
Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 4, 697–712
DOI: 10.34768/amcs-2021-0048

AN ANN–BASED SCALABLE HASHING ALGORITHM FOR COMPUTATIONAL
CLOUDS WITH SCHEDULERS

JACEK TCHÓRZEWSKI a,b,∗, AGNIESZKA JAKÓBIK a , MAURO IACONO c

aFaculty of Computer Science and Telecommunications
Cracow University of Technology

ul. Warszawska 24, 31-155 Cracow, Poland
e-mail: {jacek.tchorzewski,ajakobik}@pk.edu.pl

bFaculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Cracow, Poland

cDepartment of Mathematics and Physics
University of Campania “Luigi Vanvitelli”

viale Lincoln 5, 81100 Caserta, Italy
e-mail: mauro.iacono@unicampania.it

The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the
security perspective, CC systems have to offer solutions that fulfil international standards and regulations. In this paper, we
propose a model for a hash function having a scalable output. The model is based on an artificial neural network trained to
mimic the chaotic behaviour of the Mackey–Glass time series. This hashing method can be used for data integrity checking
and digital signature generation. It enables constructing cryptographic services according to the user requirements and
time constraints due to scalable output. Extensive simulation experiments are conduced to prove its cryptographic strength,
including three tests: a bit prediction test, a series test, and a Hamming distance test. Additionally, flexible hashing function
performance tests are run using the CloudSim simulator mimicking a cloud with a global scheduler to investigate the
possibility of idle time consumption of virtual machines that may be spent on the scalable hashing protocol. The results
obtained show that the proposed hashing method can be used for building light cryptographic protocols. It also enables
incorporating the integrity checking algorithm that lowers the idle time of virtual machines during batch task processing.

Keywords: hashing algorithm, artificial neural network, scalable cryptography algorithm, computational cloud, task sched-
uler.

1. Introduction

Cloud computing (CC) systems data should be collected,
processed, and stored according to international standards
and regulations like NIST (Bowen et al., 2006), Cloud
Security Alliance (CSA, 2011), ENISA (ENISA, 2009) or
ISO (ISO/IEC, 2015). Lately, CC systems have also been
consuming the data from smartphones, tablets, IoT and
processing them in data centres or at the edge of the cloud,
which creates many challenges like systems performance
or scaling (Podolskiy et al., 2019). Nevertheless, the
security of all processes is still mainly the responsibility

∗Corresponding author

of cloud providers. Tasks that CC processes may have
different security demands (SDs) considering ownership
of data or data sensitivity. Assuring the proper SD of
tasks is a crucial part of the workload management process
(Grzonka et al., 2018; Jakóbik, 2016). Personalization
of cloud services enables users to change the features of
virtual machines (VMs) that provide the different security
trust levels (TLs). A critical process is mapping tasks to
suitable computing units that offer the proper TL to fulfil
the SD required by tasks.

The main idea of this paper is to present a scalable
security service that is combined with a scheduler inside

mailto:{jacek.tchorzewski,ajakobik}@pk.edu.pl
mailto:mauro.iacono@unicampania.it

698 J. Tchórzewski et al.

the cloud. We have started considering this topic after
analyzing various CC services and resources that may
be scaled on demand. Users may set the memory, disk
space, computing power of their VMs instances and
change them according to their needs. Our main goal
is to propose a cryptography service that may also be
scalable on demand. Assuring security in modern systems
requires designing algorithms and tools defending user
privacy, data and communication security. Our service is
offering a hashing procedure. Such an algorithm may be
used for data integrity control by checking unauthorized
data modification, for verification or as a part of digital
signatures.

The ability of changing the hash length results
in increasing or decreasing the time spent on security
operations. Having control over this stage of computation
may support processing the task with deadlines or
processing large batches of tasks when the system is
waiting for the last task in the pool to be processed.
Additionally, using the scalable hashing method, we are
erasing redundant and unnecessary security operations.
This method enables using the same algorithm with
different parameters for a small tablet and large data
centre. A hash function is a popular tool for checking data
integrity and calculating digital signatures. It is beneficial
in the detection of unauthorized changes and the data
sender and receiver verification. It is a function that maps
data of an arbitrary size into data of a fixed size.

The general framework behind our idea is to
construct scalable hashing functions and then use a
scheduling algorithm to fit the desired hash length to each
single processed task to fulfil the desired optimization
criterion. This is performed locally after the tasks are
assigned to the chosen computing unit. The main novelty
of this system is the integration of secure scheduling and
a scalable cryptography service: our solution is designed
to allow the length of the hash output to be chosen
accordingly to users’ needs. If a task is delegated to
be processed in a cloud edge, a light and fast version
can be beneficial due to the limited computing capability
of edge units. If a task is stored for a long time,
longer hashes are necessary, as longer hashes are more
resistant to possible attacks. We founded our solution on
artificial neural networks (ANNs), instead of relying on
commonly used hashing functions. Using ANNs enables
us to set the hash length by choosing the network size.
Additionally, we incorporated the ANN ability to learn
chaotic behaviours to obtain the desired level of hash
randomness. ANNs are proved to be high-speed and
effective tools for mimicking very complex behaviours.
After training, they can transform the input string into an
output of a certain length.

Our solution is based on the Mackey–Glass (M–G)
time series that can represent chaotic dynamics. Then
artificial neural networks (ANN) are used to mimic that

chaotic behaviour, and play the role of a hashing tool.
Changing the ANN architecture (that is, adding neurons
to the output layer or deleting them) enables obtaining
different hash lengths. This feature is not offered by
hashing functions that are being used in computational
clouds. Our primary motivation for adopting the M–G
equation is to provide a solution that offers well-proved
randomization of the output. A hashing function should
not be computationally distinguishable from a random
oracle for messages of fixed length: most generators
produce only pseudo-random numbers that are actually
deterministic, whereas the usage of M–G provides a much
stronger foundation.

Our proposal supports assuring the security of the
data and cloud infrastructure: it may be implemented
as a part of IaaS (Infrastructure as a Service) and PaaS
(Platform as a Service) models, where the responsibility
for ensuring security in the cloud is based on CC provider
actions (CSA, 2011). The system was developed to follow
international cloud security guidance such as ENISA
(2009) or ISO/IEC (2005); it is composed of an ANN,
responsible for hashing, and two evolutionary algorithms:
the global evolutionary scheduler (GES) with security
constraints and the local evolutionary scheduler (LES).
The GES maps all tasks to be executed into available
computing units, while the LES maps different hash
lengths into specific tasks. The appropriate schema is
presented in Fig. 1. Using secure scheduling and a
scalable cryptography service enables the fulfilment of the
task security requirements while optimizing the usage of
the computational units.

The proposed approach is demonstrated by applying
three well-known statistical tests that enable evaluating
fast hashing ANN strengths and weaknesses and using a
use-case in which we apply a scalable hashing function to
lower the idle time of the virtual machines in a cloud.

This paper presents new developments of our
research on algorithms designed to enable adding security
constraints into the process of task scheduling in CC,
presented by Jakóbik et al. (2016; 2017a), Jakóbik
and Wilczynski (2017), or Fernandez-Cerero et al.
(2018). With respect to our previous results, the novel
contributions provided by this work are the following:

• the solution that combines ANNs with
Mackey–Glass chaotic time series to allow creating
a potentially fully scalable hashing algorithm;

• a method of mixing messages with chaotic time
series;

• the design and implementation of tests of hash
quality obtained by different ANN architectures;

• the presentation of the results of a performance
test campaign in the cloud testbed with the global
scheduler.

An ANN-based scalable hashing algorithm for computational clouds with schedulers 699

Fig. 1. Integration of GES, LES and the hashing algorithm inside the cloud infrastructure.

The rest of the paper is organised as follows:
Section 2 presents the current state of research and
points out the novelty of the presented approach; in
Section 3 a theoretical model for the proposed hashing
method, including security demands, trust levels aspects,
flexible hashing, and a two-level scheduling mechanism
is presented; Sections 5 and 6 describe experiments
design and evaluation of the components of our algorithm;
Section 7 contains a summary, conclusions based on
experimental results, and planned future work.

2. Related work

Introducing security objectives is a new trend for
building scheduling algorithms. Saleh and Dong
(2013) combined real-time scheduling with security
service enhancement. The scheduling unit uses the
differentiated-earliest-deadline-first queues, and security
enhancement is realized by adding a congestion control
mechanism. Mohan et al. (2014) also show that security
requirements can be specified as scheduling constraints.
They present a solution based on fixed-priority (FP)
real-time schedulers. Kaur et al. (2009) present a database
transaction scheduler that considers two levels of security:
a low-security level and a high-security level. Tadokoro
et al. (2010) present the process of scheduling across VMs
as constructed to be more immune to DoS attacks by
dedicated isolation among VMs.

All those solutions do not allow fitting specific
security services for a given batch of tasks: they include
security constraints primarily for scheduling algorithms
that use task queues. Also, the considered security
levels that can be served are very limited. Our solution
overcomes these drawbacks.

As for the hashing algorithms themselves, they
enable calculating a fixed-length hash, for example,
with 256, 386 or 512 bits (NIST, 2015; Dworkin,

2015). Specific functions, called light cryptography hash
functions, offer smaller hashes, for example, from 60 to
160 bits (Gong, 2016). In almost all popular hashing
methods, to change the output string length a user needs
to change the hashing algorithm type.

Artificial neural networks (ANNs) are good
candidates for hashing procedures due to their ability
to mimick very complex behaviours (Haykin, 1998).
Many earlier attempts to use ANNs for hashing purposes
exist. Turcanik (2017b) used a recurrent neural network
(RNN) composed of three layers of neurons and synapses
between them for hashing with 160, 192, and 256 bits
output. The author reports that “the structural complexity
of artificial neural networks creates big obstacles for
their using in the real applications” (Turcanik, 2017b).
Yang et al. (2009) applied a cellular neural network
with hyper-chaos characteristics for hashing. The chaos
sequence is generated by iterating the cellular neural
network with a Runge–Kutta algorithm. The authors
generated and tested only a 128-bit hash.

In the work of Turcanik (2017a) an ANN with 512
neurons in the input layer, 128 neurons in the hidden
layer, and 128 neurons in the output layer was tested. The
network has a recurrent connection between the output
and input layers to mimic the fact that the calculation of
the hash function involves data from the previous step.
The required properties of an ANN behaviour are obtained
by the output layer of the ANN. The authors applied a
piece-wise linear chaotic map for several times; only the
one-way property of the presented hashing method was
tested.

Abdoun et al. (2016) apply ANNs having two chaotic
maps (a discrete skew tent map and a discrete piece-wise
linear chaotic map) as transfer functions for neurons for
hashing. The authors utilized a two-layer neural network
structure without a hidden layer. They tested collision
resistance and message sensitivity and compared results

700 J. Tchórzewski et al.

with SHA-2. The main drawback of the presented solution
is the fact that the sensitivity was tested for five different
modifications of the given message only; additionally, the
chaotic behaviour of the ANN was checked only for a
short text consisting of 4 sentences.

In the work of Yee and De Silva (2002) the
applicability of using a multilayer-perceptron (MLP)
network as a hash algorithm is investigated: the MLP
network considered consists of a hidden layer and an
output layer. The hidden layer contains 64 neurons with
641 inputs, and the output layer contains 128 neurons. The
network was tested to show the difficulty of recovering an
input from the output. Additionally, collision resistance
and resistance to birthday attacks (Bellare and Kohno,
2004) were tested. This solution was not compared with
any widely used hashing method. Unfortunately, all these
hashing procedures were tested very briefly, and tests
provided by the authors are not sufficient to use their
hashing algorithms for cryptography protocols.

There are very few hashing functions that offer
flexibility in output length. Singh and Garg (2009) use
such hashes for checking the integrity of data located in
hard drives. The main drawback of this algorithm is that
it is not cryptographically secure, therefore, it cannot be
used for digital signatures. The solution introduced by
Du et al. (2016), namely, the segmented hash algorithm,
enables the usage of multiple logical hash tables. A
modification of the hash function internal structure is
obtained by having several hash tables with a different
number of buckets each. Even if this method does not
support obtaining a different length of the hash, it supports
the computational effort of an algorithm change.

Wang and Li (2015) presented an algorithm that
processes an input message with random lengths and
produces various output lengths, such as 128, 160, 192,
224, or 256 bit, and processes messages in 1024-bits
blocks. The algorithm is based on SHA design principles
and does not use ANNs. Aggarwal and Verma (2015)
offer a hashing procedure that is based on the RC6
algorithm: it can generate a hash value of various lengths.
The algorithm presented in this paper is compared with
SHA-256 and SHA-512: the authors compared the
throughput of the considered algorithms and the time
needed to produce hash values for files of different sizes.
The security properties of the presented algorithm are
based on the fact that this hash algorithm exploits the
symmetric block cipher RC6; therefore, it inherits the
properties of this cipher.

In the work of Kidon and Dobai (2017), hashing
is based on the usage of a genetic algorithm: the
length of the hash output is regulated by using the
population size variable. This evolutionary method
produces non-cryptographic hash functions.

The idea of using chaotic systems for building
hash functions is the basis of the proposal presented by

Rajeshwaran and Anil Kumar (2019): cellular automata
are used to build hash functions; however, the resulting
algorithm only enables the construction of long hashes.
Huang and Wang (2019) use a two-dimensional logistic
mapping and a two-dimensional Chebyshev mapping;
nevertheless, this solution does not provide any possibility
to arbitrarily set the hash length. Chugunkov et al. (2019)
presented stochastic transformations of DOZEN family.
This algorithm makes it possible to obtain a hash length
of 512 bits. Most recent advances in the field of light
cryptography standards presented in (NIST, 2019) does
not offer scalable hashing methods, either.

In summary, in this work, the current state of the art
is extended by proposing a hashing method that

• allows fitting security services by chaining the length
of the hash output string;

• can be used for strong cryptography services
producing 1024 or more bits hashes and as a light
cryptography hash function producing hashes that
may be smaller than 160 bits;

• allows changing the output string length without
requiring a modification of the hashing algorithm
type;

• is supported by a thorough and focused test
campaign: the provided tests are sufficient to enable
the use of the presented hashing algorithm for
cryptography protocols;

• combines both chaotic time series and an ANN;

• enables considering many security levels.

3. Theoretical framework of the proposed
system

In this section, all details related to the proposed system
are presented. The system design enables us to utilize
flexible hashing functions. In Section 3.1 information
flow in the system is presented; in Section 3.2 tasks and
system security parameters are described; in Section 3.3
the process of task mapping into computational units is
presented.

3.1. Workflow of the system. In distributed
environments, tasks may be gathered into batches, and
each batch may contain many tasks. Tasks in a particular
batch may differ in computational demands. Some of
them demand more resources than others, and some are
light to compute. Very often, a trade-off between the
time of computation and the power of available VMs is
considered; however, from a cryptographic point of view,
the most demanding tasks are not those that utilize more
resources to complete computations, but those whose

An ANN-based scalable hashing algorithm for computational clouds with schedulers 701

results are simply bigger in size, because cryptographic
operations are done on the results of tasks, increasing
overall computational effort.

In this paper, we extend our previous security-driven
model of the computational units and tasks (Jakóbik et
al., 2017b; Fernandez-Cerero et al., 2018; Barbierato
et al., 2019). In this model, a computational unit i (i =
1, 2, . . . ,m) is described by the following parameters:

• cci: computing capacity, expressed in floating point
operations per second;

• tli: trust level, in the range of [0, 1].

The single task Tj is described by the following
parameters:

• wlj : workload parameter, in floating point operations
[FLO];

• sdj : security demand parameter, in {0, 1, 2, 3};

• D ∈ {CE,CC, SC, undefined}: task destination
parameter;

with j = 1, 2, . . . , n.
Our model proposes adding three novelty elements

to the cloud system, to enable mapping the tasks into
computing units and set the hash length for each task
to perform the hashing operation (see Table 1); these
elements will be described in the following.

3.2. Modeling task security demands and security
services offered by VMs. Cloud providers offer VMs
that can be configured according to users’ needs: for
example, Amazon Cloud offers several types of VMs,
that differ in computational power, number of CPU cores,
and available memory (Amazon, 2019). A user may
implement his or her scheduling policies by defining a rule
for the RunTask action. On the other hand, to minimize
the cost of processing tasks in VMs, the user needs to
optimize the time spent on security operations because he
or she is charged for the working time of VMs: therefore,
the user needs to consider the appropriate balance between
security requirements and the financial cost.

To model such a situation and to provide a solution
for secure task processing, we considered an SD vector
describing the security demands of all tasks that will be
processed in the single task batch, (Grzonka et al., 2018):

SD = [sd1, . . . , sdn], (1)

where n is the number of tasks to be processed. Each
component of the vector, sdj , is the security demand value
of the j-th task. We also defined a TL vector describing
the security trust levels offered by the computing units
(Grzonka et al., 2018):

TL = [tl1, . . . , tlm], (2)

Table 1. Elements of the presented system and responsibilities
of system actors.

Action Actor
schedule tasks inside CE, CC, SC GES

maps hash lengths into tasks LES
task integrity checking by hashing hashing ANN

where tli is the trust level offered by the i-th computing
unit, and m denotes the number of all available units
that may process tasks inside the cloud. Each task may
be executed on a particular unit that offers a tl equal
to or greater than the sd of that task. Following NIST
(Bowen et al., 2006), in this paper we assumed four levels
of security demands and trust levels, that is sdj , tli ∈
{0, 1, 2, 3}. According to this assumption, the security
level zero means no security algorithms are involved in
task processing. Examples of higher levels may be the
following:

• level 1: light cryptography supporting on-line
processing (Menezes et al., 1996), hash length up to
180 bits;

• level 2: data processing cryptography (Schneier,
1995), advanced cryptography protocols, hash length
between 512 to 1024 bits;

• level 3: data at rest cryptography (Google, 2016), the
strongest cryptography (Al-Hamdani, 2011), hash
length longer then 1024 bits.

Here sdj = 1 means that cryptography level 1 must
be applied to process the j-th task in a secure way; tli =
2 means that the i-th VM is equipped with services for
security level 2.

3.3. Mapping tasks into computational units. The
mapping of a particular task into the chosen computing
unit can be performed to obtain the shortest possible time
of the whole batch of task processing. The execution
time of a single task depends on the workload of that task
wlj , and the computing capacity of the unit that will be
processing this task. The ratio

wlj
cci

(3)

defines the number of seconds that unit i will spend
on computing task j (Kołodziej, 2012; Grzonka, 2018;
Grzonka et al., 2018; Jakóbik et al., 2017a). Each
schedule can be written as the list of tasks that are assigned
to consecutive computing units:

Schedule = {Tσ(1), Tσ(2), . . . , Tσ(n)}, (4)

702 J. Tchórzewski et al.

where σ denotes the permutation of the set of task
numbers {j = 1, 2, . . . , n}. The schedule which will be
chosen to be executed must fulfil the scheduling criterion.
One example, it can be the shortest time of whole batch of
task processing:

Timemin = min
S∈Schedules

max
j∈Tasks

wlj
cci

. (5)

Security demands and trust levels enforce additional
constraints in the above minimization problem. Various
optimization methods can be used to solve the scheduling
optimization problem (see Eqn. (5)).

4. Theoretical framework of the flexible
hashing function

In Section 4.1 the flexible hashing function concept and
its security parameters are described. In Section 4.2
details related to the chosen hash lengths are presented.
In Section 4.3 the process of hashing ANN training and
testing is described.

4.1. Flexible hashing function. The system
incorporates a scalable cryptographic protocol in the
form of a scalable hashing function h. Such a function
can be represented as

∀x ∈ X,h : x → y ∧ ¬(∃g : y → x) (6)

with the additional restriction

h : {0, 1}∗ → {0, 1}n, n ≥ 1. (7)

In this paper, we consider only one way hash
functions (OWHFs) by Merkle, having the following
properties (Merkle, 1979):

• it does not have any constraint on its input data size;

• its output has a constant length;

• it is computable with small effort;

• it is pre-image resistant: by knowing h and h(x), it
is computationally infeasible to determine x;

• it is second pre-image resistant: by knowing h and
x, it is computationally infeasible to find an x′ �= x
such that h(x) = h(x′);

• it is collision resistant: it is hard to find a pair (x, x′)
of values, x �= x′, which have the same hash value
(h(x) = h(x′));

• the probability of finding a second pre-image for a
randomly chosen hash function may be neglected.

These requirements guarantee that the OWHF can
be used for building cryptography protocols (Tchórzewski
and Jakóbik, 2019).

The number of output bits may depend on the SDs
given by the user. On the other hand, the TLs offered by
the computing units are fitted to the incoming tasks SDs.

Once the schedule is known, each of the computing
units has to process the set of tasks. Without loss of
problem generality, we may assume that tasks for the unit
number i were re-numerated as T1, T2, . . . , Tni and their
workload are denoted by wl1, wl2, . . . , wlni , respectively.
Timemin for this batch of tasks is known; therefore, the
idle time for this unit is

Tidle(i) = Timemin −
ni∑

j=1

wlj
cci

. (8)

In our model, we assume that the hash lengths offered
by unit i are ni

min, . . . , n
i
max with a reasonable equal step

between them denoted by Δi bits. Those parameters
may depend on the computing capacity of the unit or the
software which is installed.

4.2. Setting the hash length. The local scheduler
ELS operates on the basis of the estimated number of
operations to be computed for the j-th task on the i-th
computing unit:

o(i, j) =

{
N(sdj , wlj , tli, cci, inputSizej ,

outputSizej , n
i
min + kΔi)

× outputSizej
ni
min + kΔi

}
.

(9)

The scheduling procedure aims to maximize the
number of operations spent on hashing, which can be
defined as follows:

HOi = max
S∈Schedulesi

{
max

j∈Tasksi
{o(i, j)}

}
. (10)

Tasksi is the set of tasks in the batch that were
assigned to computing unit i and Schedulesi is the set of
all schedules which can be generated for the tasks that
should be computed by unit number i considering the
security mapping: o(i, j) = NaN (not a number) for i
and j such that sdj > tli.

An additional constraint is in the form of the
estimated idle time of the unit:

HOi

cci
≤ Tidle(i), (11)

for all i = 1, 2, . . . ,m.

An ANN-based scalable hashing algorithm for computational clouds with schedulers 703

Fig. 2. Hashing ANN training scheme.

4.3. Hashing ANN. All ANNs considered are
two-layer feed-forward networks. From among many
different learning algorithms (cf., e.g., Jankowski and
Linowiecki, 2019) the scaled conjugate gradient (SCG)
method was chosen due to the large training set size.
Variable hLen stands for the chosen hash length. The
ANN structure can be represented as I-HL-OL-O, where
I denotes the input matrix containing binary vectors of
length hLen, HL denotes the hidden layer and contained
SN sigmoid neurons, OL denotes the output layer
containing hLen linear output neurons, and O denotes
the output matrix, where each row contains hLen real
values produced by the network (Haykin, 1998). Different
combinations of hLen and SN have been tested (see
Table 2). The process of hashing ANN training is
presented in Fig. 2.

Firstly, random strings of bytes are generated. Each
byte stream has the same length equal to hLen/8 and
represents a random message to be hashed. Those
bytes strings are mapped into chosen time series (see
Section 5.1). In order to obtain chaotic behaviour
Mackey–Glass (M–G) time series have been chosen
(Gholipour et al., 2006; Mahjoob et al., 2008):

dx(t)

dt
= −βx(t) +

αx(t− τ)

1 + xn(t− τ)
, (12)

where x(t) denotes the state value at time t. With
parameters n ∼ 10 and τ > 16.8 (which assure M–G
chaotic behaviour), the following discrete form of (12)
was used for the generation of the target data for the
hashing ANNs:

xt+1 = −βxt +
αxt−τ

1 + xn
t−τ

, (13)

where the time difference between xt+1 and xt is
equal to Δt. Note that the M–G equation demands
specification of initial data stored in the time frame
[−τ , −Δt]. Time 0 indicates the start of computations.
These data will be further called the history vector.
Equation (13) was numerically solved via the 4th order

Fig. 3. Hashing ANN testing scheme.

Runge–Kutta method (RK4) (Atkinson, 1978; Butcher,
2008; Cococcioni, 2021).

For each message, the M–G equation is generated
and solved separately. Time series results represent
ANN target data that are potential hashes. After target
generation, data are converted into bit strings of length
hLen, and those bit strings represent ANN input data. The
process of hashing ANN testing is presented in Fig. 3.

The testing process can be divided into three steps:

Step 1: Random messages bytes are generated. Each
message consists of hLen/8 bytes. Generated vectors are
transformed into their binary representation and gathered
into one input matrix. Each input matrix row contains
hLen binary values.

Step 2: A trained ANN was used to generate an output
matrix containing real values.

Step 3: The values returned by the ANN are transformed
into binary values and evaluated with the use of statistical
tests. Test results determined whether or not a particular
ANN could serve as a hashing function.

All technical details related to the ANN training,
ANN testing, statistical tests, and Mackey–Glass equation
parameters are presented in Sections 5 and 6.

5. Experimental design

In Section 5.1, parameters of the Mackey–Glass equation
are presented along with the method for coding messages
into the equation, tested combinations of hash lengths and
ANN structures. In Section 5.2 the generation of training
and testing data is described. In Section 5.3 tasks and their
security demands are discussed.

5.1. Adjustment of Mackey–Glass parameters. The
parameters of Eqn. (13) were set to α = 0.2, β = 0.1, n =
10. Furthermore, Δt and τ depended on the chosen hash
length hLen. The point at time 0 (start of computations),
that is x0, was a random number from range [0, 2]. The

704 J. Tchórzewski et al.

number of sigmoid neurons in the hidden layer, (SN, was
also dependent on hLen. All tested combinations of hLen,
Δt, τ and SN are presented in Table 2.

Parameters Δt and τ determined the size of a
Mackey–Glass (M–G) history vector (initial data in the
time frame from −τ to −Δt). The number of elements
that could be stored in the history vector (HV) was
computed as

HVsize =
τ

Δt
. (14)

The size of input messages was in all cases the same as the
chosen hash length. Thus, for example, for 128-bit hashes,
16 random byte messages were generated. In such a case,
in accordance with (14) and data presented in Table 2, the
history vector contained 16 free spaces for each message.
Respecting assumptions assuring M–G chaotic behaviour,
message bytes could be used as a history vector. This
solution enabled us to algorithmically bond each message
with the equation itself. The same solution was used for
longer hashes, that is in 256-bit hashes and, respectively,
32 byte messages, 512 bit hashes and 64 byte messages,
etc.

In each testing batch described in Section 5.2 each
message was used to generate unique M–G results.
Formally one initial message M can be presented as

M = [B1, B2, B3, . . . , B hLen
8], B ∈ [0, 255] ∩ N, (15)

where B1 denotes the first byte of message M , B2 the
second one, and, so on. This corresponds to the message
M history vector

HVM = [M [0]−τ ,M [1]−τ+Δt,M [2]−τ+2Δt, . . . ,

M [i]−Δt], i = 1, . . . ,
hLen
8

.
(16)

5.2. Hashing ANN training and testing set genera-
tion. For each tested hash length hLen (see Table 2),
ANN input, target, and test data were generated in the
same manner. MB denotes the matrix of 5000 different
random byte strings representing messages

MB[i] = Mi, i = 1, . . . , 5000, (17)

where Mi denotes the bytes of the i-th message (see Eqn.
(15)). For each message Mi, the bytes of the message
were coded into an M–G history vector (HVMi) and
the equation was solved. In all cases 24000 samples of
the solution were generated. As a final result, a matrix
containing 5000 rows, and 24000 real values from the
range [0, 2] in each row was obtained,

MG[i] = [x1, x2, . . . , x24000],

i = 1, . . . , 5000, x ∈ [0, 2]. (18)

Table 2. Tested combinations of the hash length hLen given in
bits, the number of neurons in the hidden layer SN ,
and the M–G parameters Δt and τ .

ANN M–G
hLen SN (No) Δt τ
128 25, 50, 75, 100, 128, 150,

175, 200, 225
10 160

256 50, 100, 150, 200, 256, 300,
350, 400, 450

1 32

512 200, 300, 400, 512, 600,
700, 800

1 64

1024 200, 400, 600, 800, 1024,
1200, 1400, 1600, 1800

1 128

The hashing ANNs target data traintarget were
generated in accordance with

traintarget[i][j] = MG[i]

[
j ×

⌊
24000

hLen

⌋]
,

i = 1, . . . , 5000, j = 1, . . . , hLen. (19)

The whole space of solutions was used in target
generation to avoid local dependencies between samples
(e.g., samples on an ascending or descending slope).

After target generation, messages from array MB
were converted from byte strings into binary strings.
Those binary strings were used as the ANN input training
set traininput:

traininput[i] = [MB[i]1,MB[i]2, . . . ,MB[i]hLen],

MB[i]∗ ∈ {0, 1}, i = 1, . . . , 5000, (20)

where MB[i]1 is the first bit of byte B1 (cf. (15))
of message Mi, MB[i]2 is the second bit of byte B1,
MB[i]9 is the first bit of byte B2, and so forth. Finally,
a pair (traininput, traintarget) could be used as an ANN
training set. The main advantage of the utilization of
the M–G equation in ANN training data preparation
is in the history vector. Each generated (cf. (18)),
and compressed (cf. (19)) time series traintarget[i] was
algorithmically bonded with the corresponding message
traininput[i], through the history vector HVMi . Generated
series represented deterministic chaos but related to a
particular input message.

Input test data testinput were generated analogously
to traininput. Another matrix of random byte strings was
generated, cf. Eqn. (17), and converted to its binary form
cf. Eqn. (20). The size of testinput was also equal to 5000,
and each message had hLen bits. However, none of the
newly generated messages was present in the training set.
In both sets, messages also did not repeat.

For a chosen hash length, training and testing
data were generated once and were used for all ANNs

An ANN-based scalable hashing algorithm for computational clouds with schedulers 705

generating this particular hash length. The only difference
in ANNs generating hashes of the same length was in the
number of sigmoid neurons (SN) in their hidden layer.
Experimental results are presented in Section 6.2.

5.3. Tasks and their security demands. In order to
obtain diversity in workload, we considered tasks that
were based on processing images. Twenty tasks with
different workloads were considered. To obtain them, we
generated seven types of images that differ in size. A
single task was applying a masking function (blurring)
or ciphering via the RSA algorithm single image. The
value of SD of each task j, that is sdj , was randomized
over the set {1, 2, 3}. We did not consider sdj = 0 which
represents the lack of security demands. The destination
of the j-th task was randomly chosen from the three
possible computing units D(j) ∈ {CE,CC, SC}. A
hashing procedure was applied to the original images to
check their integrity and inviolability. The minimal hash
length was set to 60, and the maximal was set to 1024
bits. The computational effort of each task was calculated
based on the size of the image in bytes.

6. System evaluation

All our security algorithms have been implemented in
Java; thus CloudSim testbed (www.cloudbus.org),
also based on Java, was used as a testing tool. It
enables the implementation of scheduling algorithms and
monitors the time spent on each tested cloud operation.
The examined workload was generated according to the
day-and-night pattern (Fernandez-Cerero et al., 2018) to
represent a realistic workload of a CC system. Hashing
ANNs were implemented in MATLAB 2017. Section 6.1
presents the ANN output data format, the binarization
method, and statistical tests used to assess the ANN
performance. In Section 6.2 results of tests are discussed,
and conclusions are presented. In Section 6.3 the whole
system performance is discussed.

6.1. Hashing ANN testing procedure. The testing
procedure was the same for all generated ANNs. A pair
(traininput, traintarget) was generated once for all ANNs
producing the same hash length (see Section 5.2), and
this pair was used as a training set. Then inputtest (also
generated once for ANNs producing the same length hash)
was passed as an input for trained ANNs. The output
returned by the ANN is

output[i] = [o1, o2, . . . , ohLen], (21)

where o ∈ [0, 2], i = 1, . . . , 5000. Output[i] represents
the value returned by the ANN for the corresponding
message testinput[i]. To form a hash, the output had to be

binarized. This was done accordingly to

hashes[i][j] =

{
1 if OUTPUT[i][j] ≥ AVGj ,
0 otherwise,

(22)

where AVGj represents the average value in column j. If
the value in cell OUTPUT[i][j], that is the i-th row (i = 1,
. . . , 5000) and the j-th column (j = 1, . . . , hLen), was
greater then the average value of the j-th column, the bit
was set to 1, otherwise it was set to 0; in this way, a hash
matrix was generated for each tested ANN.

To determine whether or not a particular ANN can
serve as a hashing function, three statistical tests were
performed as follows.

Bit prediction test (BPT). It measures the probability
of successful prediction of a bit value on a particular
position.

The probability of having a bit 1 in a particular
position in the output matrix can be computed as

PO1(i) =
1

5000

5000∑

j=1

output[j][i], (23)

where i = 1, . . . , hLen, and the results can be gathered
into the probability vector

PV = [PO1(1), PO1(2), . . . , PO1(hLen)]. (24)

Our test assumed calculation of statistic Z with the usage
of a t-Student test with significance level α = 5%. The
expected value is equal to 50%.

Hamming distance test (HDT). It measures the
Hamming distance between a message and its
corresponding hash.

The Hamming distance is given by the number of
ones in a string, testinput[i] ⊕ output[i]. The expected
distance is equal to hLen/2. The Hamming distance was
calculated for each message-hash pair separately. The
results were gathered into the vector

dist = [d1, d2, . . . , d5000], (25)

where di is the Hamming distance in the i-th
message-hash pair. This vector was also tested using the
t-Student test with α = 5%.

Series (Wald–Wolfowitz) test (ST). It is performed on
the returned hashes determining the hashes randomness.

The series test was performed on each hash in the
output matrix separately. Then the percent of hashes that
failed was calculated. The matrix output was passing the
test when no more than 5% of its hashes failed the series
test.

Collision test. A collision is a situation when a hashing
function produces the same hash value for two different
messages. All hashing ANNs were free from collisions.

www.cloudbus.org

706 J. Tchórzewski et al.

Interested readers can find all details about the tests
(algorithms and methodology) in (Tchórzewski et al.,
2019). In all statistical tests the significance level α
was equal to 5%. The sample sizes were big enough to
assume the standard distribution of data (N(0, 1)). Thus
the confidence interval was equal to [0, 1.96) for each test
statistics |Z|. The results are presented in Table 3.

6.2. Summary hashing ANN test results. This
section describes the results presented in Table 3. The
performed tests were:

• 128-SN-128: one network passed all the tests
(128-50-128). This type of network had satisfactory
results in BPT and ST, but one of the worst results
of the HDT. This may indicate that generated hashes
were sometimes too similar to the original messages
or too random.

• 256-SN-256: the best candidate was 256-100-256,
which was very close to the 5% limit in ST and
passed the rest of the tests; ST this type of network
had the weakest results in ST; this may indicate that
some hashes did not have random distributions and
potentially were not free from internal dependencies.

• 512-SN-512: none of the ANNs passed all
tests. However, many candidates should be still
considered. BPT and HDT results are the best in
comparison with the rest of ANNs: the only potential
problem is related to slightly weaker results of ST,
still relatively close to the established critical point.

• 1024-SN-1024: this type of network had the worst
ST results but, in most cases, acceptable results of
the rest of the tests; this may indicate that the longer
the hash, the less randomly distributed it is.

The test data indicate that the statistically best results
appeared in ANNs with sigmoid neurons and SN close
to 40% hLen. One ANN passed all tests, but some
candidates slightly exceeded the ST limit and passed the
rest of the tests. Those ANNs may be potentially used to
create short-term hashes (for example, signing temporary
data in a cloud but not storing passwords). Tchórzewski
and Jakóbik (2019) presented results of the same tests
performed on certificated hashing functions (these are
SHA-1, SHA-512, and SHA3-512) (note that SHA-1 is
currently not recommended to be used). However, all of
them passed all tests.

6.3. Scalable hashing performance tests in the cloud
with a global scheduler. To check how the flexible
hashing may influence the computational effort for the
batch of processed tasks, we have simulated a multi-cloud
environment using the infrastructure shown in Table 5 and

Table 3. Statistical tests of hashing functions. BPT stands for
the bits prediction test and HDT for the Hamming dis-
tance test. Both of these tests are passed when the value
in the column is less than 1.96. The series test shows
percent of hashes that failed the test. The test is passed
when the value is less than 5%.

No ANN structure BPT HDT ST (%)
1 128-25-128 2.52 3.24 4.82
2 128-50-128 0.98 1.55 4.14
3 128-75-128 0.08 9.80 4.90
4 128-100-128 0.05 9.69 5.12
5 128-128-128 1.41 4.17 4.64
6 128-150-128 1.24 9.37 4.62
7 128-175-128 3.84 4.72 4.58
8 128-200-128 0.57 9.68 4.90
9 128-225-128 1.32 8.58 4.48

10 256-50-256 0.04 4.75 4.96
11 256-100-256 1.66 0.36 6.42
12 256-150-256 0.76 2.82 10.06
13 256-200-256 1.20 2.45 11.22
14 256-256-256 0.55 0.65 14.10
15 256-300-256 0.41 0.25 15.24
16 256-350-256 1.82 1.81 14.14
17 256-400-256 0.90 0.04 14.02
18 256-450-256 0.76 3.00 11.10
19 512-200-512 1.86 0.04 5.42
20 512-300-512 0.27 0.97 5.94
21 512-400-512 0.68 0.02 6.50
22 512-512-512 0.35 2.26 7.42
23 512-600-512 1.53 4.72 7.24
24 512-700-512 1.77 1.60 7.30
25 512-800-512 1.50 0.45 6.34
26 1024-200-1024 2.76 3.24 9.94
27 1024-400-1024 0.92 2.79 9.08
28 1024-600-1024 0.10 4.58 35.42
29 1024-800-1024 1.38 0.31 59.38
30 1024-1024-1024 0.01 1.47 71.16
31 1024-1200-1024 0.75 0.33 64.42
32 1024-1400-1024 1.88 1.01 50.42
33 1024-1600-1024 1.44 0.92 32.90
34 1024-1800-1024 0.62 0.31 19.38

the CloudSim Simulator, http://www.cloudbus.o
rg/cloudsim/. These tests aimed to examine how
much idle time a cloud system may devote to hashing
procedures and to compare flexible hashing methods
with fixed hash length algorithms. 256 or 512 bit
length hashings were considered as the fixed hashing
method references to compare with the internationally
standardized SHA hashing functions family.

At first, the number of instructions necessary for
computing the single block of a hash input was determined
(see Table 4).

http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/

An ANN-based scalable hashing algorithm for computational clouds with schedulers 707

Table 4. Number of instructions necessary for computing a
single block of hash for chosen ANNs. Here f =
N(sdj , wlj , tli, cci, inputSizej , outputSizej , n

i
min +

kΔi).

ANN structure N() f
64-32-64 2277 inputSizej = 64,

ni
min + kΔi = 64

128-64-128 7316 inputSizej = 128,
ni
min + kΔi = 128

256-128-256 26317 inputSizej = 256,
ni
min + kΔi = 256

512-256-512 144995 inputSizej = 512,
ni
min + kΔi = 512

1024-512-1024 493735 inputSizej = 1024,
ni
min + kΔi = 1024

2048-1024-2048 2417071 inputSizej = 2048,
ni
min + kΔi = 2048

4096-2048-4096 21502772 inputSizej = 4096,
ni
min + kΔi = 4096

8192-4096-8192 83477520 inputSizej = 8192,
ni
min + kΔi = 8192

The number of operations for a single block
consumed by a hashing function was found based on
numerical tests performed on a PC with 16 GB RAM,
processor Intel Pentium CPU G4400 @ 3,30 GHz, and
HDD ST1000DM010-2EP102. This computing unit
speed was chosen as the base for implementing 5 VMs
in the CloudSim simulator having the speed of tested
physical computing unit, multiplied by factors of 0.2, 0.5,
1, 2, 4 (see Table 6).

Batches of tasks were generated according to the
day and night pattern (Fernandez-Cerero et al., 2018).
The workload of tasks was increased and decreased as
depicted in Table 6.

Each batch consists of 100 tasks. The evolutionary
scheduler GES was assigning tasks to particular
VMs. The scheduling problem was solved using the
evolutionary algorithm proposed by Jakóbik et al. (2016;
2017b). This scheduler was selected because it offers
the mapping between tasks and VMs for all VMs in a
single experiment run. Table 7 presents the results of the
simulation for a randomly chosen batch of 100 jobs.

For example, applying 64-bit hash for task D(1)
results in 3341550000 operations; applying 128-bit
hash consumes 548700000 operations; using 512-bit
hash adds 2718656250 operations; using 1024-bit
hash adds 4628765625 operations; using 2048-bit
adds 11330020312 operations; for 4096-bit hash, it
needs 50397121875 operations; and for 8192-bit hash
97825218750 operations. That results in respectively
14.5, 2.3, 11.8, 20, 49, 219, 425 second of VM2

computational power. For hashing task D(2) we obtained
the same amount of time because both tasks have the same
output bits length. VM2 must wait 150 second for VM1
to complete the batch (see Table 8). The longest hash that
we may apply is the 2048-bit hash; then VM2 idle time
is equal to 150 − 49 − 49 = 52 seconds. For all VMs,
we can find the longest hashing procedures that will not
exceed the makespan of the batch of all tasks.

For all VMs used for simulation, we enable them
to increase data processing security by providing the
fingerprints of stored data. Additionally, the system idle
time was decreased by 54%.

7. Conclusions and future work

We presented an intelligent hashing algorithm based on
an ANN which learned to mimic a chaotic Mackey–Glass
time series. We provided a simple example of the
algorithm used for batch task processing in computational
clouds with schedulers, based on consuming the idle
time of the VMs waiting for the batch completion. Our
algorithm supports security services in computational
clouds and can improve the quality of security cloud
services during data integrity verification or digital
signature generation.

To obtain a scalable hashing algorithm, it is
necessary to prepare a set of ANNs. The number of
neurons in the output layers should be equal to the hash
length that we would like to apply. The next stage of
preparation of hashing ANN is learning: the training
set is generated based on the discretized Mackey–Glass
equation with the parameters ensuring chaotic behaviour.

We have tested the hashing algorithm using three
independent tests. The Hamming distance test measured
the Hamming distance between the ANN outputs and
inputs. The bit prediction test detected whether a
particular bit of outputs can be predicted: the test
is based on calculating the probability of unity being
present in every bit position. We have also applied the
Wald-Wolfowitz series test on ANN outputs to detect
whether all hashes were generated randomly.

The presented experimental results confirm that the
ANN-based hashing algorithm presented in this paper
fulfills all requirements to be a hashing function creating
short-term hashes. The CloudSim based simulation for
the chosen task sets demonstrates the usage of the hashing
procedure and confirms the effectiveness of the presented
system.

The presented system may be used by cloud service
providers and cloud consumers using IaaS or PaaS models
where schedulers are applied to balance the cloud loading.
The proposed approach produces the best advantages in
cloud systems that are unbalanced as far as idle time is
concerned; it enables to increase data and communication
security without changing the makespan: this can be

708 J. Tchórzewski et al.

Table
5.

Tasks
and

theircharacteristics
in

term
s

ofw
orkload,S

D
value,and

m
inim

aland
m

axim
alhashing

com
putationaleffort:N

(sd
j ,w

lj ,tli ,cc
i ,in

p
u
tS

iz
e
j ,ou

tp
u
tS

iz
e
j ,n

im
in
+

k
Δ

i),
k
=

0
for

n
m

in
=

6
0

w
as

denoted
as

N
(...,m

in
),
k
=

2
for

n
m

in
=

5
1
2

w
as

denoted
as

N
(...,m

a
x).

S
ecurity

dem
and

for
a

200×
200

pixel
im

age
w

as
random

ly
chosen.

For
each

im
age

of
400×

400
pixels

or
greater

requiring
R

S
A

2048
ciphering

S
D

=
3,

for
im

ages
greater

than
200×

200
pixels

and
sm

aller
than

800×
800

pixels
requiring

R
S

A
1024

ciphering
S
D

=
2,for

greater
im

ages
S
D

=
3.

T
he

destination
for

each
task

w
as

random
ly

chosen
according

to
the

follow
ing

rules:
if

a
task

required
R

S
A

2048
ciphering,D

w
as

setto
2

or
3

(C
C

or
S

C
).Tasks

requiring
the

blurring
operation

w
ere

setto
1

or
2

or
3,except200×

200
and

1400×
1400

pixelim
ages

(the
sm

allest
and

the
biggest),w

here
D

=
1

or
D

=
2.

For
R

S
A

,the
1024

ciphering
task

destination
w

as
setto

D
=

2
or

D
=

3.
j

D
est.

Task
descript.

w
lj

[FL
O

]
in
p
u
tS

iz
e
j

[b]
sd

o
m

in
o

m
ax

1
D

(1)=
1/2

200×
200

blur
180281484

960
000

sd
1
=

1
/
2
/
3

N
(...,m

in)×
16000

N
(...,m

ax)×
938

2
D

(2)=
2/3

200×
200

R
SA

1024
29814507241

960
000

sd
2
=

1
/
2
/
3

N
(...,m

in)×
16000

N
N

(...,m
ax)×

938
3

D
(3)=

2/3
200×

200
R

SA
2048

95619636130
960

000
sd

3
=

1
/
2
/
3

N
(...,m

in)×
16000

N
(...,m

ax)×
938

4
D

(4)=
1/2/3

400×
400

blur
366694660

840
000

sd
4
=

1
N

(...,m
in)×

64000
N

(...,m
ax)×

3750
5

D
(5)=

2/3
400×

400
R

SA
1024

114485889326
840

000
sd

5
=

2
N

(...,m
in)×

64000
N

(...,m
ax)×

3750
6

D
(6)=

2/3
400×

400
R

SA
2048

383009262064
840

000
sd

6
=

3
N

(...,m
in)×

64000
N

(...,m
ax)×

3750
7

D
(7)=

1/2/3
600×

600
blur

582192590
8

640
000

sd
7
=

1
N

(...,m
in)×

144000
N

(...,m
ax)×

8438
8

D
(8)=

2/3
600×

600
R

SA
1024

263890855494
8

640
000

sd
8
=

2
N

(...,m
in)×

144000
N

(...,m
ax)×

8438
9

D
(9)=

2/3
600×

600
R

SA
2048

861590710700
8

640
000

sd
9
=

3
N

(...,m
in)×

144000
N

(...,m
ax)×

8438
10

D
(10)=

1/2/3
800×

800
blur

935976091
15

360
000

sd
1
0
=

1
N

(...,m
in)×

256000
N

(...,m
ax)×

15000
11

D
(11)=

2/3
800×

800
R

SA
1024

469494309713
15

360
000

sd
1
1
=

3
N

(...,m
in)×

256000
N

(...,m
ax)×

s15000
12

D
(12)=

2/3
800×

800
R

SA
2048

1534304245283
15

360
000

sd
1
2
=

3
N

(...,m
in)×

256000
N

(...,m
ax)×

15000
13

D
(13)=

1/2/3
1000×

1000
blur

1381754383
24

000
000

sd
1
3
=

1
N

(...,m
in)×

400000
N

(...,m
ax)×

23438
14

D
(14)=

2/3
1000×

1000
R

SA
1024

734069416861
24

000
000

sd
1
4
=

3
N

(...,m
in)×

400000
N

(...,m
ax)×

23438
15

D
(15)=

2/3
1000×

1000
R

SA
2048

2407671820331
24

000
000

sd
1
5
=

3
N

(...,m
in)×

400000
N

(...,m
ax)×

23438
16

D
(16)=

1/2/3
1200×

1200
blur

1907429016
34

560
000

sd
1
6
=

1
N

(...,m
in)×

576000
N

(...,m
ax)×

33750
17

D
(17)=

2/3
1200×

1200
R

SA
1024

1057640189975
34

560
000

sd
1
7
=

3
N

(...,m
in)×

576000
N

(...,m
ax)×

33750
18

D
(18)=

2/3
1200×

1200
R

SA
2048

3471082534894
34

560
000

sd
1
8
=

3
N

(...,m
in)×

576000
N

(...,m
ax)×

33750
19

D
(19)=

1/2
1400×

1400
blur

2541112486
47

040
000

sd
1
9
=

1
N

(...,m
in)×

784000
N

(...,m
ax)×

45938
20

D
(20)=

2/3
1400×

1400
R

SA
1024

1520914612793
47

040
000

sd
2
0
=

3
N

(...,m
in)×

784000
N

(...,m
ax)×

45938

An ANN-based scalable hashing algorithm for computational clouds with schedulers 709

Table 6. Characteristics of the simulated cloud and of the VMs used for simulation. The tested VMs’ computational capacities were
chosen according to the typical computing power for commercial clouds, e.g., Amazon Cloud.

Cloud Edge, CE cc tl∈ {0, 1, 2, 3}
VM number, type [MIPS] min:max

VM1, tiny 0.2×461.9= 92.38 0:1
VM2, tiny 0.5×461.9=230.95 0:2

Cloud Computing Center, CC cc tl∈ {0, 1, 2, 3}
VM number, type [MIPS] min:max

VM3, small 461.9 0:2
VM4, large 2× 461.9=923.8 0:3

Cloud Storage Center, SC cc tl∈ {0, 1, 2, 3}
VM number, type [MIPS] min:max

VM5, medium 4× 461.9=1847.6 0:3

Table 7. Scheduling 100 jobs into VM1, . . . ,VM5. Results of
applying the flexible hashing functions: mean values of
idle time of the VMs for a chosen batch. The percent-
age indicates the system initial idle time that remained
idle after applying flexible security hashing.

CC part no hashing 512 hashing flexible
Edge 100% 84% 34 %

Computing
Center 100% 97.5% 48.7%

Storage Center 100% 98.7% 57%

an advantage in systems made of computational units
that vary in their computing abilities. In such a case,
slower units use shorter hash lengths, whereas faster
units calculate longer hashes based on the same presented
algorithm. This enables better load balancing inside the
cloud system itself.

As future work, we intend to improve the presented
model by:

• considering time series defined by other chaotic
systems;

• further analyzing the impact of the ANN learning
algorithm;

• testing the usage of recurrent or deep learning ANNs
instead of a simple two-layer feed-forward ANN;

• validating the benefits of using scalable hashing
function to build digital signature services;

• introducing local scheduling schemes supporting
batches of tasks with time constraints other than
those presented.

References
Abdoun, N., El Assad, S., Taha, M.A., Assaf, R., Deforges, O.

and Khalil, M. (2016). Secure hash algorithm based on

efficient chaotic neural network, 2016 International Con-
ference on Communications (COMM), Bucharest, Roma-
nia, pp. 405–410.

Aggarwal, K. and Verma, H.K. (2015). Hash RC6—variable
length hash algorithm using RC6, 2015 International Con-
ference on Advances in Computer Engineering and Appli-
cations, Ghaziabad, India, pp. 450–456.

Al-Hamdani, W.A. (2011). Elliptic curve for data protection,
Proceedings of the 2011 Information Security Curriculum
Development Conference, InfoSecCD’11, New York, USA,
pp. 1–14.

Amazon (2019). Amazon EC2 instance types, Amazon Web
Services, https://aws.amazon.com/ec2/insta
nce-types/.

Atkinson, K.E. (1978). An Introduction to Numerical Analysis,
2nd Edn, Wiley, Hoboken.

Barbierato, E., Gribaudo, M., Iacono, M. and Jakóbik, A.
(2019). Exploiting CloudSim in a multiformalism
modeling approach for cloud based systems, Simulation
Modelling Practice and Theory 93: 133–147.

Bellare, M. and Kohno, T. (2004). Hash function balance
and its impact on birthday attacks, in C. Cachin and J.L.
Camenisch (Eds), Advances in Cryptology, EUROCRYPT
2004, Springer, Berlin, pp. 401–418.

Bowen, P., Hash, J. and Wilson, M. (2006). Information
Security Handbook: A Guide for Managers, NIST Special
Publication 800-100, National Institute of Standards and
Technology, Gaithersburg, https://nvlpubs.nist
.gov/nistpubs/Legacy/SP/nistspecialpub
lication800-100.pdf.

Butcher, J.C. (2008). Numerical Methods for Ordinary Differen-
tial Equations, 2nd Edn, Wiley, Hoboken

Chugunkov, I.V., Ivanov, M.A. and Kliuchnikova, B.V.
(2019). Hash functions are based on three-dimensional
stochastic transformations, 2019 IEEE Conference of Rus-
sian Young Researchers in Electrical and Electronic En-
gineering (EIConRus), Saint Petersburg/Moscow, Russia,
pp. 202–205.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-100.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-100.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-100.pdf

710 J. Tchórzewski et al.

Table 8. Results of scheduling a randomly chosen batch of 10 jobs: 4×D(1), 4×D(2), 2×D(3) into VM1, VM2, VM3, VM4, and
VM5, assuming an equal task number per VM. Results of the application of the scalable hashing functions: values of idle
time of the VMs for a chosen batch of tasks. For simplicity, we assume the same hash type for all tasks scheduled at each
single VM.

CC part Jobs Timemin Tidle Tidle Tidle Tidle Tidle Tidle Tidle Tidle

64 128 512 1024 2048 4096 8192
VM1 D(1), D(3) 280 sec. 0 0 0 0 0 0 0 0
VM2 D(1), D(2) 130 sec. 150 sec. 121 145.4 126.4 110 52 – –
VM3 D(1). D(2) 65 sec. 215 sec. 200 212.6 203 194.9 165.9 – –
VM4 D(1), D(2) 32 sec. 248 sec. 240.7 246.8 242 237.9 223.4 138.9 36.2
VM5 D(2), D(3) 32 sec. 248 sec. 244.3 247.4 245 242.9 235.7 193.4 142.1

Cococcioni, M. (2021). Mackey–Glass time series generator,
MathWorks, https://www.mathworks.com/matl
abcentral/fileexchange/24390-mackey-gl
ass-time-series-generator.

CSA (2011). Security Guidance for Critical Areas of Focus
in Cloud Computing V3.0, Cloud Security Alliance,
Bellingham, https://downloads.cloudsecurit
yalliance.org/assets/research/security
-guidance/csaguide.v3.0.pdf.

Du, Y., He, G. and Yu, D. (2016). Efficient hashing technique
based on bloom filter for high-speed network, 8th Inter-
national Conference on Intelligent Human-Machine Sys-
tems and Cybernetics (IHMSC), Hangzhou, China, Vol. 01,
pp. 58–63.

Dworkin, M.J. (2015). SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions, FIPS PUB
202, National Institute of Standards and Technology,
Gaithersburg, https://nvlpubs.nist.gov/nist
pubs/FIPS/NIST.FIPS.202.pdf.

ENISA (2009). Cloud Computing: Benefits, Risks and Recom-
mendations for Information Security, European Network
and Information Security Agency, Athens, https://re
silience.enisa.europa.eu/cloud-securit
y-and-resilience/publications/cloud-co
mputing-benefits-risks-and-recommendat
ions-for-information-security.

Fernandez-Cerero, D., Jakóbik, A., Grzonka, D., Kołodziej, J.
and Fernandez-Montes, A. (2018). Security supportive
energy-aware scheduling and energy policies for cloud
environments, Journal of Parallel and Distributed Com-
puting 119: 191–202.

Fernandez-Cerero, D., Fernandez-Montes, A., Jakóbik, A.,
Kołodziej, J. and Toro, M. (2018). SCORE: Simulator for
cloud optimization of resources and energy consumption,
Simulation Modelling Practice and Theory 82: 160–173.

Gholipour, A., Araabi, B.N. and Lucas, C. (2006). Predicting
chaotic time series using neural and neurofuzzy
models: A comparative study, Neural Processing
Letters 24(3): 217–239.

Gong, Z. (2016). Survey on lightweight hash functions, Journal
of Cryptologic Research 3(1): 1–11.

Google (2016). Encryption at rest in Google Cloud, Google
Cloud Documentation, https://cloud.google.co
m/security/encryption/default-encrypti
on.

Grzonka, D. (2018). Intelligent Agent-based Monitoring Sys-
tems of Task Scheduling for Distributed High-Performance
Environments, PhD thesis, Polish Academy of Sciences,
Warsaw.

Grzonka, D., Jakóbik, A., Kołodziej, J. and Pllana, S.
(2018). Using a multi-agent system and artificial
intelligence for monitoring and improving the cloud
performance and security, Future Generation Computer
Systems 86: 1106–1117.

Haykin, S. (1998). Neural Networks: A Comprehensive Foun-
dation, 2nd Edn, Prentice Hall, Upper Saddle River.

Huang, W. and Wang, L. (2019). A hash function based
on sponge structure with chaotic map for spinal codes,
2019 International Conference on Computer, Information
and Telecommunication Systems (CITS), Beijing, China,
pp. 1–5.

ISO/IEC (2005). Information Technology—Security
Techniques—Code of Practice for Information Secu-
rity Management, ISO/IEC 27002:2005, International
Organization for Standardization/International
Electrotechnical Commission, Geneva, https://w
ww.iso.org/standard/50297.html.

ISO/IEC (2015). Information Technology—Security
Techniques—Code of Practice for Information Se-
curity Controls Based on ISO/IEC 27002 for Cloud
Services, ISO/IEC 27017:2015, International Organization
for Standardization/International Electrotechnical
Commission, Geneva, https://www.iso.org/s
tandard/43757.html.

Jakóbik, A. (2016). Big data security, in F. Pop et al.
(Eds), Resource Management for Big Data Platforms:
Algorithms, Modelling, and High-Performance Comput-
ing Techniques, Springer, Cham, pp. 241–261, DOI:
10.1007/978-3-319-44881-7 12.

Jakóbik, A., Grzonka, D. and Kołodziej, J. (2017a). Security
supportive energy aware scheduling and scaling for
cloud environments, European Conference on Mod-
elling and Simulation, ECMS 2017, Budapest, Hungary,
pp. 583–590.

https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator
https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator
https://www.mathworks.com/matlabcentral/fileexchange/24390-mackey-glass-time-series-generator
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security
https://cloud.google.com/security/encryption/default-encryption
https://cloud.google.com/security/encryption/default-encryption
https://cloud.google.com/security/encryption/default-encryption
https://www.iso.org/standard/50297.html
https://www.iso.org/standard/50297.html
https://www.iso.org/standard/43757.html
https://www.iso.org/standard/43757.html

An ANN-based scalable hashing algorithm for computational clouds with schedulers 711

Jakóbik, A., Grzonka, D. and Palmieri, F. (2017b).
Non-deterministic security driven meta scheduler for
distributed cloud organizations, Simulation Modelling
Practice and Theory 76: 67–81.

Jakóbik, A., Grzonka, D., Kołodziej, J. and González-Vélez, H.
(2016). Towards secure non-deterministic meta-scheduling
for clouds, 30th European Conference on Modelling
and Simulation, ECMS 2016, Regensburg, Germany,
pp. 596–602, DOI: 10.7148/2016-0596.

Jakóbik, A. and Wilczynski, A. (2017). Using polymatrix
extensive Stackelberg games in security-aware resource
allocation and task scheduling in computational clouds,
Journal of Telecommunications and Information Technol-
ogy 1: 71–80.

Jankowski, N. and Linowiecki, R. (2019). A fast neural
network learning algorithm with approximate singular
value decomposition, International Journal of Applied
Mathematics and Computer Science 29(3): 581–594, DOI:
10.2478/amcs-2019-0043.

Kaur, N., Saini, H.S. and Singh, R. (2009). Design and analysis
of secure scheduler for MLS distributed database systems,
2009 IEEE International Advance Computing Conference,
Patiala, India, pp. 1400–1404.

Kidon, M. and Dobai, R. (2017). Evolutionary design of
hash functions for IP address hashing using genetic
programming, IEEE Congress on Evolutionary Computa-
tion (CEC), Donostia, Spain, pp. 1720–1727.

Kołodziej, J. (2012). Evolutionary Hierarchical Multi-Criteria
Metaheuristics for Scheduling in Large-Scale Grid Sys-
tems, Springer, Berlin.

Yee, L.P. and De Silva, L.C. (2002). Application of multilayer
perceptron network as a one-way hash function, Interna-
tional Joint Conference on Neural Networks. IJCNN’02,
Honolulu, USA, Vol. 2, pp. 1459–1462.

Mahjoob, M.J., Abdollahzade, M., Zarringhalam, R. and Kalhor,
A. (2008). Chaotic time series forecasting using locally
quadratic fuzzy neural models, 9th WSEAS International
Conference on Fuzzy Systems, Sofia, Bulgaria, pp. 26–32.

Menezes, A.J., Vanstone, S.A. and Oorschot, P.C.V. (1996).
Handbook of Applied Cryptography, CRC Press, Boca
Raton.

Merkle, R.C. (1979). Secrecy, Authentication, and Public Key
Systems, Stanford University, Stanford, pp. 11–16.

Mohan, S., Yoon, M.K., Pellizzoni, R. and Bobba, R.
(2014). Real-time systems security through scheduler
constraints, 26th Euromicro Conference on Real-Time Sys-
tems, Madrid, Spain, pp. 129–140.

NIST (2015). Secure Hash Standard (SHS), FIPS PUB
180-4, National Institute of Standards and Technology,
Gaithersburg, https://nvlpubs.nist.gov/nist
pubs/FIPS/NIST.FIPS.180-4.pdf.

NIST (2019). Status Report on the First Round of the
NIST Lightweight Cryptography Standardization Process,
NISTIR 8268, National Institute of Standards and
Technology, Gaithersburg, https://nvlpubs.nist
.gov/nistpubs/ir/2019/NIST.IR.8268.pdf.

Podolskiy, V., Jindal, A. and Gerndt, M. (2019). Multilayered
autoscaling performance evaluation: Can virtual machines
and containers co-scale?, International Journal of Applied
Mathematics and Computer Science 29(2): 227–244, DOI:
10.2478/amcs-2019-0017.

Rajeshwaran, K. and Anil Kumar, K. (2019). Cellular
automata based hashing algorithm (CABHA) for strong
cryptographic hash function, 2019 IEEE International
Conference on Electrical, Computer and Communication
Technologies (ICECCT), Coimbatore, India, pp. 1–6.

Saleh, M. and Dong, L. (2013). Real-time scheduling
with security enhancement for packet switched networks,
IEEE Transactions on Network and Service Management
10(3): 271–285.

Schneier, B. (1995). Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C, Wiley, New York.

Singh, M. and Garg, D. (2009). Choosing best hashing-strategies
and hash functions, 2009 IEEE International Advance
Computing Conference, Patiala, India, pp. 50–55.

Tadokoro, H., Kourai, K. and Chiba, S. (2010). A secure
system-wide process scheduler across virtual machines,
2010 IEEE 16th Pacific Rim International Symposium on
Dependable Computing, Tokyo, Japan, pp. 27–36.

Tchórzewski, J. and Jakóbik, A. (2019). Theoretical and
experimental analysis of cryptographic hash functions,
Journal of Telecommunications and Information Technol-
ogy 1: 125–133.

Tchórzewski, J., Jakóbik, A. and Grzonka, D. (2019). Towards
ANN-based scalable hashing algorithm for secure task
processing in computational clouds, 33rd International
ECMS Conference on Modelling and Simulation, Caserta,
Italy, pp. 421–427.

Turcanik, M. (2017a). Hash function generation based on neural
networks and chaotic maps, Communication and Informa-
tion Technologies (KIT), Vysoke Tatry, Slovakia, pp. 1–5.

Turcanik, M. (2017b). Using recurrent neural network for hash
function generation, International Conference on Applied
Electronics (AE), Pilsen, Chech Republic, pp. 1–4.

Wang, M. and Li, Y. (2015). Hash function with variable output
length, International Conference on Network and Informa-
tion Systems for Computers, Wuhan, China, pp. 190–193.

Yang, Q., Gao, T., Fan, L. and Gu, Q. (2009). Analysis of
one-way alterable length hash function based on cell neural
network, 5th International Conference on Information As-
surance and Security, Xi’an, China, Vol. 1, pp. 391–395.

Jacek Tchórzewski received his BSc and MSc degrees in computer
science at the Cracow University of Technology, Poland, in 2016 and
2017, respectively. Currently, he is a research and teaching assistant at
the Cracow University of Technology and a PhD student at the AGH
University of Science and Technology, Poland.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8268.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8268.pdf

712 J. Tchórzewski et al.

Agnieszka Jakóbik received her MSc in stochastic processes at the
Jagiellonian University, Poland, and her PhD in artificial neural net-
works. Since 2009 she has been an assistant professor at the Cracow
University of Technology, Poland.

Mauro Iacono received his MSc in degree computer science at the Uni-
versity of Naples “Federico II” and his PhD degree in electronics the
Second University of Naples. He is an associate professor of comput-
ing systems at the University of “L. Vanvitelli”, Caserta, Italy, where he
leads the computer science section of the data and computer science re-
search group. He is currently the president of the European Council for
Modelling and Simulation.

Received: 31 January 2021
Revised: 28 May 2021
Re-revised: 30 July 2021
Accepted: 10 August 2021

	Introduction
	Related work
	Theoretical framework of the proposed system
	Workflow of the system
	Modeling task security demands and security services offered by VMs
	Mapping tasks into computational units

	Theoretical framework of the flexible hashing function
	Flexible hashing function
	Setting the hash length
	Hashing ANN

	Experimental design
	Adjustment of Mackey–Glass parameters
	Hashing ANN training and testing set generation
	Tasks and their security demands

	System evaluation
	Hashing ANN testing procedure
	Summary hashing ANN test results
	Scalable hashing performance tests in the cloud with a global scheduler

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

