
are both the maximal association degree. Because h21 =
0 and there is an inconsistent association between e2 and
e1, we assign 1 to h22. However, h25 = 0, and there is a
consistent association between e2 and e5, so we should
assign 0 to h22. Therefore, the value that should be
assigned to h22 is undetermined. Under this circumstance,
the chosen value of each object in Example 2 cannot be
calculated and the optimal object cannot be found through
DFIS.

5.2.3. Comparison. This section compares the three
decision-making methods based on incomplete soft sets.
Firstly, the approaches to handle incomplete information

Table 4. Association degrees for (F ′, E).
e1 e2 e3 e4 e5

e1 1.00I 0.50I 0.50I 0.80I
e2 1.00I 0.75C 0.67C 1.00C
e3 0.50I 0.75C 1.00C 0.80C
e4 0.50I 0.67C 1.00C 0.75C
e5 0.80I 1.00C 0.80C 0.75C

are different. Both DASI (Zou and Xiao, 2008) and DFIS
(Qin et al., 2012) have their own data filling method
to compensate for the missing values of each object.
However, DASI is based on the binomial distribution,
and the unique maximal association degree is required
for the implementation of DFIS. In the process of
incomplete data analysis developed in this paper, objects
with incomplete information can be directly compared
by using the similarity relationship, there is no need to
fill the missing values, and the unreliable assumptions
associated with a data filling method can be avoided.
Secondly, DASI and DFIS do not make full use of
the decision values in the process of decision-making,
and there is no straightforward connection between the
condition attributes and the decision attributes. The
decision-making method proposed in this paper can
generate decision rules by making a straightforward
connection between the condition parameters and decision
attributes. Thirdly, in DASI and DFIS, the optimal
objects can be selected by ranking their decision values
but alternatives cannot be classified accurately. In the
proposed method, a series of precise decision rules can
be derived, and alternatives can be classified accurately as
required.

6. Application in the evaluation of regional
food safety

This section describes the application of the proposed
decision-making method to evaluate the regional food
safety situation of Chongqing, China. We obtained
the inspection results of 40 districts of Chongqing
on 12 attributes regarding food safety from 2018,
including Pesticides and Veterinary Drugs Residual
(PVR), Non-Edible Substances (NES), Food Additives
Abuse (FAA), and so on. According to the Satisfaction
Level (SL) of local people about food safety issues, the 40
districts were divided into a safe food group (SL≥0.8) and
an unsafe food group (SL<0.8). Our research question
was how to predict the regional SL regarding food safety
when we had data about food safety inspection.

To make the data suitable for the construction of an
incomplete soft set defined in this paper, the raw data were
processed as follows. Firstly, if the inspection passing
rate was not 100%, then it was recognized as below the
standard, and the value 0 was assigned to the attribute;
otherwise, the attribute had a value of 1. Secondly,
because there was no missing value in the raw data, we
randomly dropped some values to create an incomplete
data set. Thirdly, we randomly selected 30 districts to
train the model and used the remaining 10 districts for
prediction. With the corresponding satisfaction of food
safety, we built an incomplete soft decision system. Then,
by using the MCDM algorithm proposed in this paper,
the significance of each attribute subset and the optimal
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parameter reduction could be obtained.
The algorithm was programmed and implemented

in PYTHON 3.6. Results show that there were five
parameters in the optimal reduct attribute set, including
Non-Edible Substance (NES), Heavy Metals and Other
Elemental Pollutants (HM&O), Microbial Pollution (MP),
Quality Index (QI), and Other Contaminants (OC). The
decision rules were as follows:

(i) If the NES is below standard, then the district is
classified as unsafe.

(ii) If the NES reaches the standard level but others
are below standard, then the district is classified as
unsafe.

(iii) If the NES and OC reach the standard level, then the
district cannot be classified accurately.

(iv) If the NES and HM&O reach the standard level, then
the district is classified as safe.

(v) If the MP is below standard but NES and QI reach the
standard level, then the district is classified as safe.

These decision rules were utilized to forecast the
food safety SL of the remaining ten districts. The
forecasting results are given in Table 5. We also used
DASI to analyze the same problem. However, because
of the non-uniqueness of the maximal association degree,
DFIS could not be used to evaluate the regional food
safety based on the data we collected; therefore, we only
compare the results of DASI with the proposed method. It
is obvious that our method outperformed DASI.

7. Conclusion

Based on the research of Molodtsov (1999), this paper
proposed a new method to solve MCDM problems with
incomplete and redundant information. The new method
is based on the concepts of the incomplete soft set and
the incomplete soft decision system developed in this
paper. Based on the basic definitions about the incomplete
soft set, the binary relationship (binary similarity relation)
of objects in an incomplete soft set was discussed, and
some operations, such as the restricted/relaxed AND
operation on an incomplete soft set and a subset of the
universe, were defined. After that, the definition of the
significance of an attribute subset in an incomplete soft
decision system was proposed. Following this definition,
we obtained the definitions of a reduct attribute set, an

Table 5. Comparative results.
Method Forecasting accuracy (%)
DASI 0.67

Our method 0.9

optimal reduct attribute set and core attributes of an
incomplete soft decision system. According to the optimal
reduct attribute set, the optimal decision rules could be
derived. Finally, the incomplete soft set-based decision
making algorithm to deal with MCDM that contains
incomplete and redundant information was proposed and
illustrated with an example.

Compared with other methods, the results
demonstrated the capability of the incomplete soft
set to explore data effectively and avoid information
loss or distortion caused by data deleting or filling. We
also applied this new method to evaluate food safety in
Chongqing, China. However, it should be noted that the
application of the method proposed by this paper could
also be extended to a wide range of areas, such as feature
selection and forecasting problems.
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