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THE STABILITY OF AN IRRIGATION CANAL SYSTEM
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In this paper we examine the stability of an irrigation canal system. The system considered is a single reach of an irrigation
canal which is derived from Saint-Venant's equations. It is modelled as a system of nonlinear partial differential equations
which is then linearized. The linearized system consists of hyperbolic partial differential equations. Both the control
and observation operators are unbounded but admissible. From the theory of symmetric hyperbolic systems, we derive the
exponential (or internal) stability of the semigroup underlying the system. Next, we compute explicitly the transfer functions
of the system and we show that the input-output (or external) stability holds. Finally, we prove that the system is regular in
the sense of (Weiss, 1994) and give various properties related to its transfer functions.
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1. Introduction

the approximation ideas, resulting in infinite dimensional 98(z,1) n 0Q(x,t) _
models. ot ox

In this paper we discuss the internal and external sta- 0Q(z,t) OV -Q(x,t))
bility of an irrigation canal system. The system consid- ot O
ered is an irrigation canal which is partitioned as a single 0Z(z,1)
reach consisting of a single pool with two gatés, and t9—p = —9SJ+q-V
Gy, located at its upstream and downstream ends, respec-

Gate G,
Gate G4 (fixed)
Reservoir

Offtake discharge

tively (Fig. 1). This is a basic element of a complete ir-

_ L _ rigation canal. In what follows, the reach is assumed to
Hydraulic systems of irrigation canals are inherently char- e niform with a trapezoidal cross-section of the slope
acterized by distributed parametgrdynamlcs, giving rise to 3 (see Appendix 2). The derivation of the Saint-Venant
delayed responses. The essgntlal nature of @stnbuted Pagquations of the unsteady flow in open canals for shal-
rameter dynamics cannot be ignored if we wish to control |y water conditions can be found in the literature (Chow,
these processes. The objective of our work is to develop1985; Mahmood and Yevjevich, 1975; Miller and Yevije-

a framework which would be useful for robust control ich 1975). Then in these conditions, the flow dynamics
of these distributed parameter processes. The approack), open canals are governed by the following nonlinear

adopted here is essentially infinite dimensional: the analy- cqypled hyperbolic partial differential equations (PDES):
sis will be carried out based on a PDE model in contrast to

(MASC)

1)

(MOMC)

for all (z,t) €]0, L[xR* where z is the spatial loca-
tion (m), ¢ is time (s), S is the flow cross-section (),

Z, = ct%
Q(0,1)

T

w

I ternal boundary conditions.

Fig. 1. The investigated reach.

Q is the flow discharge (ffs), ¢ is the infiltration rate
@ '\ (m?/s), V is the mean velocity (m/s); is the gravity ac-
celeration (m/%), Z is the water elevation (m), and is
the friction slope. The equation (MASC) is the conser-
vation of mass, and (MOMC) is the conservation of mo-

Z(z,t) | |%a
T Z(x,0) and Q(z,0), and upstream, downstream and in-

mentum. They are complemented with initial conditions

This nonlinear model is a simplified version of
the model implemented in SIC (Simulation of Irrigation
Canals), a commercially available package developed by



H. Bounit

amcs @

CEMAGREF (1992). It is applied to a single reach, con-
sisting of a single pool with a single gate located at its
downstream end. Its objective is to describe the dynamic
behaviour of the flow discharge® and the water ele-
vations Z in the canal as boundary conditions change.

For the studied reach, the appropriate boundary Conditionsbou

need to be specified:

1. The upstream discharg@®.

2. The discharge equation of the upstream gate is
Quit) = Qu(t) = cuLuWar/20(Z2(t) - Z4(1)).

3. The discharge equation of the downstream gate is

Qult) = QUt) = caLaWa/29(Z2(1) — Z3(1)),

where Q% and Q¢ are the discharges through the
upstream and downstream gates, and ¢4 are

the upstream and downstream gate discharge coef-

ficients, L, and L, are the widths of the upstream
and downstream gatesij, W, and W, are the up-
stream and downstream gate opening3, (Z¢ and

Zg = Z{j are the upstream and the downstream wa-
ter elevations at the downstream gafg, = Z! and

Zy are the upstream and downstream water eleva-
tions at the downstream gate, respectively.

. The offtake outflow isQ,(t) = Qi(t) — Qa(t),
where Q¢ is the upstream discharge at the down-
stream gate.

. The downstream water elevatiofi; at the down-
stream gate is given by the rating curve equation

Za(t) = qQa(?),

To transform the Saint-Venant equations to a dimen-
sionless form, each variable is divided by a constant ref-

q > 0.

erence value with the same dimension. A possible sys-
tem of reference variables consists of the reference vari-

ables corresponding to the steady fl6yy(xz) = Qo (see
Appendix 2). Other choices are possible as indicated in
(Baume and Sau, 1997; Clemmeetsl. 1995). From the
Saint-Venant equations, if dimensionless reference vari-

for all (z*,¢*) €]0, L:[xR*, where L? is the dimen-
sionless length of the canal.

Gate openings would be specified relative to the wa-
ter depth at a steady flow for the reference section.

Then the above PDEs are coupled by the following
ndary conditions:

1. The dimensionless linearized7{s, ¢ = u,d) dis-
charge equations

Qu(t") = Q7(0,17") = ea W (") — c227(0,17)

= u’(t"), ®)

Qu(t") = cs(Z7(L¢, 1) — Z3(t"))
= Q7 (Le, t7) — Qy(F). (4)

2. The dimensionless rating curve equation
Z3(t") = ¢"Qa(t"). (5)

The dimensionless output considered is

y(t) = Z7(L¢, t7). (6)

In (4)-(5), Z; and @}, are, respectively, the dimen-
sionless downstream water elevation and discharge asso-
ciated with the downstream gaté;. W, is the dimen-
sionless deviation opening at the upstream gas(t*)
is the dimensionless offtake discharge. The downstream
gate Gy is fixed a priori (i.e., Wy = ¢!, cf. Fig. 1).

The upstream water elevation fak, is also constant
(i.e., Z, = c*¢, Fig. 1). The constant parameteds are
uniquely determined by the steady state and the dimen-
sionless reference system (ondy and a4 change the
sign). Similarly, the constants; depend on the steady
state, the dimensionless reference system used and the dis-
charge at the upstream downstream gate and width coef-
ficients (see Appendix 2). The state variablgs(z*, t*)

and Q*(z*,t*) are the dimensionless deviations in the
water level and discharge, respectively, from the steady
state in the canal. The input variable (¢*) which rep-
resents the variation in the inlet dimensionless discharge
Q*(0,t*) is boundary and affects the PDEs in (4). The

ables are used for the steady flow, the system linearizedoutput variabley(¢*) in (1), representing the deviation in

around a reference steady staté)(x), Qo(x), So(z))
given in Appendix 2 is governed by the following hyper-
bolic partial differential equations (Baume, 1990; Baume
and Sau, 1997; Bounit, 2003a; Bouettal.,, 1997)):

07"(@" 1) | 0Q (")

ot ox* =0,
0Q* (x*,t*) " OZ* (x*,t*) " o0Q* (z*,t*) (2
ot* 2 ox* 3 ox*

+as Z*(x*, 1) + asQ* (x*,t*) =0

the dimensionless water level in the downstream, is also
boundary and enters the boundary condition (5). The dis-
turbance variablel*(t*) = Q;(t*) represents the devi-
ation in the unknown dimensionless outflow in the up-
stream of gatg7,; and enters the boundary condition (5).
So (2)—(6) describe an infinite dimensional linear system
with boundary input and boundary output.

This irrigation canal system was studied in (Bounit,
2003b) in order to construct aH *°-controller. The H°-
control theory developed in (Francis and Zames, 1984;
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Zames and Francis, 1983) combined with an approxima-The exponential stability is obtained by applying the re-
tion approach given in (Yoon and Lee, 1991) was applied sult presented in Section 3. In the second subsection, the
to this system for minimizing the worst effect of the dis- transfer function representation of the system (2)—(6) is
turbanced(t) on the outputy(¢). By considering some  given. Next, we characterize an open set of numerical val-
other geometric configuration of the canal irrigation sys- ues of physical constants of the canal for which we can
tem, the canal is partitioned as a single reach with a sim-actually prove that the system is input-output stable. This
ple gate positioned in its downstream which is the basic fact is useful in H°°-control and robust control, as will
element of the complete irrigation canal. Then a robust be discussed in another article (Bounit, 2000a; 2003b). In
low-gain P.l.-controller was proposed in (Bounit, 2003a). Section 5, we show that the system is regular and various
The present paper shows how the system (2)—(6) isProperties are derived for its transfer functions. Section 6
transformed into a dissipative symmetric hyperbolic sys- contains conclusions.
tem. Then we prove that the associated semigroup is ex-
ponentially stable using the theorem of (Rauch and Tay-
lor, 1974), whence it is stabilizable and detectable. Input-
output stability is also demonstrated. The concepts of the
approximate and exact controllability and observability
are not recovered here. The first concept is more conve-Consider a symmetric hyperbolic system of the form
nient from a control engineering point of view because it

2. Symmetric Hyperbolic Systems

is less restrictive than the exact controllability. Recall that Oh(x,t) _ Az) Oh(z,t) + B@)h(n 1)

there are many results on controllability and observabil- ot ox T

ity for a large class of symmetric hyperbolic systems in (x,t) €]0, 1[xRT,
(Russel, 1978). Moreover, there exist computational tests

for checking controllability (resp. observability) for large h=(0,t) = Doh*(0,1), (7)
classes of linear distributed systems (Curtain and Zwart, hH(1,8) = Dih—(1,1)

1995) and it would be interesting to study these concepts ’ T

for our system. h(x,0) = ho(z),

We also prove that the system (2)—(6) is regular in the
sense of (Weiss, 1994). The regularity of the controlled where 1~ (z,t) € R?,h*(z,t) € R? and h(z,t) =
and observed systems with an exponentially stable semi-(,~ (. ¢), h*(x,t)) is a (p + ¢) x 1 vector function
group guarantees that the plant transfer functit{s) and for (z,t) € [0,1] x RT, A(z) and B(z) are real
the disturbance transfer functidi’(s) are in Hg° (that p+q) x (p+ q) matrix functions and4(z) is diagonal

is analytiC and bounded in the I’ight-hand half plane). The for z« c [O7 1} DO and Dl are real constant matrices.
fact that the system under consideration is regular has use-

ful consequences on the design of the feedback controller ~ The diagonal matrix has the form
for the system.

The class of regular linear systems is closed under < A~ (2) 0 >

)

feedback. The most important consequence is that inter- 0 At (2)
nal and external stabilities are equivalent for a regular sys-
tem which is both stabilizable and detectable as proved in ity
(Rebarber, 1993). Using the theory of symmetric hyper-
bolic systems outlined in (Rauch and Taylor, 1974; Rus-
sell, 1978), we prove exponential stability for a much class

of irrigation canals. Using the recent representation theory At (x) = diag(\i(z); i=p+1,p+q).
developed in (Weiss, 1994), we are able to characterize the

transfer functions in terms of the semigroup operator, the \ue qenote byA the transposed matrix of or the adjoint
ippu_t operator and the output operator. This characteriza—Operator of A, as will be clear from the context, and by
tion is useful for controller design purposes. A (z) the Jacobian ofA(z). For clarity, we assume that

The paper is organized as follows: In Section 2, the the following hypotheses are satisfied for the system (7):
system is transformed to an abstract boundary control sys-

tem. In Section 3, the stability result of (Rauch and Tay- H,: B(-) € C°([0,1]; R"*") and

lor, 1974) is presented for a class of symmetric hyperbolic A(z) € C([0,1]; R™*™),

systems. Section 4 is divided into two subsections: In the

first subsection, the system equations (2)—(6) are trans-Hjy: A\;(z) <0, : =1,2,...,p and \;(x)
formed into the form of a symmetric hyperbolic system. i=p+1,...,p+qforanyz € [0,1]

A7 (x) = diag(N\;(2); i = 1,p),

> 0,
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Hj: For eache™ € RP, et € RY and z € [0,1], we
have
<)

i (
(i) (e7)*(A~(1)+DiAT(Q)Di)(e7) <
(iii) (e*)*(A*(0) + DFAT(0)Do) (™) > rt|e*|2,

and

e~

L) (B@) + B (@) - Au@)(

(&

€ €

7'*20, rm>0:7rT+7r" >0.

Theorem 1. (Rauch and Taylor, 1974)Assume that the
system (7) satisfies the hypotheses){Hs). Then for
eachhg € (L?[0,1])", (7) has a unique solution:

h(-,t) € C([0,+00); (L?[0,1])").
The semigroup of bounded linear operatof§t) from
H = (L?[0,1])™ into itself defined byh(-,t) = S(t)ho
is exponentially stable:
1S®)[| 2y < Me™",

for some constantd/, w > 0.

3. Stability of the Irrigation Canal

In this section, we first show that the investigated irriga-

tion canal system can be transformed into the form (7) an

prove the exponential stability of the system by applying
Theorem 1. Next, we compute the system transfer func-

tions P(s) and W (s) and prove input-output stability.

3.1. Exponential Stability of the Semigroup

The state® = (Z*,Q*) of the system (BCS) belongs to
H, the control inputu € U = R and the outpuyy € Y =
R. The boundary operatdry and the output operatat’
are given as follows:

1+qc3’

To® = (2(0), Do(LY) — k®1(LY))", k

CP = &, (LF).

This description is analysed in detail in the following.

Since our objective is the dynamical analysis of an
irrigation canal model using linear distributed parameter
systems theory (see, e.g., Curtain and Zwart, 1995; Pazy,
1983; Weiss, 1989a; 1989b), an important preliminary
step is to obtain a description of the model as an infi-
nite dimensional Hilbert state space (BCS), whdrg)
belongs to a real separable Hilbert spdé¢eand the spa-
tial differential operatorAy is the infinitesimal genera-
tor of a strongly continuous’, semigroup (e42%);>
on H. Here, we use the (Hilbert) state spaéé =
L?[0, L] x L?[0, L] obtained as the Cartesian product
of the Hilbert space

*

1200, 2] ={f | [0, Lz] —R; /OLCIf(a:)zda: < +o00}.

L?[0, L?] is a Hilbert space with the inner product and
ghorm defined respectively by

Vi€ L0, L) (frg)pe = / " f(@)g(x) de,

ik = ([ i ar) "

We have to convert the system (2)—(6) into a standard stateThe Hilbert spaceH is endowed with the inner product
space form. It is important to be very precise about the (-, )u defined as follows: For any’ = (fi, f2)” and
state space formulation, because the proof of exponential' * /%' T ' 12

stability is system theoretic in nature. In the analysis be- ¢ — (91,92)" € H,

low, this model is seen as a boundary distributed control
system. Now, observe that the basic dynamical model (2)—
(6) can be rewritten as a boundary control system (BCS):

(fr90m = (fi,91)L> + (f2, 92) 1>

The domainD(A4y) of the unbounded operatots :
C oy x x D(Ap) — H is given by D(Ay) = HY0,L}] x

O(t*) = AgP(t Bo(t » He
) o®(t) + BE(L"), H'Y0, L*], where H'[0, L}] is the Sobolev space:

La®(t") = ( H* [O,LZ]:{f € L*[0, L] | f is absolutely continuous

where ®(t*) denotes the derivative ob(-,t*) with re-
spect tot* and

Now, let us show how to transform the irrigation canal
system into the form (7). We perform a normalization so

that L = 1; the distance along the canal is referred to as
Ay — 0 —a |\ 0 B_ 0 0 its length. This last assumption is not necessary for our
—ay —az | Ox*’ —ay —as | work, but it makes the calculation slightly simpler.
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For simplicity, we shall write ®(z,t) instead of Consider the following linear transformation, which
®(2*,t*) whenever no confusion arises. Then the (BCS) makesA, diagonal:
can be written as

-0 =P = (T, T,).
0D (z,t) 0d

o Acaix + Be2(z,t), Applying the transformationX() to the first equation
(x,t) €]0,1[xRT, in (8), we obtain the following PDEs:
®5(0,1) = uft), (8) M’gt”’t) - A%+B\I/(x7t)» (2.1) €]0, 1[xR™, (11)
Dy(1,t) = kP1(1,t) +d(2),
2(1,1) 1(1,8) +d(?) where
y(t) = @1(1,t), B P_lB P 1
where - S AT )
e 0 —ay N 0 0 y < A" (das — agAt) AT (das — ag\7) ) '
¢ —as —as ’ ¢ —a4 —as ’ —)\_(4a5 — a4)\+) —/\+(4CL5 - a4)\_)

Applying once again the transformatioff ( to the

The matrix A. is not diagonal as required in Theorem 1. boundaries of the system (8), we obtain

So, let us diagonalize it. For this, we need to compute two

characteristic roots of the following characteristic equa- 1\ ®1(0,1)
thI’] \Ill(o,t) — < ) P—l ( 1Y, > ’
det(A — A.) = A\ + a3) — aras. u(t) 12)
It is easy to verify thatda;as + a% > 0 (see Ap- 0\ [ ®1(0,%)
pendix 2). Then, these roots are given by T2(0,1) = P u(t) ’
1 *
AT = 7(—a3—\/a§+4a1a2) <0, 1 d(1,1)
2 9 \I/]_(l, t) - Q 9
| 9) 0 d(t)
)\+:§(—a3+\/a§+4a1a2) > 0, (13)

0\ [ (1,1
with Pallt) = ( 1 ) Q( ii(t) >
At -2 = \/a§+4a1a2, with

AT +A = —as, (10) o_pi 10
ko1

AT = —4aqas.

. o _ Eliminating ®,(0,¢) in (12) and®,(1,¢) in (13), we get
So, the passage matrix and its inverse are respectively

given by U1(0,t) = DoW2(0,t) + Equl(t),
CATAT AT Uy(1,t) = D1V (1,t) + E1d(t),
P = 4 4 , where
A~ At e M g1
0 — e ) 0 — N )
1 1
. 1 A A7 (4 + kA1) 4
Pl = —— . Dy =0 n 1= ST o
(At =X) 4 AT(4+ kA7) AT(4+ kA7)
— 1
At A straightforward computation gives
Thus the matrixA. can be written asd, = PAP™ 1,
where y(t) = D(W1(1,t) + Uy(1,1)),
AT 0 with
A= . AT~
0 A* D=- 1
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Thus, under the transformatidfY), the system (8) can be

written as follows:

o¥(z,t) A@\I’(x, t)
ot B Oox
(z,t) €]0, 1[xR*,

+ BU(a,1),

W1(0,8) = DoWa(0,1) + Eyult),
Wg(l,t) = Dl\Ifl(l,t) + Eld(t)
y(t) = D(qjl(l’t)+\1/2(17t

).
Let .4 be the unbounded operator defined by
D(A) = { (1, £2)" € H'[0,1)) x H'[0,1] |
f(0) = Dofa(0), f2(1) = Difi(1)},
and, for eachf € D(A),

0f(x)

Af(a) = A%

+ Bf(x).

Now, we state our stability result:

Theorem 2. The operator.A generates aCy-group of
contractions denoted bye!),>0, which is exponentially

stable.

Proof. In our casep = ¢ = 1 = n/2, and Dy and D,

are both invertible. Thus, from (Rauch and Taylor, 1974;
Russel, 1978) it is well known thatl is the generator of a
Cy-group of contractions orf{. Clearly, the assumptions

(H1)—(Hy) are satisfied for the system (14).

Let us show that the assumptions(Hs also satisfied

by (14). According to (9) and (10), we have

(V)? L MO A

ISE . > 0.

AY+DEA™ Dy = AT+

Then there exists* > 0 such that

(eT)* (AT + DFA™Dg)e™ > rt(eh)>
Hence, Condition (iii) is satisfied:
A” 4+ D{AYDy = X" + DiATDy = A" + DiAt

(alagk — )\+)2)\7 + (alagk — )\,)2)\+
(alagk‘ — )\+)2 '

Set 6§ = ajaq, and consider
(0k — A7)\~ + (0k — AT)°AT
= A (AP 402K2—20kAT )+ AT (A2 +0%K2 — 20K\ ),
= (AT A0 —AX"ATOk + A" AT(AT + 7).

(14)

Since \™ AT = —4ajas = —40, A\ + AT = —a3, we
obtain

P(k) = (0k — X722~ 4 (0k — AT)2AT
= 0(—a30k* + 160k + 4as).

Two roots of the equatioP(k) = 0 are

L —460 + \/40(40 + a3) =0
1= ;

a39

—40 — \/40(40 + a3)
ky =

0.
a39 <

The admissible root is the positive one, i.;, Then
with an appropriate choice of the reference for the dimen-
sionless gate system we can obt&in- k;, which implies

I >0, ()N +DIATD)(e7) < —r(e7)2.

So, Condition (ii) is also satisfied.
A direct calculation gives

. 1
Bab =
AT (4&5 — a4/\+) 20,5(/\+ — )\_)
2@5(>\+ — )\7) 7)\+(4CL5 — a4)\*) '
Set

a= A\ (das —as)"), b=2as(AT —\7),

c=—A"(4as — ag\7).
Sincea < 0, Condition (i) is satisfied iff
b —ac < 0. (15)

Then it is indeed necessary to make a good choice of the
dimensionless system to satisfy the condition (15). Fi-
nally, Theorem 1 gives the desired result. m

3.2. Transfer Function and Input-Output Stability

In this subsection, the linearized system governed by (2)—
(6) can be used to get the transfer matrix of the reach. This
transfer matrix can be useful to design tiE>*-optimal
control (Bounit, 2003b). To this end, we show that our
irrigation canal system is input-output stable.

Now, determine explicitly the dimensionless plant
and disturbance transfer functions of our irrigation canal
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system, i.e.,P(s) and W (s). Taking the Laplace trans-
form of both the sides in (2), we get
5 aQ* (1'7 5)

sZ*(x,s) + a——p

0,

82*(33,5) 4 ag 8@*(3;, B) (16)

Ox or
+as Z* (ZC, 8) + a5Q* (LC, 8) =0

8@*(36, s)+ as

forall = €]0, 1].
This system has the following form:

0Q* (x, 5)

> ox
dZ*(x, )

Or
( 0
—(s+as)

—S
For clarity, we set

(o) o (L )
’ —(s+as) '

Sincea; # 0 (see Appendix 2), the constant matuik is
invertible iff as # 0.

In the remainder of the paper, we suppose that?
0. Now, setX(s) = A~1B(s). Then (17) becomes

aq 0

as a2

—ay

ai 0 —S

az az —ay

0Q*(z, 5) .
i 0" (x,5)
9 x| . s
0Z*(x, s) Z*(x, s)
Ox

In order to study stability, we have to compute the explicit

expressions of the transfer functiod¥s) and W (s).
The solution of the linear differential equation (18)

leads to
Q* T,s Q* 0,s
( ( ))exp(X(s)x)( . ( ))
Z*(0,s)

Z*(z, s)
To computeexp(X (s)z), let us determine the eigenvalues
of X (s). Itis easy to verify that

det(X (5) — M) =0 <= A% — X\ + ks L35 X0, =0.
(19)

Let \;(s), ¢ = 1,2 be two roots of (19), which are explic-

itly given bellow. So, the transition matrix and its inverse

()

—ksL§s
A1(s)

—ksL§s

T(s)
)\2 (S)

T7(s)

1
 ksLgs(M(s) = Aa(s)) (—)\1(5) —kSLgs)’

respectively.
It follows that the above matriX{ (s) can be written

as

T(s)D(s)T~"(s), D(s) = diag(\i(s)).

)

Setting D'(s) = diag(e*:(*)), we deduce that

& (z.9)
Z*(x, s)

Q*(0,5)
Z*(0, s)

(5)D'(s)T~"(s) (

with

A1 (s)et2()7 — Ny (s)er(s)e

Lii(s) = e 7
o s~ )
12\8) = A1(s) — Aa(s) )
Lot(s) = A (8)ha(s)(eM () — gra(s))
21(8) = ksLis(Mi(s) — Aa(s))
A(s)x _ Ao ()
Las(s) = 21()e Aa(s)e

A1(s) — Az(s)

Then we define the transfer matriX (s) of the reach as

) : (20)

Z*(z,s)
where
My (s) = (A1(s) — )\2(5))@()‘1(5)4-)\2(5))1
e A (s)er ()T — \y(s)erz(s)z
M _ ksLSS(e)\Q(S).T _ exl(s)z)
12(s) = A (s)ePi(s)z — X, (s)era(s)z”
M. (S) o )\1(5))\2(8)(6’\2(3)3? _ e)q(s):c)
T R Lgs(a (s)eCa @7 — Ay ()X (e
A1(s) — Aa(s
Maso(s) = 1£ ) — Aa(s)

A1 (s)er )z — Ny (s)erz(s)z”

This modelling has the advantage of keeping distributed
parameter system characteristics and therefore the infinite
state space dimension.
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Now, an easy computation gives

M(s) = 5 (als) = (a%(s) + b(s)s) ?).

N =

)\2(8)

where

(a(s) + (a*(s) +b(s)s)"?),

N |

a4
&1 = —,
a2

a(s) = e1 + €38,

4@5 4

a2(11’

b(S) = €3 + €48, £3 = —
So, the functions\; have the form

{61 +e25 — ((e1 4 £28)% + (e3 + 545)3)1/2},

{51 + e95 + ((51 +£95)% + (g3 + 545)3)1/2}.

((e1+€25) + (e3 + 543)5)1/2

(1 + (e3 4+ 2e182)s + (e5 + 64)82)1/2.

In the above expressions the complex square root is de-

fined as follows:

A+,/A2+B2)1/2

(A+iB)Y/? = ( :

_A+4/A2+B2)1/2
2

+isign(B) ( (1)

forany real A and B.

Now, applying the Laplace transform to both sides in
the boundary conditions (3)—(5), we obtain

Q*(0,5) = a1 Wils) = 227(0,5),  (22)
Qils) = es(2°(Ls) = Zi(5)),  (29)
Qi(s) = Q*(L,8) —d"(s), (24)
Zj(s) = " Qi(s). (25)
Combining (23)—(25), we get
Q*(1,5) = kZ*(1,5) + d*(s). (26)
Substituting (26) into (20) at = L} =1 yields
M (s) - 1

Z*(1,5) = k:—Tlg(s)Q*(O’s) T RS Ma(s) “(s).

Since Z*(1,s), d*(s) and Q*(0,s) are respec-
tively the output, disturbance and control for the linearized
system, the plant and the disturbance transfer functions
are given as follows:

M;ii(s) -1

W(s) = = Ma(s)’ (27)

P(s) = 33 Via()’

and the input-output map is

We write
Ca ={z€C|R(2) > a},

where o € R, and let H° be the set of allC-valued
functions which are bounded and analytic 6g.

Physical intuition clearly requires that any irrigation
canal system be stable in the sense that its transfer func-
tion is in Hg°. In fact, it has been proved above that this
system in the open-loop scheme is exponentially stable
(Theorem 2). So, it is reasonable to think that our irriga-
tion canal system is also stable with respect to both the
control and the disturbance.

We make the following assumptions:
(A1)
(A2):

Let us define the constants

as <0 and a4 < 0,

alai +4as # 0 (le E% +e4 # 0)

1( +53+25152) €2 +¢e4 + €9
a1 == + ———2), g = =—" =
P o\ T o2y ey ? 2

_1 €3+25152) _€%+E4—€2
51_2( T b= 2 '

From the assumption (A and the definition ofe;, we
havee; > 0, i = 1,3 ande4 < 0. Hence the coefficients
o, B,7 = 1,2 can change the signs. So, we will add the
following assumption:

(A3): a; >0 and 3; >0, i=1,2.

Lemma 1. Assume that (8—(As) hold. Then fors =
x + iy with x > 0, we have

o1 = B+ (a2 + f2)x
<R(F(s)) < a1+ f1+ (a2 + Bo)z, (28)

1S (F(5))] = (a2 + B2)|yl,

sign (S(F(s))) = sign(y).

(29)
(30)
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Outline of the proaflt is easy to see thak'(s) and A\, s
can be written as

F(s) = [(a1 = f1)* + 2(a1 + B1) (a2 + Ba)s
+(ag +52)52]1/27
31
Ai(s) = ;[a1—51+(0¢2—52)5_F(3)L (1
Nols) = 3[an — fu + (an — f2)s + Fs)],
with
Olj>,6j>07 j=12.

So, the proof of Lemma 1 is a straightforward procedure
using (21) (Gauthier and Xu, 1989). Thus it is omitted.
[ |

From Lemma 1 and the definition of;(s) in (31),
we get

—B1 = Paz < R(Mi(s)) < — Pz, (32)
— B+ oz < R(A2(s)) < o + oz, (33)
which implies
=B < R(Mi(s) + fas) <0, (34)
—B1 < R(Aa(s) — a1 — azs) <0, (35)

Thus e(P2(8)—a1—a2s)  gng e(1(s)+625) gre H>-units
(i.e., elements ofH> with inverses also belonging to
H™).

Setb = a;'. Using (22) and the expression for
M(s), P(s) and W (s) can be written as
P(s) (M(s) — AQ(s))e(Al(S)Jr)\z(S))
S) =
(kA1(s) 4 bs)er () — (kXa(s) + bs)er2(s)
)\1(5)
_ F(s)e  (36)
(kXa(s) +bs) — (kA (s) + bs)e F()
_ Ai(s)et Ao (s)er2(®)
W(S) a (k/\l( )+ bs (3)\ (s) — (k’)\g( )—|—b3)e)‘2(5)

F(s)

)
(sge A2($) (37)

~ (kAi(s) + bs)e— F<s)—(m (s) + bs)’

We are now able to show the following result.

Theorem 3. On the assumptions (#(As), the transfer
functions P(s) and W (s) are in Hg° and satisfy

lim  P(s)

= O7
R3s—+o0

li w
Raslin+oo (S)

=Dy eR.

@ amcs

Proof. From Lemma 1 and (35), the real parts-ef'(s

and \;(s) are negative forR(s) > 0. Then the ex—
ponential terms of the numerators and the denominators
in the transfer functionsP(s) and W (s) given by (36)
and (37) have strictly negative real parts. On the other
hand, the polynomial parts have the same order for both
the numerator ofP(s) and the denominator di’ (s), re-
spectively. It follows thatP(s) and W (s) are bounded
forall ®(s) >0

Now let us show that the transfer functiof¥s) and
W (s) are analytic for®(s) > 0. By Lemma 1, it is
clear thatF'(s) and its inverse are analytic ift(s) > 0
and F~1(s) liesin H>. Then )\;(s) and the exponen-
tial functions e*:(*) are also analytic. Regarding expres-
sions (36) and (37), we only have to prove that

K(s) = (kXa(s) + bs) — (kAi(s) + bs)e T £0

forall R(s) >0

Set K;(s) = kAi(s) + bs, i 1,2. Since
R(K2(s)) > 0 for all R(s) > 0 (see (33)), it suffices
to prove that

Ky(s)e ¥

— > 0.
E(s) K (5) #1 forall £(s) >0. (38)
We have
1K) —p| | ES) ] —Fs
B6) = | = g [l
SinceR(—F'(s)) < 0 forall R(s) > 0, it follows that
Kl(S)
B6) < |3 ‘ (39)
Now, sets = = + iy with z > 0.
ER(A1(5)) + bx + (kS (A1(s)) + by)
kRO (5)) + ba + i(kS(Xa(s)) + by)
_ |ma(s) ‘
ma(s) 1’
where
k
mi(s) = 5%(51 + 25— F(s)) + bx
(k
+ 1(53(61 + €985 — F(s)) + by),
k
ma(s) = 53‘%(51 +eas+ F(s)) + bx

k
+ 1(53(61 + €25+ F(s)) + by).
Finally, we obtain

’Kl(s)
Ks(s)

n1(s)
na(s)

= el
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ni(s) = gal + (geg + b)a: - R(F(s))

vi((Beaa)y-s0r),

Esl + (ﬁsg + b):z: + %(F(s))

na(s) = 5 2

Ak
+1 ((252 + b)y + %(F(s))) .
Since k,b and ¢;, i = 1,2 are positive, using

Lemma 1 it is easy to verify that fos = x + iy with
x > 0, we get

(251 + (gfsz + b)x — 8‘%(F(s)))2

< (gsl + (gag + b):r + %(F(S))Y’

. (§€2+b)y+§(F(s))2.

This implies that for allR(s) > 0, we have

(ﬁsz + b)y - %(F(s))2 <

Kl(s)
KQ(S)

‘ <1 (40)
Combining (39) and (40), we obtain (38), which proves
the analyticity of 1/K (s). Finally, the functionsP(s)
and W (s) arein H°. Hence the system (2)—(6) is input-
output stable.

The plant transfer functiorP(s) can be written as
the product of anH>°-unit P;(s) and an inner function
(i.e., H°°-factorization)

P(s) = Py(s)e™",

where
F(S)e(kl (S)"'—ﬁ?‘g)

Po08) = Gorae) + b9) — (o (o) + b))

is in Hg° together with its inverse, which is af -

where

lim  F(s) = +oo.
R3>s—+o00

due to (28).
Finally, taking into account the form of\s and
F(.), itis easy to show that

li Wi(s) =D
Raslin-i-oo (S) &

where
Dy = ai(ag — B2 + Vaz + 52)
kai(az — B2 + Vas + B2) + 2

This completes the proof. =

4. System Regularity

From Theorem 2, the operatot—! exists and the growth
bound wy(A) = lim t~!log|le!”| of the analysed

semigroup is negative (Engel and Nagel, 2000). Now,
we have to define Hilbert spaced; and H_; as fol-
lows: H; is D(A) with the norm|h|; = || Ah|z and
H_, is its completion with respect to the norfih||_, =
| A=k ;, also known as the extrapolated space associ-
ated with e**. So we haveH, ¢ H Cc H_,, densely
and with continuous embedding. The operatbrhas a
unique extension to the whole spaék because it is de-
fined on a dense séP(A) in H and is continuous from
H to H_;. The semigroupe’ can be extended to a
C,-semigroup onH_;, whose generator is nothing else
than the extended operatot € £L(H, H_1) (Engel and
Nagel, 2000)).

We define the duality product off_; x D(A*) by
a continuous extension of the inner product&n For all
h € H andallg € D(A*),(h,9)u_, pa-) = (h,9)H.
For eachh € H_4, by taking h,, € H such that|h —
Pl =1 P 0, we set

{h. gl 1 peasy = Hm (ho,g)m, Vg & DAY).

For each h € H_;, the mapping defined by
g—(h,9)r_, D(Aa-) IS a continuous linear form on
D(A*). Conversely, given a continuous linear forgn

unit by the same argument as above and the properties obn D(A*), there exists a uniqué,, € H_; such that

A1(s) in (34). The inner functione=%2% is a pure time
delay of the plant transfer function. It follows that

P(s)= lim Py(s)e ?* =0.

R3s—+00

lim
R3se—+o0

Recall that the disturbance transfer functiéfi(s) is
given as follows:

M (s)e P — Xg(s)
(kA1(s) + bs)e=F(s) — (kXa(s) + bs)’

W(s) =

Y(h) = (hy, ), DA%,

In other words, the mapping : H_; — D'(A*) (the
prime means the topological dual d?(4*)) such that
Jh(f) = (h, f)a_, D(A+) is anisomorphism.

The adjoint operatotd* is defined by

D(A*) = {(fth)T € Hl[oal]) X H1[07 1] ‘

f1(1) = D f2(1), f2(0) = D f1(0)},

Vf € D(A").
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where - A
DS:_FD(% DT:_FDD
and for eachf € D(A*) we have
0
A f(z) = —A g;) + B f(2).

The boundary output operata@@ is a continuous linear
formon (H1[0,1])? defined byC'f = D(f1(1) + f2(1))
and the restriction ta?;, which is denoted with the same
letter, is also a continuous form oH;. Moreover,
Theorem 4. Given u(-),d(-) € C§°(]0, +o0), the sys-
tem (14) emanating fron¥y = 0 at ¢t = 0 has a unique
solution ¥(-,-) € C([0,4o0[, H). Moreover, there exist
B.,,Bg € H_; such that

t

(-, t) = [ (B ""ABLu(r)
0
+8FTet=ABd(7)) dT, (42)
B~ =X Ey=-1,t =\TE.
Proof. Since the system (14) is of the form (7),

the existence and uniqueness of the
U(,-) € C([0,+oc], H) is guaranteed by (Russell,

G

Integrating (44) and evaluating the resultiat= T', we
obtain

T

(W (- T). po)r = / (B~ u(t)pr (0, E* d(t)pa(L, 1)) dt.

Define the continuous (boundary operators) linear
forms Ty and T’y on (H'[0,1])? as follows:

Ty : (H'0,1))° — R, f+— f1(0) =T,

Ty: (H'[0,1))° — R, fr— fo(1) = Tof.

Of course, 4" is exponentially stable, which implies
that (A*)~! is bounded onH. Therefore, the linear
forms 'y (A*)~! and I'y(A*)~! are continuous or.
From Riesz’s representation theorem, there are unique el-
ementsy;,v2 € H such that

VfGH,{

p1(0,¢) = Tip(-,t) = T4 g,

Ly (A*) " f = (1, fa,
Co(A*) N f = (v2, N

(45)

Since

pal1,8) = Top(8) = Toe ™4 g

solution we obtain

1978, Thm. 3.1). It only remains to prove that this solu- (¥(-,T),po)s

tion ¥(-,-) given by (42) is continuous fromo0, +oo|

into H and satisfies (14). Introduce the adjoint system

associated with (14):

Op(z,t) _ A(‘?p(a:,t)
ot or
(z,t) €]0,1[x[0,T7,

pl(lat) = DTP2(17t)a
pQ(Oat) = Dgpl(ovt)a
p(-,T) = po € D(A").

- B*p($,t),

(43)

An easy computation gives

P ), = D et ),
=B u(t)p1(0,t) + Bd(t)p2(1, 1)
g0, 200,
This yields
W0, 00,1)) = B ulpa(0,0) + 57 d(0)pa(1, ).

(44)

T
:/ (ﬁ_u(t)l"le(T_t)A Do
0

+ BTd(t)T2e T4 pg) dt,
T *
:/ (B u(t)Ty (A*) T AT D4,
0

+6TdHTo(A) LA T4 po ) dt.  (46)
Substituting (45) into (46), we get

<\I’(" T)7p0>H
T
:/0 {87 (n, AT po) pruft)

+ B (o, AT poy rd(t) } dt. (47)

Integrating the first term in (47) by parts, we obtain
\IJ(W t)
t
=~ u(t) — Brd(®) + [ (57 A ()
0

+ pret=mAyd (1)) dr, (48)
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where v/(t) and d'(t) are the derivatives of(¢) and
d(t), respectively

It is easy to check that the functio®(-,¢) given
by (48) is a classical solution of the system (14).

For the previously defined’; and I'; there exist
unique B,,, By € H_; such that

(Bu, [Ya_,,pasy =T1f = f1(0),
(Ba, fYu_, par) = Taf = fa(1).
(49)

Moreover, it is easy to see that for all € H and p €
D(A*), we have

Vf e D(AY), {

<etAA\I/7p>H,1,D(A*) = <\IjvetA*A*p>H7 vt > 0.
(50)
Using (47) and (50), a direct computation gives

(U(,1),P)H_, DA%
=(¥(1),p)H,

t
- / (8~ (T D4 Ay, Pz, asyul7)

+ /3+<6(T7T)A-A’72,p>H,1,D(A*)d(T)) dr

forall p € D(A*).
According to (45) and (49), we obtain

(1) = / (8- T4B, u(r)

+ B+ eT4B,d(T)) dr. (51)

This completes the proof. =

Remark 2. Sincey; and . in (45) are in (H'[0,1])?
(see Appendix 1) and the integral terms areT.A)
(Pazy, 1983), the output function is well defined:

y(t) = =B~ Cyu(t) — BT Cyad(t)

1O [ (e A ()
0

+ BreT DAy, d' (1)) dr.

Performing the Laplace transform in (48) and (51),

we obtain the following identity:
G(s) = (= B~Cy1 + B C(s — A) 1y s)i(s)
+ (= B Crya + BTC(sI — A) 1 28)d(s)
= BC(sI — A)"'Byi(s)

+ B1C(sI — A)~*Byd(s).

YR(s) > wo(A), {

AV (t)

T
r*/ U2(1,t)dt<

Finally, from Theorem 3 we deduce that

P(s) = (=68 Cm
+087C(sI — A)_l'yls)
= BC(sI — A)~1B,,
YR(s) > 0, (52)
W(s) = (- 8*Cro
+ BTC(sI — A)12s)
= 6+C(SI — A)ile.

Now we formulate our main result.

Theorem 5. The triple (C, A, [B,, B4)) is a regular sys-
tem satisfying

P(s) =B Cr(sI_A)~'B,,

W(S) = 5+CL(817A)7le + Dy,
(53)

where C, is the Lebesgue extension ©f

Proof. Let ¥(-,¢) be the solution of (14) withu(t) =
d(t) = 0 emanating from¥, € D(A) att = 0 and
V(t) = 3||¥(,t)||%. Since¥(.,t) liesin D(A) (Pazy,
1983), differentiatingV’(¢t) along the trajectory of (14)
and integrating by parts yields

dV (t)

g = (AT, U )

= U(1,£)* AU(1, 1) — T(0,)* AT(0, t)

+/0 U(z,t)"(B+ B*)¥(z,t)dx.

Using (i) in the assumption (3} and the boundary condi-
tions in (14), we have

av (¢)

n < (AT +ATDHWE(1,)

— (AT AT D2)W2(0,1)
< (AT +ATDYHEI(L, 1)

which results from using (ii) and (iii) ofH3.

Using the boundary conditions in (14), we obtain

< —r7U3(1,4) <0, (1~ =(\"+DIAT) >0).

(54)

dt

Integrating inequality (54) fron® to 7', we deduce that

1
(Mol F =119 D7) < 5110l

N |

0
Since ¥(-,t) € D(A), from (41) we getC'U (-, t) =

Ce!AWy = W, (1,t). Moreover,

T
/ (C’et““\IIO)2 dt < /<;||\I/0||%{, (k= F2/2r*).
0
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Appendices

1. Regularity of v; and ~,

Computingy; and~- is equivalent to solving the follow-
ing differential equations:

81(;(? — A~'Bp(z) — A f(),
pi(1) = Dipa(1),
(0) = Dopl(o) (58)
<717 >H = pl(o)
(va, fYm = p2(1).

This problem has a unique solutign € D(A*) for all
f € H. ltis given by the following integral equation:
pla) =27 p(0) = [ AP ) ar
0

(59)

Evaluating (59) atz = 1 and recalling thap,(0) =
Dgp1(0), we have

() = (é) e Pp(0)

\
 ~
S =
~_—

*
S—
=
®
b
|
o)
o
&
b
—
=
S~—

p2(1) =
. (i)) /0 AP AT (@) da

o\ Lo 1
(1) ()
0 ’ 1A1B1x -1
—<1>/Oe fla)do

Now, sincep; (1) = Dip2(1), a trivial verification shows
that, for all f € H, w have

<<_zf>*e”<;s>>l<_zs>*

p1(0)

p2(l) = (

S
— ( (1) > / eA_lB(lfx)Aflf(w) dzx.
0
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Thus we obtain

) ()

) eA*IB(l—z)A—l

1
X
-D;
. (2) eA’lB(l—w)A—l.

Finally, the elementsy; and ~, are analytic functions
of x. [ |

2. Notation and Coefficients

The following symbols are used in this paper:

Q discharge(L?/T)
Qo steady (reference) dischardd?/T)
Yy water depth at reference dischargg)
S cross-sectional areél.?)

So cross-sectional area at reference discharge

(L?)
Z water-surface elevation(L)
Py

R hydraulic radius (cross-sectional area/wetted
perimeter) (L)

wetted perimeter at reference dischargé)

Froude number of reference discharge at refer-
ence depth in reference section

friction slope at reference discharge
g gravity acceleration (L/T?)

G;'s discharge coefficient fori = u, d
G;'s width for i =u,d

canal length (L)

Lo

Ly

Ky

%!

s = tan(9)

G s

top width at depth,Y, at reference discharge
(L) (see Fig. 2)

bottom width in trapezoidal sectioQL) (see
Fig. 2)

side slope in trapezoidal section (see Fig. 2)

strickler coefficient in reference section
(LY?/T)
. section form coefficient

section form coefficient
distance along canal L)
time (7))

reference time (T')

Gate opening (L)
dimensionless counterpart

Lo

Ly

Fig. 2. Cross-sectional steady flow area.

Furthermore, we have

So = Yo(Ls + sYp), Py =Ly +2YpV/1 + 52,
Ji2ge/8 SoLe
QO = g 20/3 5 TO = 0 67
Kb, Qo
F2 _ Q% x = JOLC
0 gsgyov YO )
LOYO YO
K, = K,=—.
s SO ) p PO
The dimensionless variables are
Z
x*:£7 Z*:ia S*:ia Q*:Qa
L. Yy So Qo
R K t
Rr=—, K'=—, t'=_—.
Ro Ko TO
From the dimensionless nonlinear Saint-Venant
equation and for a canal with a uniform geometry of the

slope 3 (Bounitet al, 1997), the steady state is described

by the

following conditions:

1. Ko(z), So(x) and Qo(x) are constant,
2. dZy(z)/dx = -4,

3. -3

+xJg =0 (e, —BEGRYS52 + xQi2 = 0).
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The coefficientsa; and ¢; are defined as follows:

1 Sy K.Q§*Lj Q5
= —_— = _——— = 27
ai KSLS y a2 FO2 S(,)kg , as SS y
K L TxKJiLy  4xSiJiK,
S _ = = 2v/1 + 82
a1 =—f FZ 3 2 3 mp +s5
XS5 Jg
as = 2 P
FgQy
. CuLur\/29Y36h,, o CaLa\/29Y3 W,
e Qo T Qo 2Voh,’

. Cde\/ 2gY03 W;s
Qo 2v/6hg’

C3

What is moregh; = 625 — 62, for i = u,d, where
5251 and 5Z§j are respectively the dimensionless up-
stream and downstream water elevation variations corre-
sponding to the reference steady stai&; is the dimen-
sionless opening of; corresponding to the reference
steady state.
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