Appl. Math. and Comp. Sci., 1996, vol.6, No.1, 123-136

THE RATE DISTORTION REGION FOR CODING
IN STATIONARY SYSTEMS

ILAN SADEH*

We present the idea of process assignment as a basic tool to provide operational
compression bounds. We give a simple proof for the operational rate distortion
function using process assignment arguments for ergodic and stationary systems.
We generalize the problem to multiterminal systems. A terse review of random
process theory is followed by two examples in communications and computers
industry, where this theory supplies key bounds to the network performance.
Coupling the process definitions with the mathematical stochastic representation
of process assignment provides a new and simple proof of the achievable rate
region for a degraded di\}exsity system, or a multiple-description system. The
proof can be extended to more complicated communications networks. The
equivalence of Shannon-type and operational bounds is also addressed.

1. Introduction

It is known from Shannon’s work (Berger, 1971; Gray, 1975; Omura, 1973; Ornstein
and Shields, 1990; Ziv, 1972) and many others that every block code for data compres-
sion of block-length ! and an average per-letter distortion D for a finite-alphabet,
stationary and ergodic source has a rate greater than or equal to R(D). We show
that the same result holds for any compression algorithm, not necessarily related to
block coding, where stationarity is preserved. The proof is short and simple. The
result is not new, since Ornstein and Shields (1990) mentioned it, but a simpler proof
possesses its merits and clarity.

The main new idea is the mathematical representation of process assignment by
stochastic terms. We use it in the proof for the rate distortion function for ergodic and
stationary sources. Coupling the process definitions with the mathematical stochastic
representation of process assignment provides new and simple proofs of various source
coding theorems for ergodic sources. Gray et al. (1975) used ideas based on process
definitions to prove some source coding theorems.

We assume that the system preserves stationarity. However, the block-code does
not preserve stationarity but only L-stationarity. To include the block-code in the
analysis, block stationarity or L-stationarity should be adapted by randomization as
done in (Gray et al., 1975).
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We use the process assignment concept and extend the results for multi-rate
multi-distortion systems (also known as multiple-description systems—MDS). The
problem is discussed in (Ahlswede, 1985; Berger and Zhang, 1983; Cover and Gamal,
1982; Zhand and Berger, 1987) and presented in (Blahut, 1987). Such systems are
usually defined as diversity ones. A diversity system for communication sends several
copies of the same message to a user through several different channels, so that even
if all but one channel are broken, the message will arrive at the receiver. A degraded
diversity system is more subtle and requires only a part of the channel capacity. It
sends a part of the message through each of two channels but it does so in such a way
that either part suffices to reconstruct a degraded copy of the message. A possible
application is in the voice telephony. A digitized voice signal could be halved and
sent over two routes. If either route is blocked or disconnected, a reduced-fidelity
reproduction is still available to the receiver. Another application is the case of image
communication where a large amount of information is transmitted on parallel cables.
Clearly, the same idea can be extended to n routes.

To illustrate the importance of diversity systems for communication, we describe
the Galileo case as presented by Cheung and Tong (1993). The Galileo spacecraft is
currently on its way to Jupiter and its moons. In April 1991, the high-gain antenna
(HGA) failed to deploy as commanded. In the case when the current efforts to deploy
the HGA fail, communications during the Jupiter encounter will be through one of
the low-gain antennas (LGA) on an S-band (2.3 Ghz) carrier. A lot of efforts have
been made to open the HGA. Also various options for improving Galileo’s telemetry
down link performance are evaluated in the event that the HGA does not open on the
arrival in Jupiter. Among all available options the most promising one is to perform
image and non-image data compression using software on board of the spacecraft.
This involves in-flight re-programming of the existing flight software of the spacecraft
processors which have very limited computational and memory resources.

The solution in that case was based on a lossy image compression scheme. The
rest of the data comes from various spacecraft instruments. This can either be com-
pressed by using instrument-specific compression schemes or by using a lossless uni-
versal compression algorithm.

Moreover, projects like the Galileo involve over 20 years of efforts. We believe
there should be at least double links to secure that a hardware failure such as Galileo’s
S-band contingency will not destroy the whole mission. In such high-risk missions, a
diversity system for communication is indispensable. It does not make sense to risk
the whole mission because of a possible hardware failure.

Another important application of MDS (Multiple Description System) is in the
computer industry. Suppose one wants to compress images on a shared memory
machine where each memory portion has its own properties of access time and size.
The requirement is that it is possible to obtain a “fast” reconstructed image with
a distortion level D; while memory access is through the “cache” only. An almost
perfect reconstructed image with a distortion level Dy is required where all memory
sections are accessible. Moreover, we can extend the problem to a multi-processing
system where each processor has its own cache and can reconstruct the image with
distortion level D;. While they work simultaneously in parallel, all processors share



The rate distortion region for coding in stationary systems 125

the whole data in memory and can have almost perfect reconstruction.

We are interested in systems where more than one point-to-point information
links are available. Generally speaking, a multi-terminal network allows for more
than one data user and more than one channel between them. Information networks
can have conflicting requirements imposed by several terminals.

We generalize the case of a point-to-point link to the case where the goal is to
break a message into two (or more) distorted replicas which contain together enough
information to reconstruct the original message. The question is to design and prove
the bounds for the achievable rate regions where distortion levels are defined for the
cases. It is known that codes exist for degraded diversity systems, though it is not
known how to construct the code.

The main aim of this paper is to prove the extension of the rate distortion function
R(D) to the multi-terminal case. Data compression for diversity s ystems was treated
by Cover and El Gamal (1982). They gave a region of achievable rates and distortions
which describe the inner bound of the achievable rates. Berger and Zhang (1983)
established tightness in a special case. We give an exact bound.

The paper is organized as follows. Section 2 contains definitions and the new
proof of the theorem about the rate distortion function. Section 3 is devoted to
the multi-rate multi-distortion functions. A new result is obtained for the minimal
achievable rate region given a vector of tolerable distortions. Section 4 is a short
summary of the presented results.

2. Rate Distortion Function for Stationary Systems

Let w be an ergodic finite-valued stationary sequence with entropy rate H. Let @
denote a sample sequence or a block. Here, by the block we mean of course a block
of consecutive symbols in the sequence. The notation ! stands for a block between
positions ¢ and j in the sequence u. We shall require the standard definition of
entropy rate

.1 n
H(u) = lim ~H(uf) (1)
Given alphabets U and V, a distortion measure is any function d : |U x V| —» R*.
The function d measures the distortion (cost, penalty, loss, etc.) suffered each time
when the source produces letters u € U and the user receives letters v € V. Usually,
the range of d is finite and without loss of generality we may assume that, for all
u; € U, min; d(u,-,vj) = 0.
Let pn(@;7) denote the average value of the ‘per letter’ distortions for the letters
that comprise the block 4,

SR

pn(@;0) =

i d(@x; x) (2)
k=1

The pair (@x; 7x) denotes the letters at the k-th position at the source and the user,
respectively. The distortion is assumed to be memoryless.
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Let Q be the transition matrix which describes a channel where the input in the
past u} has been transformed into the output process v{' defined on the alphabet V.
That Q approximates the data compression algorithm at the level of a single symbol,
even though, as explained later, at the whole process level the transformation from the
input to the output process is deterministic. Here and subsequently, ¢ and j stand
for the letters from the alphabets U and V, respectively. The transition matrix
represents the uncertainty with respect to each pair (u;vi) at some position k,
without any knowledge about the past, i.e.

Q19 = Jim 3 P =5 =) ©

For a joint stationary source reproduction pair process, we have Q(j|i) = Pr(v =
7 |ux =t) for all k.

Due to the ergodicity of the source and the law of large numbers, it is almost
sure that

Jim p,(@;7) = Eqpn(u;7) (4)

The idea of a “process assignment” is the following: all the optimal encoders

are “quasi-deterministic” in the sense that there is almost no randomness in the

assignment of a time process v to a time process u. Even if there is some randomness

in the assignment process, we impose that its contribution to the conditional entropy

rate vanishes in the limit. The quasi-determinism of the encoder-decoder pair imposes

the constraint that the conditional entropy of the process v, given the process wu, is
zZero, i.e.

Hv|w) = lim “HE}|a}) =0 o

It is justified by the fact that a non-deterministic machine yields a strictly posi-
tive conditional entropy rate H(v|u) > 0. Hence, if the non-deterministic encoder
attains the minimal information I(u,v) = R(D), the reproduction entropy rate is
H(v) = R(D)+ H(v|u) > R(D). Hence, the rate and the channel capacity required
for a reliable transmission with fidelity D is strictly larger than R(D). This is a
contradiction to Theorem 7.2.6 in (Berger, 1971), because the source output cannot
be reproduced with fidelity D at.the receiver end of a channel with capacity C such
that H(v) > C > R(D). The idea was discussed in (Berger, 1971; Gray et al., 1975).
The deterministic mapping agrees with the remarkable implication of the sliding-block
coding theorem which asserts that there exists a joint measure with the property (5)
that yields distortion and rate arbitrarily close to the infimum.

However, we show that if we restrict ourselves to quasi-deterministic mappings,
the result for R(D) in stationary systems is obtained in a very simple way. In the
sequel, we shall minimize the compression ratio over the class of all encoder-decoder
pairs. Obviously, this is equivalent to taking the infimum with respect to @ over all
possible transition matrices while keeping the determinism condition (5).
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Since the processes are jointly stationary, we can define the per-letter average
mutual information rate as

Io(wiv) = lim ~I(of;u})

n—oo M
where the subscript @ emphasizes the dependence on the transition matrix Q.

It is known that the minimum achievable rate of a code with average per-letter
distortion D is denoted by R(D) and is called the rate distortion function. The
function R(D) measures the abridged information content at distortion D. The
function R(D) divides the rate-distortion plane into the set of points for which good
codes exist and the set of points for which no codes for data compression exist. The
existence of a code implies the existence of @ such that (5) is valid and that pg
defined by (4) is not greater than D. The rate distortion function R(D) is given by
the minimal mutual information per source symbol subject to the constraint on the
average distortion. It is known (Berger, 1971) that, given an ergodic source,

el -1 1-1) _
lli»lga%fle(uO , Vg )—R(D) (6)

where the infimum with respect to @ is taken over all the conditional distributions
on U'x V! having one I-dimensional marginal and satisfying

Bgnu(@,5) <D

Shannon’s theorem shows (Berger, 1971) that, for ergodic sources, R(D) is the lowest
attainable rate by any block code with average distortion not exceeding D. It was al-
so proved by Ornstein and Shields (1990) that R(D) is the bound for variable-length
coding. The equality of the operational and information-theoretic rate-distortion’
functions is well-known for all stationary (or invariant) codes, i.e. time-invariant de-
terministic mappings from input sequences to output sequences. However, we present
here a simple proof for the stationary case. The result is not new, but we believe
that the simple proof justifies its presentation. It is also a preparation for the multi-
terminal case.

We modify the definition of the rate distortion function to fit the process assign-
ment idea.

Definition 1. The operational rate distortion function R(D) is defined to be the
minimal entropy rate of the infinite output process v generated by the infinite input
process u and a process assignment algorithm (encoder and decoder pair) such that
the average per-letter distortion is at most D.

The assignment of another process to a process is identical to produce a block-
coding of infinite length.

We assume a general ergodic stationary source u. We focus attention on sources
with a finite alphabet U and we assume for each n the existence of a probability
mass function (pmf in brief)

p"(@) =Pr(u} =u) VueU"
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where @ is a block of length n and U™ is the collection of all n-tuples with co-
ordinates in U. We denote by ¢ and j the letters in the alphabets U and V,
respectively.

Theorem 1. Given an ergodic stationary source u, denoted by [U, p|, suppose that a
distortion measure d(i,7) and a non-negative number D are selected. If the system
preserves stationarity, then the operational rate distortion function is equal to the
Shannon-type rate distortion function, i.e.

inf I(p,Q) = R(D) (7)
Q)2 2, P()QU | 9d(i,)<D

Proof. Define the set of all output sequences v generated by the input sequence
v with distribution p and an encoder-decoder pair simulated by the conditional
transition matrix @ with the “quasi-determinism” property (5),

V(p.Q) = {v: Hv|u) =0}

This is because there is almost no randomness in the assignment of the time process
v to the time process u. The process assignment of the encoder-decoder pair imposes
the constraint that the conditional entropy of the process v, given the process u,
vanishes in the limit (5).

H(v|u)=0 (8)

Due to the ergodicity of the source and the law of large numbers, it is almost sure
that (4) holds and, by using the stationarity property, we obtain

nan;o pn(ut;vl) = Egpn(ul;vl) ZZp(l (719)d(5, 5) = pq )

Since the pair (u,v) is required to be stationary, the joint probability distributions
are invariant under translation of the time origin. Thus, the expected value of the
average distortion needs only be computed at a single time, i.e.

Eqpn(uy;of) = ZEQd ug; vk) = Eqd(uo; vo) = po
k, 1

The encoder-decoder pair is represented in the stationary case by the conditional
empirical per-letter distribution @. The rate-distortion function is obtained by min-
imization of the output sequence entropy over the class of all sequences that are
obtained by a quasi-deterministic mapping under the fidelity constraint from the in-
put sequence and over the class of all such mappings at the limit as the sequence
length tends to infinity. The minimization over the class of all quasi-deterministic
encoder-decoder pairs is equivalent to the minimizing with respect to @ over all pos-
sible rational transition matrices (or infimum over @ as a bound) while keeping the
fidelity constraint

R(D) = lim inf inf {H(vl )}

n—00 Qn:py (ul;v} ) KD v :H(v} |u})=0 N
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By taking the limit, using (9) and the process definitions, we obtain

inf inf {H(v)} = R(D) (10)
Q:37, 32, p()Q(5 | i)d(ij)<D vEV(P.Q)

Using the determinism condition (5) and (8), we have

inf I(p,Q) = R(D)
@Y, 3, p()QU | )d(s,i)<D

Corollary 1. The operational rate distortion function in the sense of the minimal
output sequence entropy over the class of all quasi-deterministic mappings from the
input sequence, such that the average per-letter distortion is at most D, is equivalent
in stationary systems to the Shannon-type definition of R(D) as the minimum rate
at which the source produces information subject to the requirement that its output
must be reproduced with average fidelity D.

3. Multi-Rate Multi-Distortion Functions

Similar results hold when not only one point-to-point information link is available.
We generalize the previous case to the case where the goal is to break a message
into two (or more) distorted replicas which contain together enough information to
reconstruct the original message. The question is to design and prove the bounds for
the achievable rates regions in networks where distortion levels are defined for the
cases. We present the following figure to visualize the problem.

Decoder, ———m8 —>

— Encoder Decoderg

Decodery ————»

Fig. 1. Degraded diversity system.
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Given alphabets U and Y, a distortion measure dj is defined as dg:|{UxY | — IR™.
Given alphabets U and V, a distortion measure d; is a function d; : |[U x V| — R+.
Given alphabets U and W, a distortion measure d; is defined as dy : |{U x W| — R+.
The functions dg,d;, and dy measure the distortion (cost, penalty, loss, etc.) suffered
each time the source produces letters u € U and the user receives letters v € V,
w € W, or y €Y, respectively. Usually, the range of d; is finite and without loss of
generality we may assume that for, all k, min;d;(ug,v) = 0. The same rules hold
for d2 and dy.

Let p2(@;7) denote the average value of the ‘per letter’ distortions for the letters
that comprise the block

p(5;9) = %zdo(ﬁi;yi) (11)

=1

The pair (i;;¥:) denotes the letters at the i-th position at the source and the user,
respectively. The distortion is assumed to be memoryless.

Let pl(%;%) denote the average value of the ‘per letter’ distortions for the letters
that comprise the block

n(;0) = ;11- Z d1 (:; ;) (12)

The pair (%;;%;) denotes the letters at the -th position at the source and the user,
respectively. The distortion is assumed to be memoryless.

Let p2(@;w) denote the average value of the ‘per letter’ distortions for the letters
that comprise the block

p2(; @) ng (13)

The pair (@;;w;) denotes the letters at the i-th position at the source and the user,
respectively. The distortion is assumed to be memoryless.

We formulate the general problem as in (Blahut, 1987). There are four
alphabets—the source alphabet U and three reproducing alphabets V', W, and Y,
possibly of different sizes. A stream of symbols from the source alphabet enters the
encoder, and two bit streams leave the encoder at the rates R; bits per input symbol
and R, bits per input symbol, respectively.

Both bit streams enter the central decoder. Only one bit stream enters each side
decoder. Side decoder 1 is required to describe the source data using the alphabet V'
with average distortion D; under the distortion measure d;. Side decoder 2 is re-
quired to describe the source data using the alphabet W with average distortion D,
under the distortion measure d;. The central decoder is required to describe the
source data using the alphabet Y with average distortion Dy under the distortion
measure dg.
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For each value of distortion vector (Dg, D1, D2) there is an achievable rate region
defined as the set of rate pairs R; and Ry for which there exist codes of distortion
at most (Dg, D1, D). The achievable rate region is not known except for the simple
case of a binary degraded diversity system for a binary symmetric source.

In this paper, we present an exact solution for the achievable rate region. So far
only an outer and an inner bound have been known. A crude outer bound on the
region is as follows.

Theorem 2. (Outer Bound) The pair (Ry1,R3) is not in the achievable rate region
(abbreviated as ARR) unless

R, + Ry > R(Dy), R, > R(Dy), Ry > R(D»)

However, we should not expect that all the rate pairs satisfying these inequalities
are in the ARR. This is because a part of the information in the two codewords must
be dependent so that the needs of the side decoders can be satisfied. The redundant
portion of the information will be useless to the central decoder. In addition, the
central decoder may need some detailed information that neither side decoder needs.

The inner bound on the ARR has been developed by using a single letter view
of the data compression, even though they have assumed that the encoder and the
decoder work on blocks. The proof of the inner bound has started by assuming code-
words that satisfy the needs of the side decoders and appending to these codewords
additional information that will satisfy the needs of the central decoder. However, this
method is not guaranteed to be the most efficient one since it is not known as well and
tight as the corresponding outer bound. Moreover, the method assumes only block-
coding while we guess there are codes which are achievable only by a non-block-coding
method.

The inner bound on the ARR developed by Cover and El Gamal (1982) by using
random coding arguments is as follows.

Theorem 3. (Inner Bound) The ARR contains the convex hull of the set of all
(R1,Rg) such that

Ry + Ry > I(u; (v,w,y)) + I(v;w)
Ry > I(u;v), Ry > I(u;w)

for some conditional probability distribution Q = Quuy|. such that
Dy > Edy(u,y), D, > Edy(u,v), Dy > Eds(u,w)

From the Inner Bound we conclude that the process assignment idea is also
valid for the multi-terminal case. Suppose the pair Encoder-Decoder; is not quasi-
deterministic and H(v|u) > 0. Such a stochastic source code might result in a
satisfactory average distortion D, if the other channel is broken, but the entropy rate
of the reproduction v is too large. Since the Inner Bound is defined by constraining
the average mutual information rate I(u,v) to be equal to the rate R; on its specific
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channel, the reproduction entropy H(v) = I(u,v) + H(v|u) is greater than R; in
general, since the conditional entropy rate is assumed to be strictly positive. Hence,
the test channel on Channel 1 does not provide a good stochastic code since the
rate and, therefore, the channel capacity required for reliable transmission are strictly
larger than the constraint given by the Inner Bound. This is a contradiction to the
Inner Bound that states that all pairs (Ri,Rz) that are equal to the bounds with
average distortion levels in the constraints are included in the ARR. Since an ideal
system achieves exactly the bound, the pair in question is not ideal. Thus, we conclude
that the pair Encoder Decoder; is quasi-deterministic.

By a similar reasoning we conclude that also the pair Encoder Decoders is
quasi-deterministic.

We conclude this discussion by asserting that also Decodery must be quasi-
deterministic, since the Encoder is. It does not make sense that the decoding function
is not quasi-deterministic while the encoding function is, and also the decoding func-
tions, while one of the channels is broken, are quasi-deterministic. Thus, we obtain
that

H(v|u)=H(w|u)=H(y|u) =0 (14)

in the ideal system. However, this result is based on random coding arguments. We
prefer to define the ARR, as done in the previous section, as a deterministic mapping
between processes. The so-called operational ARR 1is an extension of the operational
rate-distortion function. The equivalence of the Shannon-type definition of the ARR
and the operational ARR will be concluded.

Definition 2. The ARR (operational achievable rate region) is the region of all rate
pairs (R, Rz) on the channels, such that the deterministic mapping from the input
process u to the output processes y, v, and w yields average per-letter distortions
not exceeding Dy, D1, and Dj, respectively.

The following theorem will describe the exact bound. We denote this bound as
the multi-rate multi-distortion function.

Theorem 4. (The Multi-Rate Multi-Distortion Function Theorem) Let u be a sta-
tionary ergodic source with finite alphabet U and distribution p. Let v, w, and y be
Jjointly stationary ergodic reproduction processes with finite alphabets V, W, and Y,
respectively. Given a distortion vector (Do, D1, D), the achievable rate region (ARR)
for a degraded diversity system is the region of all Ry, and Ry defined by the convex
hull bounded according to the following inequalities:

Ri+ Ry 2 I(v;y),  Ri2I(wv), Rz I(ujw)
for all conditional probability distributions Q = Quuy|u such that

Dy > Edy(u,y), D, > Edy(u,v), D > Eds(u,w)
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Proof. Following the previous discussion, for all pairs (R;, R;) € ARR, there exists
an ideal process assignment machine (encoder-decoder system) that compresses the
input u such that

Rl +R22H(y), Rl ZH(’U), RzZH(w)
and the average distortions satisfy the inequalities

Do > lim pf(%,9),  Di> lim p.(a4,9), Dp> lim p2(@,w)
n—oo n—o00 n—oo

On the other hand, for all pairs (R;,Ry) that are not included in the ARR, there
are no machines with the above property.

Let @ be a transition matrix which describes a channel where the input in the
past u has been transformed into the output process y7 defined on the alphabet Y,
into the output process v* defined on the alphabet V' and into the output process w}
defined on the alphabet W. That Q approximates the data compression algorithm at
the level of a single symbol, even though, at the whole block level, the transformation
from the input to the outputs is deterministic. Here and subsequently, the symbols
1, J, m, and t represent letters from the alphabets U, V, W, and Y, respectively.
The transition matrix represents the uncertainty with respect to each quadrature
(ur;vk; wk; Yk) at some position k, without any knowledge about the past, i.e.

. N R . .
QU,m,t|?) = lim - E Pr(vi = j,we = m,yp = t|ux, = 1) (15)
TS

Thus, we have

Qu(59) —JLfgogZPr ve = jluk = i) = ZZQJ,mt!

Q2(m i) = lim —ZPr wy =m|up =1)= ZZQ(j,m,ﬂi)

n—oo M

Qolt19) = lim =3 Pr(ye = t|uwe =i) = 0 3 QUm ¢ ]4)
k=1 j m

In what follows, we assume that the system preserves stationarity and thus the
conditional probability is constant in time.

We define the following set of transition matrices

9(p, Dy, D1, D3) = {Q] Do > Edy(u,y), D1 > Ed;(u,v), Dy > Edg(u,w)}
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Due to the ergodicity of the source and the stationarity of the system, follow-
ing (4) and (9), it is almost sure that

Jim p0(@9) =323 D3 pDQima1ide(it) = p°(Q)
Jim g (@) =333 > p)Qimaidi (1) = #'(Q)

lim p2 (%) = Z Z 33T p6)Q)me:d2 G m) = pP(Q)

The three fidelity constraints yield, at the limit as the sequence length tends to infinity,
lim p%(;§) = Edo(u,y) < Do

n— oo

lim p},(#;9) = Edy(u,v) < Dy

n—oo

lim p2(@;@) = Edz(u,w) < Dy
n—oo
We construct, by the definition of the operational multi-rate multi-distortion
function, a mapping from a process to processes where there is no randomness in
the assignment of the time process v to the time process u. The determinism of
the encoder-decoder pair (14) imposes an additional constraint that the conditional
entropy of the process v, given the process u, is zero, i.e. H(v|u) = 0. The same
reasoning yields H(w|u) =0 and H(y|u) =0.
The set of all machines that transform the input « to the outputs v, w, and y
subject to the fidelity constraints is described by the intersection of the set Q and
the set of all transition matrices that satisfy conditions (14). Let define that set as

P(p’ DOJDI’DZ) = {Q | DO 2 EdO(u)y)a Dl Z Edl(u,'u), D2 Z Ed?(u7 ’LU)
HElw =0, Hwlw)=0, Hylv=0}
The rates are always greater than or equal to the entropy rates of the output

processes v, w and y. The entropy rates of the outputs are determined by the
transition matrix @ € P. Therefore the following inequalities hold:

{Hm}5R1 (16)
{w)} <, an)
{H(y)} <R +R, (18)

for some conditional probability distribution @ € P.
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Since H(v|u) = 0, H(y|u) = 0 and H(w|u) = 0, it follows that H(v) =
I(u,v), H(y) = I{u,y) and H(w) = I(u,w), and the mutual information comes
instead of the entropies. Thus, the region ARR is described by the following in-
equalities:

{I(u,v)} <R (19)

{I (u,w)} <R, (20)

e} srivm 21)
for some rational conditional probability distribution @ € Q. |

Clearly, this bound is located between the old inner bound and the outer bound.

4. Summary

We have proved a coding bound for any stationary (time-invariant) encoding algo-
rithms and for a stationary ergodic source. We have presented the idea of process
assignment in a single- and multi-terminal system. Coupling the process definitions
with the mathematical representation of process assignment provides a new and sim-
ple tool to analyse stationary multi-terminal systems and networks in general. We
have solved an open problem which is the exact bound for multi-rate multi-distortion
systems. The problem is also known as the degraded diversity system problem or the
multiple-description system (MDS) problem. The equivalence between the Shannon-
type bounds and the operational bounds, either in a single-link stationary system or
the multi-terminal stationary system, was proved. The results are paving the way for
solving difficult problems in multi-terminal information theory. In such cases block
coding fails but other algorithms may attain the bounds as studied in this work.
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