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THE STABILITY OF AN IRRIGATION CANAL SYSTEM
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In this paper we examine the stability of an irrigation canal system. The system considered is a single reach of an irrigation
canal which is derived from Saint-Venant’s equations. It is modelled as a system of nonlinear partial differential equations
which is then linearized. The linearized system consists of hyperbolic partial differential equations. Both the control
and observation operators are unbounded but admissible. From the theory of symmetric hyperbolic systems, we derive the
exponential (or internal) stability of the semigroup underlying the system. Next, we compute explicitly the transfer functions
of the system and we show that the input-output (or external) stability holds. Finally, we prove that the system is regular in
the sense of (Weiss, 1994) and give various properties related to its transfer functions.

Keywords: Saint-Venant equation, dimensionless, symmetric hyperbolic equation, internal stability, transfer function,
input-output stability, regular systems

1. Introduction

Hydraulic systems of irrigation canals are inherently char-
acterized by distributed parameter dynamics, giving rise to
delayed responses. The essential nature of distributed pa-
rameter dynamics cannot be ignored if we wish to control
these processes. The objective of our work is to develop
a framework which would be useful for robust control
of these distributed parameter processes. The approach
adopted here is essentially infinite dimensional: the analy-
sis will be carried out based on a PDE model in contrast to
the approximation ideas, resulting in infinite dimensional
models.

In this paper we discuss the internal and external sta-
bility of an irrigation canal system. The system consid-
ered is an irrigation canal which is partitioned as a single
reach consisting of a single pool with two gates,Gu and
Gd, located at its upstream and downstream ends, respec-

���������	��

���������
�����������

�
��
��������

� � � !

"

#
#

"
$

%�'&

( 
 ! �����

)

#
"

#

" ( �
$ �+*-,/.10

2 ���

"

#
(43 *-, .10

5768�9��:;���=<?>�@9A��;B�CD�E ��>��FB�G;HD<?B

Fig. 1. The investigated reach.

tively (Fig. 1). This is a basic element of a complete ir-
rigation canal. In what follows, the reach is assumed to
be uniform with a trapezoidal cross-section of the slope
β (see Appendix 2). The derivation of the Saint-Venant
equations of the unsteady flow in open canals for shal-
low water conditions can be found in the literature (Chow,
1985; Mahmood and Yevjevich, 1975; Miller and Yevje-
vich, 1975). Then in these conditions, the flow dynamics
in open canals are governed by the following nonlinear
coupled hyperbolic partial differential equations (PDEs):

∂S(x, t)
∂t

+
∂Q(x, t)
∂x

= q, (MASC)

∂Q(x, t)
∂t

+
∂(V ·Q(x, t))

∂x

+ g
∂Z(x, t)
∂x

= −gSJ + q · V (MOMC)

(1)

for all (x, t) ∈]0, L[×R+ where x is the spatial loca-
tion (m), t is time (s),S is the flow cross-section (m2),
Q is the flow discharge (m3/s), q is the infiltration rate
(m2/s), V is the mean velocity (m/s),g is the gravity ac-
celeration (m/s2), Z is the water elevation (m), andJ is
the friction slope. The equation (MASC) is the conser-
vation of mass, and (MOMC) is the conservation of mo-
mentum. They are complemented with initial conditions
Z(x, 0) and Q(x, 0), and upstream, downstream and in-
ternal boundary conditions.

This nonlinear model is a simplified version of
the model implemented in SIC (Simulation of Irrigation
Canals), a commercially available package developed by
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CEMAGREF (1992). It is applied to a single reach, con-
sisting of a single pool with a single gate located at its
downstream end. Its objective is to describe the dynamic
behaviour of the flow dischargesQ and the water ele-
vations Z in the canal as boundary conditions change.
For the studied reach, the appropriate boundary conditions
need to be specified:

1. The upstream dischargeQuu.

2. The discharge equation of the upstream gate is

Qu(t) = Quu(t) = cuLuWu

√
2g(Zuu (t)− Zud (t)).

3. The discharge equation of the downstream gate is

Qd(t) = Qdd(t) = cdLdWd

√
2g(Zdu(t)− Zdd (t)),

where Quu and Qdd are the discharges through the
upstream and downstream gates,cu and cd are
the upstream and downstream gate discharge coef-
ficients, Lu and Ld are the widths of the upstream
and downstream gates (m), Wu andWd are the up-
stream and downstream gate openings (m), Zdu and
Zd = Zdd are the upstream and the downstream wa-
ter elevations at the downstream gate,Zu = Zuu and
Zud are the upstream and downstream water eleva-
tions at the downstream gate, respectively.

4. The offtake outflow isQp(t) = Qdu(t) − Qd(t),
where Qdu is the upstream discharge at the down-
stream gate.

5. The downstream water elevationZd at the down-
stream gate is given by the rating curve equation

Zd(t) = qQd(t), q > 0.

To transform the Saint-Venant equations to a dimen-
sionless form, each variable is divided by a constant ref-
erence value with the same dimension. A possible sys-
tem of reference variables consists of the reference vari-
ables corresponding to the steady flowQ0(x) = Q0 (see
Appendix 2). Other choices are possible as indicated in
(Baume and Sau, 1997; Clemmentset al., 1995). From the
Saint-Venant equations, if dimensionless reference vari-
ables are used for the steady flow, the system linearized
around a reference steady state (Z0(x), Q0(x), S0(x))
given in Appendix 2 is governed by the following hyper-
bolic partial differential equations (Baume, 1990; Baume
and Sau, 1997; Bounit, 2003a; Bounitet al., 1997)):

∂Z∗(x∗, t∗)
∂t

+ a1
∂Q∗(x∗, t∗)

∂x∗
= 0,

∂Q∗(x∗, t∗)
∂t∗

+ a2
∂Z∗(x∗, t∗)

∂x∗
+ a3

∂Q∗(x∗, t∗)
∂x∗

+a4Z
∗(x∗, t∗) + a5Q

∗(x∗, t∗) = 0

(2)

for all (x∗, t∗) ∈]0, L∗c [×R+, where L∗c is the dimen-
sionless length of the canal.

Gate openings would be specified relative to the wa-
ter depth at a steady flow for the reference section.

Then the above PDEs are coupled by the following
boundary conditions:

1. The dimensionless linearized (G′is, i = u, d) dis-
charge equations

Q∗u(t
∗) = Q∗(0, t∗) = c1W

∗
u (t∗)− c2Z

∗(0, t∗)

= u∗(t∗), (3)

Q∗d(t
∗) = c3(Z∗(L∗c , t

∗)− Z∗d(t
∗))

= Q∗(L∗c , t
∗)−Q∗p(t

∗). (4)

2. The dimensionless rating curve equation

Z∗d(t
∗) = q∗Q∗d(t

∗). (5)

The dimensionless output considered is

y(t∗) = Z∗(L∗c , t
∗). (6)

In (4)–(5), Z∗d andQ∗d are, respectively, the dimen-
sionless downstream water elevation and discharge asso-
ciated with the downstream gateGd. W ∗

u is the dimen-
sionless deviation opening at the upstream gate.Q∗p(t

∗)
is the dimensionless offtake discharge. The downstream
gate Gd is fixed a priori (i.e., Wd = cte, cf. Fig. 1).
The upstream water elevation forGu is also constant
(i.e., Zr = cte, Fig. 1). The constant parametersai are
uniquely determined by the steady state and the dimen-
sionless reference system (onlya2 and a4 change the
sign). Similarly, the constantsci depend on the steady
state, the dimensionless reference system used and the dis-
charge at the upstream downstream gate and width coef-
ficients (see Appendix 2). The state variablesZ∗(x∗, t∗)
and Q∗(x∗, t∗) are the dimensionless deviations in the
water level and discharge, respectively, from the steady
state in the canal. The input variableu∗(t∗) which rep-
resents the variation in the inlet dimensionless discharge
Q∗(0, t∗) is boundary and affects the PDEs in (4). The
output variabley(t∗) in (1), representing the deviation in
the dimensionless water level in the downstream, is also
boundary and enters the boundary condition (5). The dis-
turbance variabled∗(t∗) = Q∗p(t

∗) represents the devi-
ation in the unknown dimensionless outflow in the up-
stream of gateGd and enters the boundary condition (5).
So (2)–(6) describe an infinite dimensional linear system
with boundary input and boundary output.

This irrigation canal system was studied in (Bounit,
2003b) in order to construct anH∞-controller. TheH∞-
control theory developed in (Francis and Zames, 1984;
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Zames and Francis, 1983) combined with an approxima-
tion approach given in (Yoon and Lee, 1991) was applied
to this system for minimizing the worst effect of the dis-
turbanced(t) on the outputy(t). By considering some
other geometric configuration of the canal irrigation sys-
tem, the canal is partitioned as a single reach with a sim-
ple gate positioned in its downstream which is the basic
element of the complete irrigation canal. Then a robust
low-gain P.I.-controller was proposed in (Bounit, 2003a).

The present paper shows how the system (2)–(6) is
transformed into a dissipative symmetric hyperbolic sys-
tem. Then we prove that the associated semigroup is ex-
ponentially stable using the theorem of (Rauch and Tay-
lor, 1974), whence it is stabilizable and detectable. Input-
output stability is also demonstrated. The concepts of the
approximate and exact controllability and observability
are not recovered here. The first concept is more conve-
nient from a control engineering point of view because it
is less restrictive than the exact controllability. Recall that
there are many results on controllability and observabil-
ity for a large class of symmetric hyperbolic systems in
(Russel, 1978). Moreover, there exist computational tests
for checking controllability (resp. observability) for large
classes of linear distributed systems (Curtain and Zwart,
1995) and it would be interesting to study these concepts
for our system.

We also prove that the system (2)–(6) is regular in the
sense of (Weiss, 1994). The regularity of the controlled
and observed systems with an exponentially stable semi-
group guarantees that the plant transfer functionP (s) and
the disturbance transfer functionW (s) are inH∞

0 (that
is analytic and bounded in the right-hand half plane). The
fact that the system under consideration is regular has use-
ful consequences on the design of the feedback controller
for the system.

The class of regular linear systems is closed under
feedback. The most important consequence is that inter-
nal and external stabilities are equivalent for a regular sys-
tem which is both stabilizable and detectable as proved in
(Rebarber, 1993). Using the theory of symmetric hyper-
bolic systems outlined in (Rauch and Taylor, 1974; Rus-
sell, 1978), we prove exponential stability for a much class
of irrigation canals. Using the recent representation theory
developed in (Weiss, 1994), we are able to characterize the
transfer functions in terms of the semigroup operator, the
input operator and the output operator. This characteriza-
tion is useful for controller design purposes.

The paper is organized as follows: In Section 2, the
system is transformed to an abstract boundary control sys-
tem. In Section 3, the stability result of (Rauch and Tay-
lor, 1974) is presented for a class of symmetric hyperbolic
systems. Section 4 is divided into two subsections: In the
first subsection, the system equations (2)–(6) are trans-
formed into the form of a symmetric hyperbolic system.

The exponential stability is obtained by applying the re-
sult presented in Section 3. In the second subsection, the
transfer function representation of the system (2)–(6) is
given. Next, we characterize an open set of numerical val-
ues of physical constants of the canal for which we can
actually prove that the system is input-output stable. This
fact is useful inH∞-control and robust control, as will
be discussed in another article (Bounit, 2000a; 2003b). In
Section 5, we show that the system is regular and various
properties are derived for its transfer functions. Section 6
contains conclusions.

2. Symmetric Hyperbolic Systems

Consider a symmetric hyperbolic system of the form

∂h(x, t)
∂t

= A(x)
∂h(x, t)
∂x

+B(x)h(x, t),

(x, t) ∈]0, 1[×R+,

h−(0, t) = D0h
+(0, t),

h+(1, t) = D1h
−(1, t),

h(x, 0) = h0(x),

(7)

where h−(x, t) ∈ Rp, h+(x, t) ∈ Rq and h(x, t) =
(h−(x, t), h+(x, t)) is a (p + q) × 1 vector function
for (x, t) ∈ [0, 1] × R+, A(x) and B(x) are real
(p+ q)× (p+ q) matrix functions andA(x) is diagonal
for x ∈ [0, 1]. D0 andD1 are real constant matrices.

The diagonal matrix has the form(
A−(x) 0

0 A+(x)

)
,

with

A−(x) = diag(λi(x); i = 1, p),

A+(x) = diag(λi(x); i = p+ 1, p+ q).

We denote byΛ the transposed matrix ofΛ or the adjoint
operator ofΛ, as will be clear from the context, and by
Ax(x) the Jacobian ofA(x). For clarity, we assume that
the following hypotheses are satisfied for the system (7):

H1: B(·) ∈ C0([0, 1]; Rn×n) and
A(x) ∈ C1([0, 1]; Rn×n),

H2: λi(x) < 0, i = 1, 2, . . . , p and λi(x) > 0,
i = p+ 1, . . . , p+ q for anyx ∈ [0, 1],
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H3: For eache− ∈ Rp, e+ ∈ Rq and x ∈ [0, 1], we
have

(i)
( e−

e+

)∗(
B(x) +B∗(x)−Ax(x)

)( e−

e+

)
≤ 0,

(ii) (e−)∗
(
A−(1) +D∗1A

+(1)D1

)
(e−) ≤ −r−‖e−‖2p,

(iii) (e+)∗
(
A+(0) +D∗0A

+(0)D0

)
(e+) ≥ r+‖e+‖2q,

and
r+ ≥ 0, r− ≥ 0 : r+ + r− > 0.

Theorem 1. (Rauch and Taylor, 1974).Assume that the
system (7) satisfies the hypotheses (H1)–(H3). Then for
eachh0 ∈ (L2[0, 1])n, (7) has a unique solution:

h(·, t) ∈ C
(
[0,+∞);

(
L2[0, 1]

)n)
.

The semigroup of bounded linear operatorsS(t) from
H = (L2[0, 1])n into itself defined byh(·, t) = S(t)h0

is exponentially stable:

‖S(t)‖L(H) ≤Me−ωt,

for some constantsM,ω > 0.

3. Stability of the Irrigation Canal

In this section, we first show that the investigated irriga-
tion canal system can be transformed into the form (7) and
prove the exponential stability of the system by applying
Theorem 1. Next, we compute the system transfer func-
tions P (s) andW (s) and prove input-output stability.

3.1. Exponential Stability of the Semigroup

We have to convert the system (2)–(6) into a standard state
space form. It is important to be very precise about the
state space formulation, because the proof of exponential
stability is system theoretic in nature. In the analysis be-
low, this model is seen as a boundary distributed control
system. Now, observe that the basic dynamical model (2)–
(6) can be rewritten as a boundary control system (BCS):

Φ̇(t∗) = A∂Φ(t∗) +BΦ(t∗),

Γ∂Φ(t∗) =

(
1
0

)
u(t∗) +

(
0
1

)
d(t∗),

y(t∗) = CΦ(t∗),

where Φ̇(t∗) denotes the derivative ofΦ(·, t∗) with re-
spect tot∗ and

A∂ =

(
0 −a1

−a2 −a3

)
∂

∂x∗
, B =

(
0 0
−a4 −a5

)
.

The stateΦ = (Z∗, Q∗) of the system (BCS) belongs to
H, the control inputu ∈ U = R and the outputy ∈ Y =
R. The boundary operatorΓ∂ and the output operatorC
are given as follows:

Γ∂Φ=
(
Φ2(0),Φ2(L∗c)− kΦ1(L∗c)

)T
, k=

c3
1 + q c3

,

CΦ = Φ1(L∗c).

This description is analysed in detail in the following.

Since our objective is the dynamical analysis of an
irrigation canal model using linear distributed parameter
systems theory (see, e.g., Curtain and Zwart, 1995; Pazy,
1983; Weiss, 1989a; 1989b), an important preliminary
step is to obtain a description of the model as an infi-
nite dimensional Hilbert state space (BCS), whereΦ(t)
belongs to a real separable Hilbert spaceH and the spa-
tial differential operatorA∂ is the infinitesimal genera-
tor of a strongly continuousC0 semigroup (eA∂t)t≥0

on H. Here, we use the (Hilbert) state spaceH =
L2[0, L∗c ] × L2[0, L∗c ] obtained as the Cartesian product
of the Hilbert space

L2[0, L∗c ]=
{
f | [0, L∗c ]−→R;

∫ L∗c

0

|f(x)|2 dx < +∞
}
.

L2[0, L∗c ] is a Hilbert space with the inner product and
norm defined respectively by

∀f, g ∈ L2[0, L∗c ] : 〈f, g〉L2 =
∫ L∗c

0

f(x)g(x) dx,

‖f‖2 =
(∫ L∗c

0

|f(x)|2 dx
)1/2

.

The Hilbert spaceH is endowed with the inner product
〈·, ·〉H defined as follows: For anyf = (f1, f2)T and
g = (g1, g2)T ∈ H,

〈f, g〉H = 〈f1, g1〉L2 + 〈f2, g2〉L2 .

The domainD(A∂) of the unbounded operatorA∂ :
D(A∂) −→ H is given by D(A∂) = H1[0, L∗c ] ×
H1[0, L∗c ], whereH1[0, L∗c ] is the Sobolev space:

H1[0, L∗c ]=
{
f ∈ L2[0, L∗c ] | f is absolutely continuous

and df/dx∗ ∈ L2[0, L∗c ]
}
.

Now, let us show how to transform the irrigation canal
system into the form (7). We perform a normalization so
that L∗c = 1; the distance along the canal is referred to as
its length. This last assumption is not necessary for our
work, but it makes the calculation slightly simpler.
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For simplicity, we shall writeΦ(x, t) instead of
Φ(x∗, t∗) whenever no confusion arises. Then the (BCS)
can be written as

∂Φ(x, t)
∂t

= Ac
∂Φ
∂x

+BcΦ(x, t),

(x, t) ∈]0, 1[×R+,

Φ2(0, t) = u(t),

Φ2(1, t) = kΦ1(1, t) + d(t),

y(t) = Φ1(1, t),

(8)

where

Ac =

(
0 −a1

−a2 −a3

)
, Bc =

(
0 0
−a4 −a5

)
.

The matrixAc is not diagonal as required in Theorem 1.
So, let us diagonalize it. For this, we need to compute two
characteristic roots of the following characteristic equa-
tion:

det(λI −Ac) = λ(λ+ a3)− a1a2.

It is easy to verify that4a1a2 + a2
3 > 0 (see Ap-

pendix 2). Then, these roots are given by
λ− =

1
2
(
− a3 −

√
a2
3 + 4a1a2

)
< 0,

λ+ =
1
2
(
− a3 +

√
a2
3 + 4a1a2

)
> 0,

(9)

with 
λ+ − λ− =

√
a2
3 + 4a1a2,

λ+ + λ− = −a3,

λ+λ− = −4a1a2.

(10)

So, the passage matrix and its inverse are respectively
given by

P =

 −λ
+λ−

4
−λ

+λ−

4

λ− λ+

 ,

P−1 =
1

(λ+ − λ−)

 − 4
λ−

−1

4
λ+

1

 .

Thus the matrixAc can be written asAc = PAP−1,
where

A =

 λ− 0

0 λ+

 .

Consider the following linear transformation, which
makesAc diagonal:

Φ T−→ Ψ = P−1Φ = (Ψ1,Ψ2).

Applying the transformation (T ) to the first equation
in (8), we obtain the following PDEs:

∂Ψ(x, t)
∂t

= A
∂Ψ
∂x

+BΨ(x, t), (x, t) ∈]0, 1[×R+, (11)

where

B = P−1BcP =
1

4(λ+ − λ−)

×

(
λ−(4a5 − a4λ

+) λ+(4a5 − a4λ
−)

−λ−(4a5 − a4λ
+) −λ+(4a5 − a4λ

−)

)
.

Applying once again the transformation (T ) to the
boundaries of the system (8), we obtain

Ψ1(0, t) =

(
1
0

)∗
P−1

(
Φ1(0, t)
u(t)

)
,

Ψ2(0, t) =

(
0
1

)∗
P−1

(
Φ1(0, t)
u(t)

)
,

(12)


Ψ1(1, t) =

(
1
0

)∗
Q

(
Φ1(1, t)
d(t)

)
,

Ψ2(1, t) =

(
0
1

)∗
Q

(
Φ1(1, t)
d(t)

)
,

(13)

with

Q = P−1

(
1 0
k 1

)
.

Eliminating Φ1(0, t) in (12) andΦ1(1, t) in (13), we get

Ψ1(0, t) = D0Ψ2(0, t) + E0u(t),

Ψ2(1, t) = D1Ψ1(1, t) + E1d(t),

where

D0 = −λ
+

λ−
, E0 = − 1

λ−
,

D1 = −λ
−(4 + kλ+)
λ+(4 + kλ−)

, E1 =
4

λ+(4 + kλ−)
.

A straightforward computation gives

y(t) = D
(
Ψ1(1, t) + Ψ2(1, t)

)
,

with

D = −λ
+λ−

4
.



H. Bounit458

Thus, under the transformation(T ), the system (8) can be
written as follows:

∂Ψ(x, t)
∂t

= A
∂Ψ(x, t)
∂x

+BΨ(x, t),

(x, t) ∈]0, 1[×R+,

Ψ1(0, t) = D0Ψ2(0, t) + E0u(t),
Ψ2(1, t) = D1Ψ1(1, t) + E1d(t),

y(t) = D(Ψ1(1, t) + Ψ2(1, t)).

(14)

Let A be the unbounded operator defined by

D(A) =
{

(f1, f2)T ∈ H1[0, 1])×H1[0, 1] |

f1(0) = D0f2(0), f2(1) = D1f1(1)
}
,

and, for eachf ∈ D(A),

Af(x) = A
∂f(x)
∂x

+Bf(x).

Now, we state our stability result:

Theorem 2. The operatorA generates aC0-group of
contractions denoted by(etA)t≥0, which is exponentially
stable.

Proof. In our casep = q = 1 = n/2, andD0 and D1

are both invertible. Thus, from (Rauch and Taylor, 1974;
Russel, 1978) it is well known thatA is the generator of a
C0-group of contractions onH. Clearly, the assumptions
(H1)–(H2) are satisfied for the system (14).

Let us show that the assumption (H3) is also satisfied
by (14). According to (9) and (10), we have

A++D∗0A
−D0 = λ++

(λ+)2

(λ−)2
λ− =

λ+(λ+ + λ−)
λ−

> 0.

Then there existsr+ > 0 such that

(e+)∗(A+ +D∗0A
−D0)e+ ≥ r+(e+)2.

Hence, Condition (iii) is satisfied:

A− +D∗1A
+D1 = λ− +D∗1λ

+D1 = λ− +D2
1λ

+

=
(a1a2k − λ+)2λ− + (a1a2k − λ−)2λ+

(a1a2k − λ+)2
.

Set θ = a1a2, and consider

(θk − λ+)2λ− + (θk − λ+)2λ+

=λ−(λ+2+θ2k2−2θkλ+)+λ+(λ−2+θ2k2−2θkλ−),

= (λ+ + λ−)θ2k2 − 4λ−λ+θk + λ−λ+(λ+ + λ−).

Since λ−λ+ = −4a1a2 = −4θ, λ− + λ+ = −a3, we
obtain

P (k) = (θk − λ+)2λ− + (θk − λ+)2λ+

= θ(−a3θk
2 + 16θk + 4a3).

Two roots of the equationP (k) = 0 are

k1 =
−4θ +

√
4θ(4θ + a2

3)
a3θ

> 0,

k2 =
−4θ −

√
4θ(4θ + a2

3)
a3θ

< 0.

The admissible root is the positive one, i.e.,k1. Then
with an appropriate choice of the reference for the dimen-
sionless gate system we can obtaink > k1, which implies

∃r− > 0, (e−)∗(λ− +D∗1λ
+D1)(e−) ≤ −r−(e−)2.

So, Condition (ii) is also satisfied.

A direct calculation gives

B +B∗ =
1

2(λ+ − λ−)

×

(
λ−(4a5 − a4λ

+) 2a5(λ+ − λ−)
2a5(λ+ − λ−) −λ+(4a5 − a4λ

−)

)
.

Set

a = λ−(4a5 − a4λ
+), b = 2a5(λ+ − λ−),

c = −λ+(4a5 − a4λ
−).

Sincea < 0, Condition (i) is satisfied iff

b2 − ac < 0. (15)

Then it is indeed necessary to make a good choice of the
dimensionless system to satisfy the condition (15). Fi-
nally, Theorem 1 gives the desired result.

3.2. Transfer Function and Input-Output Stability

In this subsection, the linearized system governed by (2)–
(6) can be used to get the transfer matrix of the reach. This
transfer matrix can be useful to design theH∞-optimal
control (Bounit, 2003b). To this end, we show that our
irrigation canal system is input-output stable.

Now, determine explicitly the dimensionless plant
and disturbance transfer functions of our irrigation canal
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system, i.e.,P (s) and W (s). Taking the Laplace trans-
form of both the sides in (2), we get

sẐ∗(x, s) + a1
∂Q̂∗(x, s)

∂x
= 0,

sQ̂∗(x, s) + a2
∂Ẑ∗(x, s)

∂x
+ a3

∂Q̂∗(x, s)
∂x

+a4Ẑ
∗(x, s) + a5Q̂

∗(x, s) = 0

(16)

for all x ∈]0, 1[.
This system has the following form:

(
a1 0
a3 a2

)
∂Q̂∗(x, s)

∂x

∂Ẑ∗(x, s)
∂x


=

(
0 −s

−(s+ a5) −a4

) Q̂∗(x, s)

Ẑ∗(x, s)

 . (17)

For clarity, we set

A =

(
a1 0
a3 a2

)
, B(s) =

(
0 −s

−(s+ a5) −a4

)
.

Sincea1 6= 0 (see Appendix 2), the constant matrixA is
invertible iff a2 6= 0.

In the remainder of the paper, we suppose thata2 6=
0. Now, setX(s) = A−1B(s). Then (17) becomes

∂Q̂∗(x, s)
∂x

∂Ẑ∗(x, s)
∂x

 = X(s)

 Q̂∗(x, s)

Ẑ∗(x, s)

 . (18)

In order to study stability, we have to compute the explicit
expressions of the transfer functionsP (s) andW (s).

The solution of the linear differential equation (18)
leads to Q̂∗(x, s)

Ẑ∗(x, s)

 = exp(X(s)x)

 Q̂∗(0, s)

Ẑ∗(0, s)

 .

To computeexp(X(s)x), let us determine the eigenvalues
of X(s). It is easy to verify that

det(X(s)− λI)=0 ⇐⇒ λ2 −X22λ+ ksL
∗
0sX21 =0.

(19)

Let λi(s), i = 1, 2 be two roots of (19), which are explic-
itly given bellow. So, the transition matrix and its inverse
are

T (s) =

 −ksL∗0s −ksL∗0s

λ1(s) λ2(s)

 ,

T−1(s)=
1

ksL∗0s(λ1(s)− λ2(s))

 λ2(s) ksL
∗
0s

−λ1(s) −ksL∗0s

,
respectively.

It follows that the above matrixX(s) can be written
as

X(s) = T (s)D(s)T−1(s), D(s) = diag(λi(s)).

SettingD′(s) = diag(eλi(s)), we deduce that(
Q̂∗(x, s)
Ẑ∗(x, s)

)
= T (s)D′(s)T−1(s)

(
Q̂∗(0, s)
Ẑ∗(0, s)

)

= L(s)

(
Q̂∗(0, s)
Ẑ∗(0, s)

)
,

with

L11(s) =
λ1(s)eλ2(s)x − λ2(s)eλ1(s)x

λ1(s)− λ2(s)
,

L12(s) =
ksL

∗
0s(e

λ2(s)x − eλ1(s)x)
λ1(s)− λ2(s)

,

L21(s) =
λ1(s)λ2(s)(eλ1(s)x − eλ2(s)x)

ksL∗0s(λ1(s)− λ2(s))
,

L22(s) =
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

λ1(s)− λ2(s)
.

Then we define the transfer matrixM(s) of the reach as(
Q̂∗(x, s)

Ẑ∗(0, s)

)
= M(s)

(
Q̂∗(0, s)

Ẑ∗(x, s)

)
, (20)

where

M11(s) =
(λ1(s)− λ2(s))e(λ1(s)+λ2(s))x

λ1(s)eλ1(s)x − λ2(s)eλ2(s)x
,

M12(s) =
ksL

∗
0s(e

λ2(s)x − eλ1(s)x)
λ1(s)e(λ1(s)x − λ2(s)eλ2(s)x

,

M21(s) =
λ1(s)λ2(s)(eλ2(s)x − eλ1(s)x)

ksL∗0s(λ1(s)e(λ1(s)x − λ2(s)eλ2(s)x
,

M22(s) =
λ1(s)− λ2(s)

λ1(s)eλ1(s)x − λ2(s)eλ2(s)x
.

This modelling has the advantage of keeping distributed
parameter system characteristics and therefore the infinite
state space dimension.
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Now, an easy computation gives

λ1(s) =
1
2

(
a(s)−

(
a2(s) + b(s)s

)1/2)
,

λ2(s) =
1
2

(
a(s) +

(
a2(s) + b(s)s

)1/2)
,

where

a(s) = ε1 + ε2s, ε1 =
a4

a2
, ε2 = − 2a3

a2a1
,

b(s) = ε3 + ε4s, ε3 = − 4a5

a2a1
, ε4 =

4
a2a1

.

So, the functionsλi have the form

λ1(s) =
1
2

[
ε1 + ε2s−

(
(ε1 + ε2s)2 + (ε3 + ε4s)s

)1/2]
,

λ2(s) =
1
2

[
ε1 + ε2s+

(
(ε1 + ε2s)2 + (ε3 + ε4s)s

)1/2]
.

Set

F (s) =
(
(ε1 + ε2s)2 + (ε3 + ε4s)s

)1/2
=
(
ε21 + (ε3 + 2ε1ε2)s+ (ε22 + ε4)s2

)1/2
.

In the above expressions the complex square root is de-
fined as follows:

(A+ iB)1/2 =
(A+

√
A2 +B2

2

)1/2

+ i sign(B)
(−A+

√
A2 +B2

2

)1/2

(21)

for any realA andB.

Now, applying the Laplace transform to both sides in
the boundary conditions (3)–(5), we obtain

Q̂∗(0, s) = c1Ŵ
∗
u (s)− c2Ẑ

∗(0, s), (22)

Q̂∗d(s) = c3
(
Ẑ∗(1, s)− Ẑ∗d(s)

)
, (23)

Q̂∗d(s) = Q̂∗(1, s)− d̂∗(s), (24)

Ẑ∗d(s) = α∗Q̂∗d(s). (25)

Combining (23)–(25), we get

Q̂∗(1, s) = kẐ∗(1, s) + d̂∗(s). (26)

Substituting (26) into (20) atx = L∗c = 1 yields

Ẑ∗(1, s) =
M11(s)

k −M12(s)
Q̂∗(0, s)− 1

k −M12(s)
d̂∗(s).

Since Ẑ∗(1, s), d̂∗(s) and Q̂∗(0, s) are respec-
tively the output, disturbance and control for the linearized
system, the plant and the disturbance transfer functions
are given as follows:

P (s) =
M11(s)

k −M12(s)
, W (s) =

−1
k −M12(s)

, (27)

and the input-output map is

ŷ∗(s) = P (s)û∗(s) +W (s)d̂∗(s).

We write

Cα =
{
z ∈ C | <(z) > α

}
,

where α ∈ R, and letH∞
α be the set of allC-valued

functions which are bounded and analytic onCα.

Physical intuition clearly requires that any irrigation
canal system be stable in the sense that its transfer func-
tion is in H∞

0 . In fact, it has been proved above that this
system in the open-loop scheme is exponentially stable
(Theorem 2). So, it is reasonable to think that our irriga-
tion canal system is also stable with respect to both the
control and the disturbance.

We make the following assumptions:

(A1): a2 < 0 and a4 < 0,

(A2): a1a
2
4 + 4a2 6= 0 (i.e. ε21 + ε4 6= 0).

Let us define the constants

α1 =
1
2

(
ε1 +

ε3 + 2ε1ε2
2(ε21 + ε4)

)
, α2 =

ε22 + ε4 + ε2
2

,

β1 =
1
2

(
− ε1 +

ε3 + 2ε1ε2
2(ε21 + ε4)

)
, β2 =

ε22 + ε4 − ε2
2

.

From the assumption (A1) and the definition ofεi, we
haveεi > 0, i = 1, 3 and ε4 < 0. Hence the coefficients
αj , βj , j = 1, 2 can change the signs. So, we will add the
following assumption:

(A3): αi > 0 and βi > 0, i = 1, 2.

Lemma 1. Assume that (A1)–(A3) hold. Then fors =
x+ iy with x ≥ 0, we have

α1 − β1 + (α2 + β2)x

≤ <
(
F (s)

)
≤ α1 + β1 + (α2 + β2)x, (28)∣∣= (F

(
s)
)∣∣ ≥ (α2 + β2)|y|, (29)

sign
(
=
(
F (s)

))
= sign(y). (30)
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Outline of the proof. It is easy to see thatF (s) and λ′i s
can be written as

F (s) =
[
(α1 − β1)2 + 2(α1 + β1)(α2 + β2)s

+(α2 + β2)s2
]1/2

,

λ1(s) =
1
2
[
α1 − β1 + (α2 − β2)s− F (s)

]
,

λ2(s) =
1
2
[
α1 − β1 + (α2 − β2)s+ F (s)

]
,

(31)

with
αj > βj > 0, j = 1, 2.

So, the proof of Lemma 1 is a straightforward procedure
using (21) (Gauthier and Xu, 1989). Thus it is omitted.

From Lemma 1 and the definition ofλi(s) in (31),
we get

−β1 − β2x ≤ <
(
λ1(s)

)
≤ −β2x, (32)

α1 − β1 + α2x ≤ <
(
λ2(s)

)
≤ α1 + α2x, (33)

which implies

−β1 ≤ <
(
λ1(s) + β2s

)
≤ 0, (34)

−β1 ≤ <
(
λ2(s)− α1 − α2s

)
≤ 0. (35)

Thus e(λ2(s)−α1−α2s) and e(λ1(s)+β2s) are H∞-units
(i.e., elements ofH∞ with inverses also belonging to
H∞).

Set b = a−1
1 . Using (22) and the expression for

M(s), P (s) andW (s) can be written as

P (s) =
(λ1(s)− λ2(s))e(λ1(s)+λ2(s))

(kλ1(s) + bs)eλ1(s) − (kλ2(s) + bs)eλ2(s)

=
F (s)eλ1(s)

(kλ2(s) + bs)− (kλ1(s) + bs)e−F (s)
, (36)

W (s) =
λ1(s)eλ1(s) − λ2(s)eλ2(s)

(kλ1(s) + bs)eλ1(s) − (kλ2(s) + bs)eλ2(s)

=
λ1(s)e−F (s) − λ2(s)

(kλ1(s) + bs)e−F (s) − (kλ2(s) + bs)
. (37)

We are now able to show the following result.

Theorem 3. On the assumptions (A1)–(A3), the transfer
functionsP (s) and W (s) are in H∞

0 and satisfy

lim
R3s→+∞

P (s) = 0, lim
R3s→+∞

W (s) = Dd ∈ R.

Proof. From Lemma 1 and (35), the real parts of−F (s)
and λ1(s) are negative for<(s) ≥ 0. Then the ex-
ponential terms of the numerators and the denominators
in the transfer functionsP (s) and W (s) given by (36)
and (37) have strictly negative real parts. On the other
hand, the polynomial parts have the same order for both
the numerator ofP (s) and the denominator ofW (s), re-
spectively. It follows thatP (s) and W (s) are bounded
for all <(s) ≥ 0.

Now let us show that the transfer functionsP (s) and
W (s) are analytic for<(s) ≥ 0. By Lemma 1, it is
clear thatF (s) and its inverse are analytic in<(s) ≥ 0
and F−1(s) lies in H∞. Then λi(s) and the exponen-
tial functions eλi(s) are also analytic. Regarding expres-
sions (36) and (37), we only have to prove that

K(s) =
(
kλ2(s) + bs

)
−
(
kλ1(s) + bs

)
e−F (s) 6= 0

for all <(s) ≥ 0.

Set Ki(s) = kλi(s) + bs, i = 1, 2. Since
<(K2(s)) > 0 for all <(s) ≥ 0 (see (33)), it suffices
to prove that

E(s) =
K1(s)e−F (s)

K2(s)
6= 1 for all <(s) ≥ 0. (38)

We have

|E(s)| =
∣∣∣K1(s)
K2(s)

e−F (s)
∣∣∣ = ∣∣∣K1(s)

K2(s)

∣∣∣ |e−F (s)|.

Since<(−F (s)) < 0 for all <(s) ≥ 0, it follows that

|E(s)| <
∣∣∣K1(s)
K2(s)

∣∣∣. (39)

Now, sets = x+ iy with x ≥ 0.∣∣∣K1(s)
K2(s)

∣∣∣ =
∣∣∣k<(λ1(s)) + bx+ i(k=(λ1(s)) + by)
k<(λ2(s)) + bx+ i(k=(λ2(s)) + by)

∣∣∣
=
∣∣∣m1(s)
m2(s)

∣∣∣,
where

m1(s) =
k

2
<(ε1 + ε2s− F (s)) + bx

+ i
(k

2
=
(
ε1 + ε2s− F (s)

)
+ by

)
,

m2(s) =
k

2
<(ε1 + ε2s+ F (s)) + bx

+ i
(k

2
=
(
ε1 + ε2s+ F (s)

)
+ by

)
.

Finally, we obtain∣∣∣K1(s)
K2(s)

∣∣∣ = ∣∣∣n1(s)
n2(s)

∣∣∣,
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where

n1(s) =
k

2
ε1 +

(k
2
ε2 + b

)
x−<

(
F (s)

)
+ i

((k
2
ε2 + b

)
y −=

(
F (s)

))
,

n2(s) =
k

2
ε1 +

(k
2
ε2 + b

)
x+ <

(
F (s)

)
+ i

((k
2
ε2 + b

)
y + =

(
F (s)

))
.

Since k, b and εi, i = 1, 2 are positive, using
Lemma 1 it is easy to verify that fors = x + iy with
x ≥ 0, we get(k

2
ε1 +

(k
2
ε2 + b

)
x−<

(
F (s)

))2

<
(k

2
ε1 +

(k
2
ε2 + b

)
x+ <

(
F (s)

))2

,

(k
2
ε2 + b

)
y −=

(
F (s)

)2 ≤ (k
2
ε2 + b

)
y + =

(
F (s)

)2
.

This implies that for all<(s) ≥ 0, we have∣∣∣K1(s)
K2(s)

∣∣∣ < 1. (40)

Combining (39) and (40), we obtain (38), which proves
the analyticity of 1/K(s). Finally, the functionsP (s)
andW (s) are inH∞

0 . Hence the system (2)–(6) is input-
output stable.

The plant transfer functionP (s) can be written as
the product of anH∞-unit P0(s) and an inner function
(i.e., H∞-factorization)

P (s) = P0(s)e−β2s,

where

P0(s) =
F (s)e(λ1(s)+β2s)

(kλ2(s) + bs)− (kλ1(s) + bs)e−F (s)

is in H∞
0 together with its inverse, which is anH∞-

unit by the same argument as above and the properties of
λ1(s) in (34). The inner functione−β2s is a pure time
delay of the plant transfer function. It follows that

lim
R3s∈→+∞

P (s) = lim
R3s→+∞

P0(s)e−β2s = 0.

Recall that the disturbance transfer functionW (s) is
given as follows:

W (s) =
λ1(s)e−F (s) − λ2(s)

(kλ1(s) + bs)e−F (s) − (kλ2(s) + bs)
,

where
lim

R3s→+∞
F (s) = +∞.

due to (28).

Finally, taking into account the form ofλ′is and
F (·), it is easy to show that

lim
R3s→+∞

W (s) = Dd,

where

Dd =
a1(α2 − β2 +

√
α2 + β2)

ka1(α2 − β2 +
√
α2 + β2) + 2

.

This completes the proof.

4. System Regularity

From Theorem 2, the operatorA−1 exists and the growth
bound ω0(A) = lim

t→+∞
t−1 log ‖etA‖ of the analysed

semigroup is negative (Engel and Nagel, 2000). Now,
we have to define Hilbert spacesH1 and H−1 as fol-
lows: H1 is D(A) with the norm‖h‖1 = ‖Ah‖H and
H−1 is its completion with respect to the norm‖h‖−1 =
‖A−1h‖H , also known as the extrapolated space associ-
ated with etA. So we haveH1 ⊂ H ⊂ H−1, densely
and with continuous embedding. The operatorA has a
unique extension to the whole spaceH because it is de-
fined on a dense setD(A) in H and is continuous from
H to H−1. The semigroupetA can be extended to a
Co-semigroup onH−1, whose generator is nothing else
than the extended operatorA ∈ L(H,H−1) (Engel and
Nagel, 2000)).

We define the duality product onH−1 × D(A∗) by
a continuous extension of the inner product onH: For all
h ∈ H and all g ∈ D(A∗), 〈h, g〉H−1,D(A∗) = 〈h, g〉H .
For eachh ∈ H−1, by taking hn ∈ H such that‖h −
hn‖−1 −−−−−→

n→+∞
0, we set

〈h, g〉H−1,D(A∗) = lim
n→+∞

〈hn, g〉H , ∀g ∈ D(A∗).

For each h ∈ H−1, the mapping defined by
g−→〈h, g〉H−1,D(A∗) is a continuous linear form on
D(A∗). Conversely, given a continuous linear formψ
on D(A∗), there exists a uniquehψ ∈ H−1 such that

ψ(h) = 〈hψ, f〉H−1,D(A∗), ∀f ∈ D(A∗).

In other words, the mappingJ : H−1 −→ D′(A∗) (the
prime means the topological dual ofD(A∗)) such that
Jh(f) = 〈h, f〉H−1,D(A∗) is an isomorphism.

The adjoint operatorA∗ is defined by

D(A∗) =
{
(f1, f2)T ∈ H1[0, 1])×H1[0, 1] |

f1(1) = D∗1f2(1), f2(0) = D∗0f1(0)
}
,
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where

D∗0 = −λ
−

λ+
D0, D∗1 = −λ

+

λ−
D1,

and for eachf ∈ D(A∗) we have

A∗f(x) = −A∂f(x)
∂x

+B∗f(x).

The boundary output operatorC is a continuous linear
form on (H1[0, 1])2 defined byCf = D(f1(1)+f2(1))
and the restriction toH1, which is denoted with the same
letter, is also a continuous form onH1. Moreover,

Cf = D(1 +D1)f1(1) = Ff1(1), ∀f ∈ H1. (41)

Theorem 4. Given u(·), d(·) ∈ C∞0 (]0,+∞[), the sys-
tem (14) emanating fromΨ0 = 0 at t = 0 has a unique
solution Ψ(·, ·) ∈ C([0,+∞[,H). Moreover, there exist
Bu, Bd ∈ H−1 such that

Ψ(·, t) =
∫ t

0

(
β−e(t−τ)ABuu(τ)

+β+e(t−τ)ABdd(τ)) dτ,

β− = λ−E0 = −1, β+ = λ+E1.

(42)

Proof. Since the system (14) is of the form (7),
the existence and uniqueness of the solution
Ψ(·, ·) ∈ C([0,+∞[,H) is guaranteed by (Russell,
1978, Thm. 3.1). It only remains to prove that this solu-
tion Ψ(·, ·) given by (42) is continuous from[0,+∞[
into H and satisfies (14). Introduce the adjoint system
associated with (14):

∂p(x, t)
∂t

= A
∂p(x, t)
∂x

−B∗p(x, t),

(x, t) ∈]0, 1[×[0, T [,

p1(1, t) = D∗1p2(1, t),

p2(0, t) = D∗0p1(0, t),

p(·, T ) = p0 ∈ D(A∗).

(43)

An easy computation gives〈∂Ψ(·, t)
∂t

, p(·, t)
〉
H

=
〈
A
∂Ψ(·, t)
∂x

+B∗Ψ(·, t), p(·, t)
〉
H

=β−u(t)p1(0, t) + β+d(t)p2(1, t)

− 〈Ψ(·, t), ∂p(·, t)
∂t

〉H .

This yields

d
dt
〈
Ψ(·, t), p(·, t)

〉
H

= β−u(t)p1(0, t) +β+d(t)p2(1, t).
(44)

Integrating (44) and evaluating the result att = T , we
obtain

〈Ψ(·, T ), p0〉H=
∫ T

0

(
β−u(t)p1(0, t)+β+d(t)p2(1, t)

)
dt.

Define the continuous (boundary operators) linear
forms Γ1 and Γ2 on (H1[0, 1])2 as follows:

Γ1 :
(
H1[0, 1]

)2 −→ R, f 7−→ f1(0) = Γ1f,

Γ2 :
(
H1[0, 1]

)2 −→ R, f 7−→ f2(1) = Γ2f.

Of course, etA
∗

is exponentially stable, which implies
that (A∗)−1 is bounded onH. Therefore, the linear
forms Γ1(A∗)−1 and Γ2(A∗)−1 are continuous onH.
From Riesz’s representation theorem, there are unique el-
ementsγ1, γ2 ∈ H such that

∀f ∈ H,

 Γ1(A∗)−1f = 〈γ1, f〉H ,

Γ2(A∗)−1f = 〈γ2, f〉H .
(45)

Since

p1(0, t) = Γ1p(·, t) = Γ1e
(T−t)A∗p0,

p2(1, t) = Γ2p(·, t) = Γ2e
(T−t)A∗p0,

we obtain

〈Ψ(·, T ), p0〉H

=
∫ T

0

(
β−u(t)Γ1e

(T−t)A∗p0

+ β+d(t)Γ2e
(T−t)A∗p0

)
dt,

=
∫ T

0

(β−u(t)Γ1(A∗)−1A∗e(T−t)A
∗
p0

+β+d(t)Γ2(A∗)−1A∗e(T−t)A
∗
p0

)
dt. (46)

Substituting (45) into (46), we get

〈Ψ(·, T ), p0〉H

=
∫ T

0

{
β−〈γ1,A∗e(T−t)A

∗
p0〉Hu(t)

+ β+〈γ2,A∗e(T−t)A
∗
p0〉Hd(t)

}
dt. (47)

Integrating the first term in (47) by parts, we obtain

Ψ(·, t)

= −β−γ1u(t)− β+γ2d(t) +
∫ t

0

(
β−e(t−τ)Aγ1u

′(τ)

+ β+e(t−τ)Aγ2d
′(τ)

)
dτ, (48)
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where u′(t) and d′(t) are the derivatives ofu(t) and
d(t), respectively

It is easy to check that the functionΨ(·, t) given
by (48) is a classical solution of the system (14).

For the previously definedΓ1 and Γ2 there exist
uniqueBu, Bd ∈ H−1 such that

∀f ∈ D(A∗),

 〈Bu, f〉H−1,D(A∗) = Γ1f = f1(0),

〈Bd, f〉H−1,D(A∗) = Γ2f = f2(1).
(49)

Moreover, it is easy to see that for allΨ ∈ H and p ∈
D(A∗), we have

〈etAAΨ, p〉H−1,D(A∗) = 〈Ψ, etA
∗
A∗p〉H , ∀t ≥ 0.

(50)
Using (47) and (50), a direct computation gives

〈Ψ(·, t), p〉H−1,D(A∗)

= 〈Ψ(·, t), p〉H ,

=
∫ t

0

(
β−〈e(T−τ)AAγ1, p〉H−1,D(A∗)u(τ)

+ β+〈e(T−τ)AAγ2, p〉H−1,D(A∗)d(τ)
)
dτ

for all p ∈ D(A∗).
According to (45) and (49), we obtain

Ψ(·, t) =
∫ t

0

(
β−e(T−τ)ABuu(τ)

+ β+e(T−τ)ABdd(τ)
)
dτ. (51)

This completes the proof.

Remark 2. Since γ1 and γ2 in (45) are in (H1[0, 1])2

(see Appendix 1) and the integral terms are inD(A)
(Pazy, 1983), the output function is well defined:

y(t) = −β−Cγ1u(t)− β+Cγ2d(t)

+ C

∫ t

0

(β−e(T−τ)Aγ1u
′(τ)

+ β+e(T−τ)Aγ2d
′(τ)) dτ.

Performing the Laplace transform in (48) and (51),
we obtain the following identity:

ŷ(s) =
(
− β−Cγ1 + β−C(sI −A)−1γ1s

)
û(s)

+
(
− β+Cγ2 + β+C(sI −A)−1γ2s

)
d̂(s)

= β−C(sI −A)−1Buû(s)

+ β+C(sI −A)−1Bdd̂(s).

Finally, from Theorem 3 we deduce that

∀<(s) > 0,



P (s) =
(
− β−Cγ1

+ β−C(sI −A)−1γ1s
)

= β−C(sI −A)−1Bu,

W (s) =
(
− β+Cγ2

+ β+C(sI −A)−1γ2s
)

= β+C(sI −A)−1Bd.

(52)

Now we formulate our main result.

Theorem 5.The triple (C,A, [Bu, Bd]) is a regular sys-
tem satisfying

∀<(s) > ω0(A),

P (s) = β−CL(sI−A)−1Bu,

W (s) = β+CL(sI−A)−1Bd +Dd,

(53)
whereCL is the Lebesgue extension ofC.

Proof. Let Ψ(·, t) be the solution of (14) withu(t) =
d(t) = 0 emanating fromΨ0 ∈ D(A) at t = 0 and
V (t) = 1

2‖Ψ(·, t)‖2H . SinceΨ(·, t) lies in D(A) (Pazy,
1983), differentiatingV (t) along the trajectory of (14)
and integrating by parts yields

dV (t)
dt

= 〈AΨ(·, t),Ψ(·, t)〉H ,

= Ψ(1, t)∗AΨ(1, t)−Ψ(0, t)∗AΨ(0, t)

+
∫ t

0

Ψ(x, t)∗(B +B∗)Ψ(x, t) dx.

Using (i) in the assumption (H3) and the boundary condi-
tions in (14), we have

dV (t)
dt

≤ (λ− + λ+D2
1)Ψ

2
1(1, t)

− (λ+ + λ−D2
0)Ψ

2
2(0, t)

≤ (λ− + λ+D2
1)Ψ

2
1(1, t)

which results from using (ii) and (iii) ofH3.

Using the boundary conditions in (14), we obtain

dV (t)
dt

≤ −r−Ψ2
1(1, t) ≤ 0, (r− = (λ−+D2

1λ
+) > 0).

(54)
Integrating inequality (54) from0 to T , we deduce that

r−
∫ T

0

Ψ2
1(1, t) dt≤ 1

2
(
‖Ψ0‖2H−‖Ψ(·, T )‖2H

)
≤ 1

2
‖Ψ0‖2H .

SinceΨ(·, t) ∈ D(A), from (41) we getCΨ(·, t) =
CetAΨ0 = FΨ1(1, t). Moreover,∫ T

0

(CetAΨ0)2 dt ≤ κ‖Ψ0‖2H , (κ = F 2/2r−).
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This proves that the operatorC is A-admissible (Weiss,
1989).

By Theorem 4, it is clear that both the control oper-
ator Bu and the disturbance operatorBd are admissible
(Weiss, 1989b). Now denote byCL the Lebesgue exten-
sion of C ∈ L(H1,R) in the sense of (Weiss, 1989a).
From Lemma 1, the transfer functionsP (s) and W (s)
have strong limits at+∞ along the real axis. Therefore,
applying Theorems 1.3 and 4.7 of (Weiss, 1994), respec-
tively, we assert that(CL,A, Bu) and (CL,A, Bd) are
regular triples and that for all<(s) > ω0, P (s) = β−CL(sI−A)−1Bu ∈ H∞

ω0
,

W (s) = β+CL(sI−A)−1Bd +Dd ∈ H∞
ω0
.

(55)

Finally, identifying (53) and (55), we deduce that for all
<(s) > 0, we have

P (s) = β−CL(sI−A)−1Bu = β−C(sI −A)−1Bu

= (−β−Cγ1 + β−C(sI −A)−1γ1s),

W (s) = β+CL(sI−A)−1Bd +Dd

= β+C(sI −A)−1Bd

=
(
− β+Cγ2 + β+C(sI −A)−1γ2s

)
.

(56)

According to Theorem 2.3 of (Weiss, 1994), the sys-
tem (14) is written as Ψ̇(·, t) = AΨ(·, t) + β−Buu(t) + β+Bdd(t),

y(t) = CLΨ(·, t) +Ddd(t),
(57)

a.e. for t ≥ 0.

5. Conclusion

We have studied the notions, of internal and external sta-
bility for an irrigation canal system. This process is rep-
resentative for a class of hyperbolic systems. The paper
shows how this kind of systems is transformed into the
form of classical symmetric hyperbolic systems, which
allows us to prove exponential stability using Rauch and
Taylor’s theorem. The transfer function is derived, and we
show that the system is input-output stable. The irrigation
canal system has unbounded input and output operators. It
is shown that the system is regular and the transfer func-
tions of the system are inH∞

µ for someµ < 0. The re-
sults presented here are essential for various controller de-
sign methods to be applied for this class of hydraulic sys-
tems, e.g.,H∞-control (Francis and Zames, 1984; Gau-
thier and Xu, 1991; Zames and Francis, 1983), P.I. con-
trollers (Bounit, 2003a; Pohjolainen, 1985a; 1985b; Xu
and Jerbi, 1995) and output feedback (Curtain, 1988; Re-
barber, 1993).
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Appendices

1. Regularity of γ111 and γ222

Computingγ1 andγ2 is equivalent to solving the follow-
ing differential equations:

∂p(x)
∂x

= A−1Bp(x)−A−1f(x),

p1(1) = D∗1p2(1),

p2(0) = D∗0p1(0)

〈γ1, f〉H = p1(0),

〈γ2, f〉H = p2(1).

(58)

This problem has a unique solutionp ∈ D(A∗) for all
f ∈ H. It is given by the following integral equation:

p(x) = eA
−1Bxp(0)−

∫ x

0

eA
−1B(x−τ)A−1f(τ) dτ.

(59)

Evaluating (59) atx = 1 and recalling thatp2(0) =
D∗0p1(0), we have

p1(1) =

(
1
0

)∗
eA

−1Bp(0)

−

(
1
0

)∗ ∫ 1

0

eA
−1B(1−x)A−1f(x) dx

=

(
1
0

)∗
eA

−1B

(
1
D∗0

)
p1(0)

−

(
1
0

)∗ ∫ 1

0

eA
−1B(1−x)A−1f(x) dx,

p2(1) =

(
0
1

)∗
eA

−1Bp(0)

−

(
0
1

)∗ ∫ 1

0

eA
−1B(1−x)A−1f(x) dx,

=

(
0
1

)∗
eA

−1B

(
1
D∗0

)
p1(0)

−

(
0
1

)∗ ∫ 1

0

eA
−1B(1−x)A−1f(x) dx.

Now, sincep1(1) = D∗1p2(1), a trivial verification shows
that, for all f ∈ H, w have

p1(0) =

((
1

−D∗1

)∗
eA

−1B

(
1
D∗0

))−1(
1

−D∗0

)∗

×
∫ 1

0

eA
−1B(1−x)A−1f(x) dx,

p2(1) =

(
0
1

)∗
eA

−1B

(
1
D∗0

)

×

((
1

−D∗1

)∗
eA

−1B

(
1
D∗0

))−1(
1

−D∗0

)∗

×
∫ 1

0

eA
−1B(1−x)A−1f(x) dx

−

(
0
1

)∗ ∫ 1

0

eA
−1B(1−x)A−1f(x) dx.
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Thus we obtain

γ∗1 =

((
1

−D∗1

)∗
eA

−1B

(
1
D∗0

))−1

×

(
1

−D∗0

)∗
eA

−1B(1−x)A−1,

γ∗2 =

(
0
1

)∗
eA

−1B

(
1
D∗0

)

×

((
1

−D∗1

)∗
eA

−1B

(
1
D∗0

))−1

×

(
1

−D∗0

)∗
eA

−1B(1−x)A−1

−

(
0
1

)∗
eA

−1B(1−x)A−1.

Finally, the elementsγ1 and γ2 are analytic functions
of x.

2. Notation and Coefficients

The following symbols are used in this paper:

Q discharge(L3/T )

Q0 steady (reference) discharge(L3/T )

Y0 water depth at reference discharge(L)

S cross-sectional area(L2)

S0 cross-sectional area at reference discharge
(L2)

Z water-surface elevation(L)

P0 wetted perimeter at reference discharge(L)

R hydraulic radius (cross-sectional area/wetted
perimeter) (L)

F0 Froude number of reference discharge at refer-
ence depth in reference section

J0 friction slope at reference discharge

g gravity acceleration(L/T 2)

Ci Gi’s discharge coefficient fori = u, d

Li Gi’s width for i = u, d

Lc canal length (L)

L0 top width at depth,Y0 at reference discharge
(L) (see Fig. 2)

Lb bottom width in trapezoidal section(L) (see
Fig. 2)

s side slope in trapezoidal section (see Fig. 2)

K0 strickler coefficient in reference section
(L1/3/T )

Ks section form coefficient

Kp section form coefficient

x distance along canal(L)

t time (T )

T0 reference time (T )

W Gate opening (L)

‘*’ dimensionless counterpart

L0

Lb

Y0

q
θ

66

?

� -

� -
s = tan(θ)

Fig. 2. Cross-sectional steady flow area.

Furthermore, we have

S0 = Y0(Lb + sY0), P0 = Lb + 2Y0

√
1 + s2,

Q0 =
J

1/2
0 S

5/3
0

K0P
2/3
0

, T0 =
S0Lc
Q0

,

F 2
0 =

Q2
0

gS2
0Y0

, χ =
J0Lc
Y0

,

Ks =
L0Y0

S0
, Kp =

Y0

P0
.

The dimensionless variables are

x∗ =
x

Lc
, Z∗ =

Z

Y0
, S∗ =

S

S0
, Q∗ =

Q

Q0
,

R∗ =
R

R0
, K∗ =

K

K0
, t∗ =

t

T0
.

From the dimensionless nonlinear Saint-Venant
equation and for a canal with a uniform geometry of the
slopeβ (Bounitet al., 1997), the steady state is described
by the following conditions:

1. K0(x), S0(x) andQ0(x) are constant,

2. dZ0(x)/dx = −β,
3. −β + χJ∗0 = 0 (i.e., −βK∗2

0 R
∗4/3
0 S∗20 + χQ∗20 = 0).
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The coefficientsa′i and ci are defined as follows:

a1 =
1

KsL∗0
, a2 =

S∗0
F 2

0

− KsQ
∗2
0 L

∗
0

S∗20

, a3 = 2
Q∗0
S∗0

,

a4 = −βKsL
∗
0

F 2
0

− 7
3
χKsJ

∗
0L

∗
0

F 2
0

+
4
3
χS∗0J

∗
0Kp

F 2
0P

∗
0

2
√

1 + s2,

a5 = 2
χS∗0J

∗
0

F 2
0Q

∗
0

,

c1 =
CuLu

√
2gY 3

0 δhu
Q0

, c2 =
CdLd

√
2gY 3

0

Q0

W ∗
us

2
√
δhu

,

c3 =
CdLd

√
2gY 3

0

Q0

W ∗
ds

2
√
δhd

.

What is more,δhi = δZ∗,ius − δZ∗,ids for i = u, d, where
δZ∗,ius and δZ∗,ids are respectively the dimensionless up-
stream and downstream water elevation variations corre-
sponding to the reference steady state.W ∗

is is the dimen-
sionless opening ofGi corresponding to the reference
steady state.
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