Appl. Math. and Comp. Sci., 1997, Vol.7, No.2, 293-303

AN ADAPTIVE FORCE/POSITION CONTROL SCHEME
FOR ROBOT MANIPULATORS

STEFANO CHIAVERINTI*, BRUNO SICILIANO* , Luict VILLANI*

An adaptive control scheme is proposed for controlling both the force and po-
sition for a robot manipulator in contact with a compliant surface. The con-
troller is developed in the framework of parallel control of inverse-dynamics type.
Adaptation to unknown stiffness is achieved by resorting to a suitable estimate
update law driven by the force error. The stability of the system is formally
proved, which ensures the tracking of both the position along the unconstrained
directions and the force along the constrained direction. Simulation results are
presented to show the applicability of the technique to practical manipulation
tasks involving interaction with the environment.

1. Introduction

When the end-effector of a robot manipulator comes into contact with the environ-
ment, purely position control schemes often fail. A successful completion of interac-
tion tasks should then be entrusted to the adoption of control strategies which make
explicit use of contact force measurements (Whitney, 1987).

Well-established frameworks for controlling the interaction include impedance
control (Hogan, 1985), hybrid control (Raibert and Craig, 1981), inner/outer con-
trol (De Schutter and Van Brussel, 1988), and parallel control (Chiaverini and Scia-
vicco, 1993). A common denominator of all these approaches is that a certain degree
of knowledge about the geometry as well as the stiffness of the contact has to be
provided with various implications for the particular framework.

In all practical manipulation tasks, exact knowledge of the contact stiffness can-
not be ensured and the controller is typically tuned on the basis of its best available
estimate. Consequently, previous research efforts have been devoted to designing
control schemes with stiffness adaptation (Carelli et al., 1990; Lozano and Brogliato,
1992; Yao et al., 1994; Singh and Popa, 1995).

Parallel control constitutes an effective framework to handle scarce knowledge of
contact geometry. Besides the original inverse dynamics controller (Chiaverini and
Sciavicco, 1993), a force/position regulator (Chiaverini et al., 1994) and a passivity-
based controller (Siciliano and Villani, 1996) have been developed. The common
feature of all these schemes is the possibility of regulating the contact force to a con-
stant value without using explicit information on the constrained and unconstrained
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task directions. The key limitation preventing force tracking is the typical uncertainty
as to the contact stiffness.

The aim of this paper is to present a new parallel control scheme with stiffness
adaptation, which yields tracking of the contact force along the constrained task
direction together with tracking of the end-effector position along the unconstrained
task directions. The stability of the closed-loop system under the proposed controller
is proved, which leads to simple conditions on the control parameters.

A case study is worked out which regards simulation of a practical task where
uncertainty occurs about both the geometry and the stiffness contact.

- 2. Modelling

For the purpose of this work, a three-joint rigid robot manipulator performing a three-
degree-of-freedom task is considered. Its joint-space dynamic model can be written
in the well-known form

B(q)§+C(q,9)q+d(q,q) + gla) =v— T (q)f (1)

where g is the (3x1) vector of joint variables, B stands for the (3x3) symmetric
inertia matrix, Cq denotes the (3x1) vector of Coriolis and centrifugal torques, d
stands for the (3x1) vector of friction torques, g is the (3x1) vector of gravitational
torques, u stands for the (3x1) vector of driving torques, f is the (3x1) vector
of contact forces exerted by the end-effector on the environment, and J denotes the
(3x3) Jacobian relating joint velocities ¢ to the (3x1) vector of end-effector velocities
p, ie

p=J(9)q (2)

The environment is modelled as a frictionless and elastically compliant plane. A
point contact is considered and the contact force is expressed as

f=K(p—po) 3)

where p is a (3x1) vector representing the end-effector position at the contact point,
po stands for a (3x1) constant vector characterizing the rest position of the plane,
and K is the (3x3) constant, symmetric and positive-semidefinite stiffness matrix.
The assumed contact model requires that f be normal to the plane; this implies that
the rank of the stiffness matrix must be one. Note that eqn. (3) holds only when the
end-effector is in contact with the environment and all quantities are expressed in a
common reference frame.

It is worth considering the rotation matrix expressing the orientation of the
contact frame with respect to the reference frame:

R=[t, t; n] (4)
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where n is the unit vector normal to the contact plane, and ¢;,t; are two orthogonal
unit vectors lying in the plane. Projection of a vector v on the frame R gives

RT’U = | Uiy (5)

In view of (4), the stiffness matrix can be written as
K = Rdiag{0,0,k}RT = knn” (6)

where &k > 0 is the stiffness coefficient. It is easily seen that eqn. (6) leads to the
following expression for the contact force:

f=knn"(p—po) (7)

3. Parallel Control
An inverse-dynamics control law can be chosen as (Sciavicco and Siciliano, 1996)
u = B(q)J ! (g)(a ~ J(q,9)4) + C(q,9)q + d(q,4)
+9(q) + I (a) f

where J is assumed to be non-singular.

(8)

On the assumption of perfect dynamic compensation and exact force cancellation,
substituting control (8) into model (1) and taking the time derivative of (2) gives a
linear decoupled system expressing a resolved end-effector acceleration. System (1)
under control (8) can be expressed as

P=a 9)

Let ps and fy denote the desired values of position and force, respectively.

Furthermore, let p = p; —p and f = f; — f denote respectively the position and
force errors.

The elastic contact model (7) suggests that a null force error can be obtained
only if f3 = fgnn. If no information about the geometry of the environment is
available, i.e. the direction of n is unknown, the null vector can be assigned to f4
that is anyhow in the range space of any matrix K. Analogously, it is clear that null
position errors can be obtained only on the contact plane, while the component of p
along m has to accommodate the force requirement specified by f;. Thus pg can
be freely reached only in the null space of K, i.e. along the unconstrained directions
of the task space.

By following the parallel control approach, the new control input a is designed
as the sum of a position control action and a force control action (Chiaverini and
Sciavicco, 1988):

a=a,+ay (10)
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where the force control action will dominate the position control action along the
constrained task direction.

The classical design is to take a, as a PD action on the position error plus
velocity and desired acceleration feedforward, and ay as a PI action on the force error
plus desired force feedforward (Chiaverini and Sciavicco, 1993). This choice ensures
dominance of the force loop over the position loop in that a null force error can be
achieved at the expense of a constant position error in the steady state. Nevertheless,
the choice of the parameters for the force loop depends on the choice of the parameters
for the position loop, and stability of a third-order linear system has to be guaranteed.

A modified design consists in taking the force control action in such a way as to
cancel the dynamics imposed by the position control action and replace it with a new
second-order dynamics. An integral action on the force error has still to be adopted
in order to obtain the null force error in a steady state. This has the advantage
of making the force control loop design independent of the position control loop
design (Chiaverini et al., 1996). Therefore the two control actions in (8) are taken as:

ap = Pa+ kpp + kpp (11)
af=é+kpé+kpf (12)

where kp,kp > 0 are suitable control parameters to impose the desired dynamics on
the position, and £ is the solution of

E+ € =MF (13)

for given initial conditions £(0), £(0); A1, X2 > O are suitable control parameters to
impose the desired dynamics on the force.

Following the guidelines in (Chiaverini and Sciavicco, 1993), it is possible to
analyze the behaviour of system (9)-(13) by projecting its dynamics in terms of
contact plane components along %, t2, and the component along n. In detail, it is
obvious that if f; is along n, system (9)-(13) ensures the position reference trajectory
along the contact plane components. On the other hand, it can be recognized that
f tends to a constant set point fy in a steady state—when py is constant along
n—with a dynamics depending on the stiffness coefficient %, for any given A; and
As. In other words, regulation of the contact force is achieved.

~ To improve the performance of the force loop during the transient and eventually
achieve contact force tracking capabilities, knowledge of the stiffness coefficient must
be included into the control law. The needed compensation actions can be either tuned
on the basis of the value of the stiffness coefficient whenever available, or driven by
an adaptive algorithm when stiffness is not exactly known a priori. For this purpose,
eqn. (13) must be replaced with

E+ b =\F (14)

in which the new control input f. should be properly designed.

In view of the above discussion, in the sequel it is assumed that fq = f4.m and
Dd,n is constant.
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4. Known Stiffness

If k is known, f. in (14) can be chosen as

1
fe= E‘P (15)
with
0= F+ 5 (Fu+rof) (19)

Theorem 1. The system (1), (7) under the control law (8), (10)-(12), (14)-(16) has
a globally exponentially stable equilibrium for any choice of kp >0, kp >0, Ay > 0,
A2 > 0. In particular, p;, — Pdt,, Pt, — Ddts, fn — fan as t — oo.

Proof. The system (1), (7) under the control law (8) leads to (9). Substituting
(10)—(12) into (9) and projecting onto R, we obtain

Py, + kpD,, + kppy, =0 ' (17)
Pty + kpPy, + kppr, =0 (18)
P+ kDB, + kphn = & + kpén + kpén (19)

It must be pointed out that the above projection has taken (14)—(16) into account in
that & is aligned with n, being both f and f; along n.

Equations (17) and (18) imply that p;; — pat,, Pt, — Pas, for any positive kp,
kp and initial conditions p, (0), p¢,1(0), Pt,(0), Pr,2(0).

On the other hand, the solution to egn. (19) is
Pn(t) = —&n(t) +&(t) (20)

where e(t) is an exponentially decreasing function depending on the initial conditions
5n(0), Pn(0).

By projecting model (7) onto n, the component of the force error can be ex-
pressed as

fn=kpn + fd,n + k(Po,n 'pd,n) (21)

Then, solving (21) with respect to p, and substituting the result into (20) give

gn:_f_"l+‘fd_’"

A A +Don —Pint€ (22)

At this point, substitution of (15), (16), and (22) into (14) gives

ot dafut+Mfo=¢ (23)
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where ¢’ = k(¢ + A2€) is an exponentially decreasing function of time. It is easy to
check that f, — 0 as t — oo for any positive value of A1, A2 and initial conditions

Fal0), F2(0).
The dynamics of the closed-loop system (1), (7), (8), (10)-(12), (14)-(16) is

described by eqns. (17), (18), (19) and by the projection of equs. (14)-(16) onto n.
On the basis of the above considerations, the state

. . . i T
[Ptl Pt, Dn €7L Pty Pty DPn fn]
converges exponentially to the equilibrium
. . ; ; T
[Pat, Pdt, fan/k+Don fin/k+Don—Pdn DPdt, Pdt, fin/k fan/k]

from any initial condition. ]

5. Unknown Stiffness

In most practical cases, the value of the stiffness coefficient is not exactly known
a priori. Nevertheless, an adaptive control law can be found to ensure tracking the
force reference trajectory.

Inspired by the technique in (Canudas de Wit and Brogliato, 1994), the input
signal f. can be modified into

fo=d¢+ 9 _ (24)
where ¢ is the solution of

P+Xsp=¢ (25)
with Az > 0 and initial condition ¢(0), while the estimate 9 is updated as

3 =yp" f (26)

with 4 > 0 and initial condition 9(0).

Theorem 2. The system (1), (7) under the control law (8), (10)-(12), (24)-(26)
has a stable equilibrium for any choice of kp > 0, kp >0, v > 0, Ay > 0, Ay > 0,
A3 > Ag. In particular, ps, — Paty, Pty = Pdjtss fn = fan as t — 00,

Proof. Following the main ideas in the previous proof, the system (1), (7) under
control law (8), (10)—(12) leads to eqns. (17)~(19). Again, (17) and (18) imply that
Di, — Ddty, Pty — Pdt, Tor any positive kp, kp and initial conditions P, (0), p:1(0),
Pt,(0), Pe2(0). On the other hand, the solution to (19) leads to (22).

Equation (24) can be rewritten as
fo=90 —Jp —J9p (27)
where ¥ =9 — 9 and ¥ = 1/k. Combining (27) with (25) gives
fo=9p — 9 — A9 (28)
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with
P =@ _ (29)
At this point, substitution of eqns. (16), (22), (28) and (29) into (14) gives
fat Do fu ot M o = B + Asthn) + € | (30)
Equation (26) can be rewritten as

9 =G fn (31)

whereas eqn. (30) can be rewritten in the following minimal state-space form:

T = Az + by, + bae’

y (32)
fa=cTx
with
0 —X
A= (33)
1 =X
kA3
kAp
1
by = (35)
0
0
c= (36)
1
- 1T
for the state z = [ [(=M1Fn + kM Asthn + ') dr fn]
The transfer function
— AL(s + As)
T(sl — lp — 21" T A3)
cT(sI — A)7 b, Tt (37)

can be made strictly positive real with a proper choice of the parameters A1, A2, Az
In particular, sufficient conditions are

A1 >0 (38)
A2 >0 (39)

Az > Ao (40)
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From the Kalman-Yakubovich-Popov lemma (Khalil, 1992) it follows that there
exist a symmetric positive-definite matrix P and a positive-definite matrix Q such
that

ATP+PA=-Q (41)

Pb =c (42)

Consider the function

P
V=azTPzx+ - + ,u/ e?(r)dr (43)
t

where p > 0 is a free parameter. Computing the time derivative of V' along the
trajectories of the system (31), (32) gives

V=-27Qx + 2fnthn — 290G, fr + 227 Pboe' — pe'
= —&7Qzx + 227 Pbye’ — pe”
< —qllz|? + 2pllz|l |¢'| — ule'f? (44)

where the projection of (29) onto n has been exploited. Here ¢ > 0 is the minimum
eigenvalue of the matrix @, and p > 0 is the maximum eigenvalue of the matrix P.

In view of (44), the choice u > p?/q ensures V < 0. Hence V(t) is a decreasing
function of time. Taking into account that V > 0, the boundedness of V(¢) for any
t > 0 and the convergence of V(¢) as t — oo can be concluded.

On the other hand, the expression for V' in (43) reveals that the boundedness
of V implies that of @ and #. Moreover, the boundedness of & can be inferred
from (32) through (16), (25), (29). Therefore, V(t) is bounded, too, and V(¢) is
uniformly continuous. From Barbalat’s lemma it follows that V() — 0 as t — oo.
Then = — 0 from (44), &' being an exponentially decreasing function of time. Finally,
in view of (32), fr — 0 as t — co.

The dynamics of the closed-loop system (1), (7), (8), (10)-(12), (24)—(26) is
described by eqns. (17)-(19), (31), (32). Hence, all the signals of the system are
bounded and the stability can be concluded. n

6. Simulations

Simulations have been worked out by considering an industrial robot Comau
SMART-3 S which is a six-revolute-joint anthropomorphic manipulator with non-
null shoulder and elbow offsets, and a non-spherical wrist. In the present study, only
the inner three joints have been considered and an identified dynamic model of the
manipulator has been utilized. Also, a discrete-time implementation of the control
algorithm with 1 ms sampling interval has been assumed.

The task consists in a straight-line motion in the yz-plane with an end-effector
(horizontal) displacement of 0.25 m along the y-axis and a (vertical) displacement
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of 0.125 m along the z-axis. The trajectory along the path is generated accord-
ing to a 5Sth-order interpolating polynomial with null initial and final velocities and
accelerations, and a duration of 6 s. The environment surface is flat and is placed
(horizontally) in the zy-plane in such a way as to obstruct the desired end-effector
motion. To begin, a null set point is assigned to the contact force. When the end-
effector comes into contact with the environment, i.e. a non-negligible force is sensed,
the desired force along the z-axis is taken to —40 N according to a 5th-order polyno-
mial with null initial and final first and second time derivatives, and a duration of 1 s.
The constant value is kept for 0.5 s, and then the desired force is taken back to zero
in 1s with the same polynomial as above, making a tooth-shaped profile. After a
0.5 s lapse, the same tooth is replicated.

The above task is first executed using the control scheme described in Section 4.
Obviously, inaccurate knowledge of the environment stiffness has been assumed.
Therefore, uncertainty occurs as to both the geometry and the stiffness contact.

The control parameters in (11) have been set to kp = 2500, kp = 90 so as to
guarantee well-damped behaviour for the unconstrained motion of the manipulator.
Also, the control parameters in (14)-(16) have been set to A; = 180, A = 30 so as
to achieve satisfactory behaviour during the constrained motion with an estimated
value of 10000 N/m for k. The true stiffness coefficient of the environment is k =
5000 N/m, instead.

The simulation results are presented in Fig. 1 in terms of the desired (dashed)
and actual (solid) end-effector paths, together with the time history of the desired
(dashed) and actual (solid) contact force. For the sake of clarity, the rest position
of the contact plane is also depicted (dash-dotted). It can be recognized that after a
transient the contact force attempts to track the given force trajectory. A peak on the
component along the z-axis is due to a non-zero value of the end-effector velocity at
the contact as well as to the imposed motion into the surface. When the desired force
is taken back to zero, a time delay is experienced by the contact force in tracking the
reference trajectory. This is mainly imputed to the mismatch of the estimated and
true values of k. This time-delay effect can also be observed while tracking the second
force tooth. On the other hand, the path is satisfactorily tracked before the contact.
After the contact, position errors occur only along the z-axis due to the presence of
the contact surface, as expected.

Next, the performance of a new controller with stiffness adaptation (described
in Section 5) has been tested for the same task as above. The values of kp, kp,
A1, Az are the same as in the previous scheme, while the design parameters in (25)
and (26) have been chosen as A3 = 45 and y = 0.00004, respectively. The initial
estimate 9(0) has been set to 0.0001, according to the nominal stiffness value. In
Fig. 2 it can be seen how the adaptation mechanism is promptly capable of ensuring
contact force tracking even in the presence of a time-varying pqn. after the contact
for the duration of the steered motion. Further, the position tracking performance is
substantially unaffected by the modified controller and similar conclusions as for the
previous case can be drawn.
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Fig. 1. Simulation results without stiffness adaptation.
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Fig. 2. Simulation results with stiffness adaptation.

7. Concluding Remarks

Parallel force/position control for a robot manipulator in contact with a compliant
plane has been presented in this work. With respect to the class of the existing
schemes of inverse-dynamics type, the problem of improving the contact force tran-
sient has been handled by requiring force tracking capabilities. To this end, two
schemes have been considered. The first scheme has been devised assuming exact
knowledge of the stiffness coefficient characterizing the contact. Then, an adaptation
mechanism has been developed in the second scheme, allowing for contact force track-
ing when exact knowledge of the stiffness coeflicient is not available. The schemes

have been successfully tested in simulation to show applicability of the approach to a
real interaction task.
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