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One major focus in forensics is the identification of individuals based on different kinds of evidence found at a crime
scene and in the digital domain. Here, we assess the potential of using in-vehicle digital data to capture the natural driving
behavior of individuals in order to identify them. We formulate a forensic scenario of a hit-and-run car accident with a
known and an unknown suspect being the actual driver during the accident. Specific aims of this study are (i) to further
develop a workflow for driver identification in digital forensics considering a scenario with an unknown suspect, and (ii) to
assess the potential of one-class compared to multi-class classification for this task. The developed workflow demonstrates
that in the application of machine learning in digital forensics it is important to decide on the statistical application, data
mining or hypothesis testing in advance. Further, multi-class classification is superior to one-class classification in terms
of statistical model quality. Using multi-class classification it is possible to contribute to the identification of the driver in
the hit-and-run accident in both types of application, data mining and hypothesis testing. Model quality is in the range of
already employed methods for forensic identification of individuals.
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1. Introduction

A number of methods such as forensic dactyloscopy,
anthropometry and odontology are major tools of criminal
identification that have been existing for more than a
century. These methods use physical characteristics
for the identification of persons. Dactyloscopy (usage
of fingerprints) for identification has been used to link
suspected criminals to a crime scene or to identify victims.
Large automated fingerprint identification systems (AFIS)
are used to match unknown fingerprints against a
database. This approach is used worldwide to identify
criminals as well as victims. As digitalization increases
in all areas of life, also digital traces and their use are
becoming more available such as spectrographic voice
and gait identification and keystroke biometrics (Benzaoui
et al., 2014; Bouchrika et al., 2011; Müller, 2007).

The development of methods for digital biometry
for other goals than forensics has come a long way.
In the beginning, algorithms such as the Gaussian
mixture density with rather few parameters were applied
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(Reynolds, 1994). With increasing computational power
and larger data sets, more complex machine learning
approaches such as feed-forward neural networks were
developed and tested for, e.g., spectrographic voice
identification (Ge et al., 2017). Lately, there has been
an increasing interest in applying biometric methods on
digital traces of driving behavior (Bernardi et al., 2018;
Martinelli et al., 2020; Remeli et al., 2019; Dološ et al.,
2020; Turunen and Dološ, 2021).

Although we focus on the identification of
individuals using digital behavior data in the context
of forensics, the topic can be related to a broader
context. One early research field is how to use keystroke
dynamics to estimate if a passcode was used by the
person before (D’Lima and Mittal, 2015). If so, the
passcode is considered not secure and could be rejected
by the software. Another way of using digital biometry
is the increase in authentication security using passcodes
together with keystroke dynamics in the fixed-text context
(Acien et al., 2020). This is similar to using the owner’s
driving style and, e.g., body weight for securing access
control together with physical or electronic keys. Also
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touch point data during swipe actions on touch screens
could be used together with voice data for authentication
for mobility services (Gupta et al., 2019). Other emerging
fields are, e.g., authentication in virtual reality (Kupin
et al., 2019) and smart cities (Ross et al., 2020) and,
last but not least, pay-how-you-drive insurance contracts
(Wakita et al., 2005; Carfora et al., 2019).

Research in the field of identification of individuals
using digital biometric data share mostly two work
steps: the feature extraction from the original data and
the model parametrization (Mashao and Skosan, 2006;
Tirumala et al., 2017; Gupta et al., 2019). Existing and
novel approaches concerning feature extraction and model
algorithms, especially for time series data, need to be
assessed for their suitability on different digital traces.
Understanding their effects and functioning will improve
our ability to built robust classifiers. The application
of machine learning methods on digital traces such as
in-vehicle network data (for example, CAN bus data)
is a promising approach (Dološ et al., 2020; Turunen
and Dološ, 2021). For digital forensics this would be
a great possibility, but these methods need a sound
scientific foundation, especially regarding credibility and
false conviction rates (Page et al., 2011; Thompson,
2006). This is supported by the finding that in 86
DNA exoneration cases, forensic science testing errors
were the second leading cause of wrongful convictions
(found in 63% of cases), only falling behind eyewitness
misidentifications (71% of the cases) (Lieberman et al.,
2008; Saks and Koehler, 2005).

Additionally to an explainable modeling procedure,
communication of results, especially the reliability of the
evidence, needs to be adapted to the needs in forensics
(Christensen et al., 2014; Helm and Hagendorff, 2021)
and the meaning of different measures of errors needs
to be considered. To give an example, the interpretation
of the false detection rate (FDR, as used by Dološ et al.
(2020)) is pointing to the false conviction rate. The
number of persons being imprisoned erroneously is a
core value to be discussed in ethics and politics. The
false positive rate (FPR, for example, used by Houck
and Budowle (2002) as well as White et al. (2015))
corresponds to the individual probability of a suspect
of being accused guilty when actually innocent. Such
differences among model quality measures need to be
considered in the discourse on credibility of forensic
evidence used for identification.

In a prior study we showed how the actual driver
could be identified out of a known and finite group
of suspects based on digital vehicle data (Dološ et al.,
2020). This however is rarely the situation in the
real world. There, one (or more) known suspects are
available, but it is likely that there was an unknown person
involved. For this case the modeling approach and the
forensic process needs to be adjusted. Two different

approaches are commonly used for such tasks: one-class
classification and multi-class classification. Since there
are inconsistencies in the use of the term one-class
classification, there is need to explain what is meant in
this study with one-class and multi-class classification,
respectively (Khan and Madden, 2010).

In the present study, we used the term one-class
classification to describe a model aiming at finding one
target class in some data. Following this reasoning, the
training data contains labeled data for the target class
(“positives”) and unlabeled data representing several other
classes (“negatives”) or data representing the background
distribution (including the target class). This differs from
the binary classification problem including two classes
not only conceptually, but also regarding variances in
the data and the degree of overlapping distributions.
This differs from a “real” one-class classification using,
e.g., a one-class SVM where only the target class is
represented in the training data (“positives”) and no
further information is available (Khan and Madden,
2010; Antal and Szabo, 2015; Mack and Waske, 2017).
Although this seems to be a cost efficient approach,
the information content in such training data is low.
Especially for data with overlapping distributions for
the target class with the background distribution, this
approach will yield worse results. In contrast, in a
multi-class classification there can be a focus on one
single target class, but the data are completely labeled
(no merged classes as “negatives” or data representing
the background distribution). These data hold most
information but at the same time are most expensive and
also questionable concerning data privacy. The described
three approaches, mainly defined by the training data
type used, can thus be sorted following the amount of
information they make use of and the model quality that
can be achieved (Mack and Waske, 2017; Antal and
Szabo, 2015; Khan and Madden, 2010):

real one-class classification

< target/background one-class classification

< multi-class classification.

Application of a one-class classification with labeled
data for the suspect and unlabeled data for other drivers
is straightforward and cost efficient. Unlabeled data
representing the background distribution are easy to
gather because there is no need to track the driver but only
the electronic vehicle data. Such data are already available
in the context of the development cycle of vehicles and
motor optimization. Such data could be even simulated
for a better coverage of possible driving styles and at the
same time considering the actual road situation during
the incident. Application of a multi-class classification
with labeled data using a driver data base together with
the suspect data is more informed. Such data hold much
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more information. It is similar to large DNA or fingerprint
databases already used in forensics and paternity tests.
Unfortunately, to our knowledge, a driver database for
forensic applications does not exist yet.

In this study we assessed the potential of using
in-vehicle digital data to capture the natural driving
behavior of individuals in order to identify them (Kwak
et al., 2017; Martinelli et al., 2020; Dološ et al., 2020).
We formulated a forensic scenario of a hit-and-run car
accident considering a known as well as an unknown
suspect. Specific aims of this study were (i) to further
develop a workflow for driver identification in digital
forensics considering a scenario with an unknown suspect,
and (ii) assess the potential of one-class classification
compared with multi-class classification for this task.

2. Methods

2.1. Forensic scenario: A hit-and-run accident. In
this section we describe a possible use case for the method
we developed. In a hypothetical hit-and-run accident
law enforcement was able to identify the vehicle, which
was involved, but is unsure about its driver. There
is one known suspect named “B” who denies having
driven the car. In-vehicle digital data were available,
for example, provided by the insurance company as a
result of a pay-how-you-drive car insurance contract.
Such data provide information at high sampling rate for
vehicle speed, accelerator pedal positions, steering wheel
positions, and changes in these variables. Thus, it could
be possible to identify the actual driver by his/her natural
driving behavior calculated from in-vehicle network data.
In our scenario, the suspect B was asked for a driving
sample of approximately 40 min. These data were used
to create a driver profile (using modeling). Using this
driver profile, the probability of class membership of the
suspect to the evidence data could be calculated together
with model quality measures.

Since we are omniscient in this scenario, we know
that actually a driver named “F” caused the accident and
was the source of the evidence data.

2.2. Electronic vehicle data. For this study we used
freely available data1 (Kwak et al., 2017; Martinelli
et al., 2020). In total ten drivers traveled between Korea
University and the SANGAM World Cup Stadium in the
surroundings of Seoul (South Korea). The experiment
was performed in July 2015. The time factor was
controlled by performing experiments from 8 p.m. to 11
p.m. on weekdays. Ten drivers completed two round trips
resulting in 46 km total length. The data were collected
from the city, highway and parking space. In the city there

1http://ocslab.hksecurity.net/Datasets/driving
-dataset.

are signal lamps and crosswalks; at parking spaces driving
cautiously was required.

The number of features recorded was 51 in 1 Hz
sampling rate. Total driving time per individual was
between 121 and 184 minutes. Data records with zero
Vehicle speed were excluded prior to the analysis. The
ten drivers were labeled from “A” to “J” with around 7312
records for each driver (A: 5461, B: 9634, C: 5508, D:
10353, E: 6696, F: 8764, G: 6087, H: 7744, I: 5782, J:
7087).

Original features related to human behavior
considered in this study were accelerator pedal value,
master cylinder pressure, vehicle speed, steering wheel
speed and steering wheel angle. Additionally, roughness
was calculated with rolling window size k = 20 s for all
features using the R-function roughness{seewave}.
This is a compromise between the claim to maintain high
temporal resolution and the need for a certain period of
time for the calculation of roughness. Roughness was
implemented as total curvature for the specified window
size, i.e., as the integrated squared second derivative
defined as follows:

RNS(f) =

∫ f+k/2

f−k/2

(f ′′(t))2 dt. (1)

where f denotes the respective feature, t is the point
in time and k is the window size for which roughness
is calculated. In total we remained with 14 features
(Table 1).

2.3. One-class classification. The first approach was
a one-class classification (OCC) with the aim to correctly
classify one target class out of all data. In total 10 random
forest models (RF) (Liaw and Wiener, 2002; Breiman,
2001) with 300 trees were trained with data consisting of
the target class (e.g., driver A, “positives”) and a random
sample of all other data (“negatives”). In order to decide
for the number of trees necessary, we plotted the error
against the number of trees similarly to, e.g., Oshiro et al.
(2012). Model quality converged and did not increase any
more. Such a fitted model can be applied to any other data
and will give a probability for the class membership of the
target class.

For each of the ten drivers we created training data,
validation and evidence data using random block splitting.
The data for each driver (“positives”) were split into
200 sequences from which 75% were used for training.
The remaining 25% were used for validation (calculation
of model quality). For each driver also “negatives”
were needed. Therefore, a negative sample of size 20%
was drawn from all other data and used as “negatives”
during model calibration. The remaining data were used
as validation data together with the positives from the
random block splitting (i.e., the data belonging to the

http://ocslab.hksecurity.net/Datasets/driving-dataset
http://ocslab.hksecurity.net/Datasets/driving-dataset
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Table 1. Model quality in OCC with random forests for each driver for the validation data.
Driver Number of negatives

(all other drivers)
Number of positives
(driver data)

ACC Balanced
ACC

FDR.N
negatives

FDR.P
positives

FDR
total

A 67655 1323 0.79 0.79 0.01 0.93 0.21
B 63482 2352 0.70 0.71 0.01 0.92 0.30
C 67608 1346 0.75 0.75 0.01 0.94 0.25
D 62763 2515 0.72 0.75 0.01 0.90 0.28
E 66420 1637 0.70 0.74 0.01 0.94 0.30
F 64352 2120 0.80 0.63 0.02 0.93 0.20
G 67029 1481 0.80 0.72 0.01 0.93 0.20
H 65372 1903 0.62 0.62 0.02 0.96 0.38
I 67334 1386 0.67 0.64 0.01 0.96 0.33
J 66029 1727 0.70 0.79 0 0.93 0.30

driver who caused the accident). The data of the person
who caused the accident were placed in the middle of
the time series to avoid edge effects. Our decision to use
the same number of sequences for each driver resulted in
differences in the number of data records (Table 1).

Model quality measures such as accuracy (ACC),
false detection rate (FDR), false positive rate (FPR) were
used in this work. They are defined as follows:

ACC =
TP + TN

P + N
, (2)

FDR =
FP

FP + TP
, (3)

FPR =
FP

TN + FP
, (4)

where TP, TN, FP, FN, P and N denote true positives, true
negatives, false positives, false negatives, positives and
negatives, respectively.

Additionally, individual FDR and FPR were
calculated. “Individual” FDR refers to the FDR only
using classification results for the target class. For
example, FDR for positives P was calculated as FDR.P
and FDR for driver A was calculated as FDR.A defined
by the following formulas:

FDR.P =
FP.P

FP.P + TP.P
, (5)

FPR.A =
FP.A

TN.A + FP.A
, (6)

FDR can be interpreted as the false conviction rate
highly relevant in the field of forensics and the evaluation
of the reliability of traces as evidence. FPR is the
proportion of all negatives that still yield positive test
outcomes and corresponds to a person’s probability of
being accused guilty when actually innocent. FPR and
ACC were calculated in order to compare the machine
learning derived evidence quality with reports in the
literature (Lieberman et al., 2008; Saks and Koehler,
2005). Feature importance (Breiman, 2001, Ch. 10)

was calculated as the mean value of all 10 one-class
classification models.

In order to provide a visual interpretation, we
calculated a prediction on the validation data for the
target class (“positives”) and data for the other drivers
(“negatives”). In more detail, the data consisted of a
string of all sequences of driver data that were not used
for training the model. Among those sequences also the
target class (“positives”) was present. Applying the model
to the validation data provided a probability for the class
membership. In order to pronounce differences among
predicted class probabilities p visually, they were squared
p2. Thereafter, curves were smoothed with a rolling mean
(RM) with window size k = 61 s to reduce short-term
fluctuations and to reveal the trend and at the same time
remaining with an acceptable temporal resolution. For
each data point the RM with window size k was calculated
for feature values f as follows (valid for odd numbers of
k):

RMk =
1

k
·

(k−1)/2∑
i=1−(k−1)/2

fi. (7)

2.4. Multi-class classification. The second approach
was a multi-class classification (MCC). The model output
were probabilities for the class membership for all classes
in the data, including the target class. A random
forest with 300 trees was formed for all ten drivers.
For validation, the data was split into test and training
data using random block splitting. The data were split
into 200 sequences from which 50% were used for
training. Model quality measures were calculated using
the validation data analogous to one-class classification.
We additionally provided the no-information rate for
ACC. The no-information rate is ACC for data for which
the response and the predictors are independent. If the
model ACC is not higher than the no-information rate, the
model can be considered as useless.
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In order to provide a visual interpretation, we
calculated a prediction on the validation data. Curves
were smoothed with rolling mean windows size 61 s in
the same way as for the results of OCC. Additionally to
the evaluation of the quality of class memberships of the
original model predictions, predicted class memberships
after smoothing were evaluated for the MCC approach.

2.5. Forensic scenario: Multi-class classification. To
demonstrate the workflow and to make it easier to discuss
different aspects of application of driver identification for
either hypothesis testing or data mining, we chose two
specific drivers for our use case. In the forensic scenario
we stated that there was one know suspect B. B is one
of the drivers for which classification worked well. We
further defined F as the actual driver. F was chosen
because it is also one of the well classified drivers and
additionally not at the edges of the sequence to be plotted.
Actually, any combination could be used or we could
iterate over all possible combinations. For now, however,
we provide a use case as a basis for the development of
a workflow and the explanation of possible outcomes and
pitfalls of forensic driver identification.

For this use case with the unknown suspect F, the
model was not calculated with all the data for all ten
drivers labeled with the alphabetic letters from A to J.
Instead, the model was calculated using training data
not containing driver F. This simulated the situation of
having a driving sample of suspect B pooled together
with a labeled driver data base for model training similar
to automated fingerprint identification systems (AFISs).
Predictions were made on data for all drivers A to J
including driver B, who was the known suspect due to
other reasons, and driver F, the evidence data derived from
the vehicle or insurance company.

In more detail, first the data splitting was done as
described above for the MCC model. After that, driver
F was excluded from the training data and the model was
parameterized for the remaining nine drivers. The overall
model quality (ACC, FDR, FPR) was calculated based on
test data also not containing F.

Model fitting and validation for the random forest
algorithm could be calculated on an off-the-shelf
computer within 1 to 2 hours.

3. Results

3.1. One-class classification. For each driver an OCC
was calculated based on data with labels 1 (“positives”)
for the target class and 0 (“negatives”) for data belonging
to all other drivers (Table 1). For each driver the model
provided a probability for class membership for each data
record. Results showed that there was a higher predicted
probability for the target class. Also the commonly
applied model evaluation using ACC indicated that the

models were statistically valid. Nevertheless, results
were not satisfying for forensics. Especially the FDR
for positives (FDR.P) showed clearly that this modeling
approach needs further work (Table 1).

Time series prediction also resulted in no clear visual
separability among positives and negatives (see Fig. 1)
although a visible signal appeared which was clear, for
example, for drivers C and J and also A. This is usually
caused by a lower similarity of the data of these drivers to
the other data. This corresponds to the highest balanced
accuracy of 0.79 and 0.75 and FDR total with 0.25 and
0.30 but not a low FDR.P, which is relevant for trusting
the evidence in the conviction context.

The pattern with higher importance of roughness
features for classification of positives is still remarkable
(Table 2).

3.2. Multi-class classification. Multi-class
classification (MCC) provided a better separability
of drivers than one-class classification (OCC). The
overall accuracy ACC of the model was 0.39. Compared
with the no-information rate 0.17 given by the evaluation
function, this is already a statistically valid model. But
model quality measures relevant for forensics were
still low. Especially, class specific FDRs (see Table 3,
columns “original”) were too high baring in mind that
this is the false conviction rate we would have to accept.
Note that the additional information in the time series has
not been used yet.

This is different when plotting the prediction for
the time series data of the hold-out sample (Fig. 2).
The model prediction resulted in a probability for class
memberships for each point in time. Thus for each data
record ten probabilities were predicted. The rolling mean
was calculated as described in the methods. Squaring
all values pronounced high values (for better visual
interpretation). For most of the time series a rather clear
attribution to one driver was possible. An exception was
the time period around 25,000–35,000 s for drivers H, I
J. ACC and FDRs became remarkably better (Table 3,
columns “rolling mean”). FDR decreased from 0.61 to
0.45. ACC was 0.54 for this workflow. Together with
the visual interpretation of the time series prediction on
the hold-out sample, for most of the time a trustworthy
attribution could be achieved (Fig. 2).

Feature importance also showed high relevance of
roughness features together with vehicle speed and also
steering wheel angle (Table 4).

3.3. Forensic scenario. An MCC was calculated for
nine drivers in the same way as before. In the hold-out
sample additionally the unknown suspect F was present.
The data for F in the hold-out sample can be considered
as evidence data belonging to an unknown suspect. When
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Fig. 1. Prediction of class probability (squared class probability p2 for better visibility) for OCC on the validation data not used during
model fitting. High values indicate a high probability of the data being attributed to the suspect.
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Table 2. Mean feature importance for all ten OCC models. Features were sorted by the mean decrease in ACC for positives. Interpre-
tation needs to be performed carefully since model quality was low.

Rank Feature Mean decrease
ACC negatives
(all other data)

Mean decrease
ACC positives
(driver)

Mean decrease
ACC

1 Accelerator pedal value roughness 23.87 89.06 88.86
2 Vehicle speed 2.95 72.59 74.04
3 Master cylinder pressure roughness 2.41 67.79 67.54
4 Steering wheel speed roughness 14.03 62.5 65.64
5 Vehicle speed roughness 1.22 57.02 54.16
6 Steering wheel angle roughness 11.56 54.41 60.24
7 Path order -6.29 51.99 47.73
8 Master cylinder pressure 3.83 49.52 41.08
9 Acceleration speed lateral -7.69 31.05 20.79

10 Steering wheel angle -7.94 30.18 17.41
11 Fuel consumption 10.5 27.1 31.86
12 Accelerator Pedal value 10.68 22.54 26.48
13 Acceleration speed longitudinal 10.7 20.97 26.19
14 Steering wheel speed 4.71 5.52 9.09

Table 3. FDR and FPR for MCC for the original predictions
and rolling mean treatment. Overall model statistics
(original/rolling mean): ACC = 0.39/0.54, FDR =
0.61/0.45, FPR = 0.06/0.05.

FDR FPR
Driver original rolling

mean
original rolling

mean
A 0.61 0.52 0.04 0.02
B 0.56 0.42 0.07 0.04
C 0.60 0.36 0.05 0.05
D 0.59 0.53 0.07 0.04
E 0.58 0.47 0.05 0.02
F 0.62 0.43 0.08 0.07
G 0.50 0.22 0.05 0.04
H 0.73 0.51 0.09 0.08
I 0.75 0.51 0.07 0.06
J 0.63 0.42 0.06 0.05

we follow a data mining workflow, we treat all drivers in
the same way; thus, all of them were equally suspicious.
For most of the time, class attributions were quite clear,
however, predictions for class memberships for the F data
were rather inconclusive (Fig. 3, Table 5). Note that also
classifications for drivers H, I, J were inconclusive, C had
some high values but they were not stable. It is thus
not possible to conclude from this analysis that there has
actually been an unknown suspect.

Nevertheless, one class needs to be the one with the
highest predicted class probability. In our scenario driver
D was most often miss-classified as being the source of
the suspect data F (Fig. 4). This can be translated into D
having the highest risk of false conviction. This points to

the need of interpreting predicted probabilities for class
memberships in relation to those for all other data. The
probabilities for F data miss-classified as D were among
the lowest and lower than for the true D data.

However, in the described hit-and-run case (see
Section 2.1), there was a driver B who was identified
as a suspect and therefore provided a driving sample
to the police. This driving sample was hypothetically
used together with data from a forensic driver data base.
Clearly, the predicted class probability for the evidence
data (i.e., driver F) was very low for B. Thus, the forensic
driver identification workflow resulted in the exoneration
of the known suspect B in our forensic scenario. For driver
D there was no risk of false accusation, since these data
belonged to a (hypothetical) forensic driver database.

4. Discussion

In this study we assessed the scenario of a hit-and-run car
accident considering a known suspect B and an unknown
suspect F (the actual driver during the accident). Our
first approach was to use one-class classification. This is
a well studied and successful approach in other research
fields (Bergamini et al., 2009; Mack et al., 2014; Stenzel
et al., 2017). It allows us to directly model the probability
of a driving sample or an evidence being a member of
the target class. The second approach was a multi-class
classification in which the suspect was missing in the
training data. Both approaches provided us with new
findings which will improve our abilities in applications of
forensic driver identification and also other fields of digital
biometry.
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Table 4. Feature importance for MCC. Features are ordered by mean decrease in ACC.
Rank Feature Mean

decrease
ACC

A B C D E F G H I

1 Vehicle speed 213 116 203 166 190 116 181 127 159 182
2 Steering wheel angle 198 67 74 70 102 82 110 91 83 88
3 Master cylinder pressure roughness 194 103 171 141 141 123 158 142 156 159
4 Accelerator pedal value roughness 192 165 164 160 209 107 153 149 178 199
5 Vehicle speed roughness 177 103 116 126 133 109 134 124 125 140
6 Steering wheel speed roughness 171 107 113 112 178 113 157 155 114 132
7 Acceleration speed lateral 163 65 86 73 102 85 102 77 92 83
8 Path order 158 95 108 110 135 95 133 103 131 122
9 Steering wheel angle roughness 151 91 142 109 138 94 108 105 132 132

10 Master cylinder pressure 129 87 72 67 90 123 93 98 98 108
11 Fuel consumption 78 54 48 52 63 61 73 64 64 65
12 Acceleration speed longitudinal 67 43 40 42 48 49 60 56 46 57
13 Accelerator pedal value 25 31 20 21 22 31 26 29 22 25
14 Steering wheel speed 22 12 30 20 20 14 19 16 19 17

Table 5. False detection rates (FDR) and false positive rates
(FPR) for multi-class classification (MCC) for the
forensic scenario, i.e., the model was calculated on
training data without F. Overall model statistics: ACC
= 0.56 (no information rate = 0.20), FDR = 0.44,
FPR = 0.05.
Driver FDR

rolling mean
FPR
rolling mean

A 0.46 0.03
B 0.47 0.05
C 0.18 0.04
D 0.45 0.03
E 0.40 0.04
G 0.14 0.04
H 0.54 0.09
I 0.39 0.08
J 0.58 0.06

4.1. Reliability of one-class and multi-class classifi-
cation. The failure of OCC in this study was a surprise
to us, because in other research fields much better results
could be achieved (Märkel and Dološ, 2017; Stenzel et al.,
2017; Antal and Szabo, 2015). The main reason is likely a
large within-subject variability due to strong differences in
road conditions and traffic during data capture. When all
other drivers were pooled in one group (the “negatives”)
they covered the whole feature space and the target class
could not be separated clearly.

MCC yielded much better results. There, labeled
data was used for each driver separately. After the
prediction was treated by rolling mean smoothing, the
results were acceptable for most drivers. For those drivers,
for which model predictions were inconclusive in the time
series prediction, model quality measures and the time

series were consistent, i.e., all indicated that the evidence
was inconclusive and should not be used for these drivers.

The reason why applying a rolling mean was
successful is that it reduced short-term fluctuations and
highlighted longer-term trends. High probabilities for
class memberships occurred only for few consecutive
seconds. This explains an increase in the prediction
accuracy for neighboring data. Another way to
improve results also for OCC could be sophisticated
data pre-processing. Special driving maneuvers could be
used which are assumed to pronounce the characteristics
in natural driving behavior. An approach worth being
investigated is using not the time series and machine
learning but to take a closer look at specific patterns in
the data. Such patterns are value combinations which are
rare, e.g., only a few seconds each hour, but occur with
one person only (Turunen and Dološ, 2021). Such an
analysis of driver specific patterns is complementary to
the machine learning methodology. Especially efforts for
improving the results of the OCC approach are needed,
because it is data saving as well as close to forensic
applications. For further research suitable data need
to be created by well designed experiments considering
findings of our study.

4.2. Forensic scenario. At the beginning of this
section, we would like to highlight the importance
recognizing fundamental statistical principles when using
machine learning in forensics. Regardless of the
specific machine learning approach, application of digital
biometrics for forensic identification of persons can be
applied in different ways (Dessimoz and Champod, 2008;
Mordini, 2017). Here, two ways differing in their
statistical interpretation were shown in the results and will
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Fig. 2. Prediction of MCC on the hold-out sample: y-axis—squared class-probability for a better visual impression.

be discussed briefly. One way is to search for indicators
which suspect out of all known suspects could be worth
to be investigated first or with most resources. From
the statistical perspective this is data mining and not
hypothesis testing. This leads to the consequence, that
findings provided by the model should have a low weight
or no weight at all in decision making in a court hearing.
However, it can be very useful to identify directions for
investigations. In our scenario this would have resulted
in a weak attribution of the evidence data to driver D and
further investigation in that direction.

The other way is to formulate a hypothesis based
on other evidence, which suspect was most likely the
actual driver. We stated that driver B was a suspect
according to the police and based on other reasons than
the driving sample. Then, an identification of the driver
using the natural driving behavior is used as an additional
confirmation or rejection. Statistically this is an important
difference which leads to a stronger meaning of the
predicted attribution of the evidence data to the suspect
(Glymour et al., 1997). Thus, if a hypothesis is formulated
first and is confirmed or rejected by the model results,
this has a stronger implication in decision making in a
court hearing. That the evidence data (from driver F)
was attributed to driver D is not relevant when using a
hypothesis before model calculation. Further, in such
application the data of driver D was part of the forensic
driver database and thus very unlikely the source of
the digital trace. This application considerably differed
from a data mining approach in which all drivers would

be considered as suspects. We recommend to use the
presented workflow in an unknown suspect scenario with
a prior hypothesis, thus to verify if, e.g., driver B was the
source of the evidence data, in order to minimize the risk
of false attribution.

Our best methods resulted in an ACC of 0.60 (with
no information rate 0.19) and an FDR of 0.40 pointing
to the false conviction rate. We do highlight that
these values already indicate that the MCC model was
statistically valid, i.e., significantly better than random.
But in the application of machine learning methods in
the field of forensics, not only the comparison against a
null-hypothesis needs to be passed, but also the question
which error rate in terms the false conviction rate (FDR)
and the individual risk of false accusation (FPR) is
accepted by society (Mordini, 2017, Ch. 16.6).

The values of the present study can be related to
those of estimated false convictions of 4.1% (comparable
to FDR in our study) for death-sentenced defendants
in the US (Gross et al., 2014) and also to other
methods for identification in forensics. Spectrographic
voice identification error rates were found to range
from 31% to 63% (Koenig, 1986; Faigman, 2002; Saks
and Koehler, 2005). Using face recognition software
with human interaction miss-identification (FPR) ranged
between (10–)30–40% (White et al., 2015), microscopic
hair comparisons were about 12% (Houck and Budowle,
2002), keystroke dynamics were about 7% (Antal and
Szabo, 2015; Eude and Chang, 2018). Identification
of latent fingerprints were reported to be better than
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Fig. 4. Confusion matrix for the MCC forensic scenario with F
being the unknown suspect. Note that this is only a bi-
nary application of classification without considering the
actual value of the probability of the class membership
(cf. Fig. 3).

that, but also a lack of proper data was reported (Haber
and Haber, 2004). However, the larger the database to
compare with, the higher the number of similar patterns in
dactyloscopy and a FPR of 15.9% was reported (Koehler
and Liu, 2021). Compared with an individual FPR of
about 5% in our study, quality is in the range of already
used forensic methods for identification.

However, it needs to be considered that the method
of calculating FPR differed in the mentioned studies
including ours so that there is a need for further
investigation on the reliability of such identification
methods. There is the need to develop best practice
guidelines (Ikuesan and Venter, 2017; Champod and
Tistarelli, 2017) for model evaluation in forensics
including a discussion on relevant measures such as FPRs
and FDRs. Likely, the error rates for digital behavior
biometrics will never be as reliable as those of DNA
evidence (Kloosterman et al., 2014).

5. Conclusion

To the best of our knowledge, we were the first
publishing research on forensic driver identification using
driving behavior (Dološ et al., 2020) (i) highlighting
the importance of robust validation and the choice
of a suitable model quality measure, (ii) pointing to
differences in the application of multi-class and one-class
approaches and (iii) the need to decide for hypothesis
testing and data mining in advance. We conclude
from this study that the two approaches used, one-class
classification and multi-class classification, showed great
potential for forensic driver identification. Besides the
presentation of a machine learning workflow and its
application to the forensic analysis of a hypothetical
hit-and-run accident, our main conclusions are the
following:

• OCC using unlabeled data could not be applied
successfully, yet. We are positive that with further
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data and research especially on feature extraction,
this approach could be sufficiently improved.

• The reliability of MCC was in the range of known
methods of forensic identification. However, it
is crucial to discuss the importance of model
quality measures such as FDR and FPR in an
interdisciplinary manner. There still seems to be a
lack of best practice guidelines for the application of
machine learning in forensics.

• Using machine learning in forensics requires
a decision on the purpose, data mining for
criminal investigation or hypothesis testing for
decision-making in court, prior to its application.

• An anonymized but labeled forensic database for the
comparison of digital behavior such as the natural
driving behavior and keystroke dynamics would
improve the statistical strength of identification of
individuals based on such traces.

Identification of persons using biometrics based on
digital evidence is an automated way to establish the
identity of a person on the basis of his or her digital
behavioral characteristics. It is a promising way to gain
additional information in casework and also useful for
decision making in court.
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Märkel, U. and Dološ, K. (2017). Tree species site suitability
as a combination of occurrence probability and growth
and derivation of priority regions for climate change
adaptation, Forests 8(6): 181.

Müller, C. (Ed.) (2007). Speaker Classification I: Fun-
damentals, Features, and Methods, Lecture Notes in
Computer Science, Vol. 4343, Springer, Berlin, DOI:
10.1007/978-3-540-74200-5.

Oshiro, T.M., Perez, P.S. and Baranauskas, J.A. (2012). How
many trees in a random forest?, in D. Hutchison et
al. (Eds), Machine Learning and Data Mining in Pat-
tern Recognition, Springer, Berlin, pp. 154–168, DOI:
10.1007/978-3-642-31537-4 13.

Page, M., Taylor, J. and Blenkin, M. (2011). Forensic
identification science evidence since Daubert: Part
II-Judicial reasoning in decisions to exclude forensic
identification evidence on grounds of reliability:
Identification evidence since Daubert (II), Jour-
nal of Forensic Sciences 56(4): 913–917, DOI:
10.1111/j.1556-4029.2011.01776.x.

Remeli, M., Lestyan, S., Acs, G. and Biczok, G. (2019).
Automatic driver identification from in-vehicle network
logs, arXiv 1911.09508, http://arxiv.org/abs/1
911.09508.

Reynolds, D. (1994). Experimental evaluation of features for
robust speaker identification, IEEE Transactions on Speech
and Audio Processing 2(4): 639–643.

Ross, A., Banerjee, S. and Chowdhury, A. (2020). Security in
smart cities: A brief review of digital forensic schemes for
biometric data, Pattern Recognition Letters 138: 346–354,
DOI: 10.1016/j.patrec.2020.07.009.

Saks, M.J. and Koehler, J.J. (2005). The coming
paradigm shift in forensic identification science, Science
309(5736): 892–895, DOI: 10.1126/science.1111565.

http://ieeexplore.ieee.org/document/8270424/
http://ieeexplore.ieee.org/document/8270424/
http://arxiv.org/abs/1704.05223
http://arxiv.org/abs/1704.05223
http://arxiv.org/abs/1911.09508
http://arxiv.org/abs/1911.09508


Forensic driver identification considering an unknown suspect 599

Stenzel, S., Fassnacht, F.E., Mack, B. and Schmidtlein, S.
(2017). Identification of high nature value grassland with
remote sensing and minimal field data, Ecological Indica-
tors 74: 28–38.

Thompson, W. (2006). Tarnish on the “gold standard”:
Recent problems in forensic DNA testing, The Champion
30: 10–16.

Tirumala, S.S., Shahamiri, S.R., Garhwal, A.S. and Wang, R.
(2017). Speaker identification features extraction methods:
A systematic review, Expert Systems with Applications
90: 250–271.
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