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ON THE CONSTRAINED CONTROLLABILITY OF DYNAMICAL SYSTEMS WITH
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Linear stationary dynamical systems with multiple constant delays in the state are studied. Their relative and approxi-
mate controllability properties with constrained controls are discussed. Definitions of various types of controllability with
constrained controls for systems with delays in the state are introduced. Some theorems concerning the relative and the
approximate relative controllability with constrained controls for dynamical systems with delays in the state are established.
Various types of constraints are considered. Numerical examples illustrate the theoretical analysis. An example of a real
technical dynamical system is given to indicate one of possible practical applications of the theoretical results.
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1. Introduction

The controllability of dynamical systems is one of the ba-
sic notions in control theory. The controllability prob-
lem of delay dynamical systems is especially extensive.
It is directly connected with a variety of mathematical
models for these systems. Delay dynamical systems can
be encountered in many fields of science, and among
other things, in industrial processes, medicine, biology
and economy.

This article includes an analysis of an important class
of dynamical systems with delays, i.e., dynamical systems
with delays in the state. Linear systems with multiple con-
stant delays in the state are discussed. Relative and ap-
proximate controllability properties with constrained con-
trols are investigated. Various types of constraints are con-
sidered. Some criteria of relative and approximate con-
trollability for linear stationary dynamical systems with a
single constant delay in the state are known (Bankset al.,
1975; Salamon, 1982; Klamka, 1990). However, these
criteria concern mainly unconstrained controls. Since,
in practice, controls are almost always constrained, it is
worth to analyse the controllability of dynamical systems
with additional constraints on control. Controllability
with some type of constraints for systems with delays in
the state was studied in (Chukwu, 1979; Son, 1990).

Dynamical systems with delays in the state are met,
among other things, in the case of systems with feedback
containing a delay (e.g. regarding measurements) in the

feedback loop. Examples of real technical systems with
delays in the state can be found, e.g., in chemical reactors,
in electric systems containing long lines and in the case of
heat exchangers and acoustic systems (Campbell, 1962;
Bieńkowska-Lipínska, 1974; Luyben, 1990).

In the example below, we present a chemical solution
control system. This example of a technical dynamical
system is given to indicate one of possible applications of
the theoretical results presented in this article.

Example 1. (Model with delay in the state for a solution
control system.) Consider the cascade connection of two
fully filled mixers according to the scheme presented in
Fig. 1, wherecin1(t) and cin2(t) are the input concen-
trations of the product,Q∗1 and Q∗2 denote constant flow
intensities for concentrationscin1(t) and cin2(t), V1 and
V2 stand for the volumes of Mixers 1 and 2,c1(t) and
c2(t) are the strength of solutions in Mixers 1 and 2, re-
spectively,L denotes the length of the reactor, andh is a
constant delay arising in the reactor.

Assume thatV1 = V2 = V . The state equations
describing the above chemical system have the form

V
dc1(t)

dt
= Q∗1cin1(t)−Q∗1c1(t),

V
dc2(t)

dt
= Q∗1c1(t− h)

+Q∗2cin2(t)− (Q∗1 + Q∗2)c2(t).
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Fig. 1. Scheme of a cascade connection of two mixers.

After a transformation, we have

dc1(t)
dt

= −Q∗1
V

c1(t) +
Q∗1
V

cin1(t),

dc2(t)
dt

= − (Q∗1 + Q∗2)
V

c2(t)

+
Q∗1
V

c1(t− h) +
Q∗2
V

cin2(t).

Taking c1(t) = x1(t), c2(t) = x2(t), cin1(t) =
u1(t) and cin2(t) = u2(t), we get the mathematical
model of the dynamical system with delay in the state,
described by the following differential equation:

ẋ(t) = A0x(t) + A1x(t− h) + Bu(t),

where

x(t) =

[
x1(t)
x2(t)

]
, u(t) =

[
u1(t)
u2(t)

]

and

A0 =

 −Q∗1
V

0

0 −Q∗1 + Q∗2
V

 , A1 =

 0 0

Q∗1
V

0

 ,

B =


Q∗1
V

0

0
Q∗2
V

 .

This is an example of a dynamical system with con-
stant delay in the state. Theoretical results presented in
this article can be applied, among other things, to such
technical systems. �

2. Mathematical Model

We consider linear stationary dynamical systems with
lumped, multiple, constant delays in the state described by
an ordinary differential equation with a delay argument of
the following form:

ẋ(t) =
M∑
i=0

Aix(t− hi) + Bu(t), t ≥ 0, (1)

where x(t) ∈ Rn stands for the instantaneousn-
dimensional state vector,u ∈ L2

loc([0,∞), Rm) is the
control, Ai, i = 0, 1, . . . ,M are (n × n)-dimensional
matrices with real elements,B is an (n×m)-dimensional
matrix with real elements, andhi, i = 0, 1, . . . ,M de-
note constant delays satisfying the following inequalities:

0=h0 <h1 < · · ·<hi < · · ·<hM−1 <hM , (2)

with initial conditions z0 = (x(0), x0) ∈ Rn ×
L2([−hM , 0), Rn), where x(0) ∈ Rn is the instanta-
neous state vector at timet = 0, and x0 is a function
given in the time interval[−hM , 0), i.e., x0(t) = x(t) for
t ∈ [−hM , 0). The Hilbert spaceRn×L2([−hM , 0), Rn)
endowed with the scalar product defined by

〈{x(t), xt} , {y(t), yt}〉

=
n∑

i=1

xi(t)yi(t) +

0∫
−hM

〈xt(τ), yt(τ)〉Rn dτ,

is denoted byM2([−hM , 0], Rn).
Let U ⊂ Rm be a non-empty, convex and compact

set such that0 ∈ U . Any control u ∈ L2
loc([0,∞)U) is

called an admissible control for the dynamical system (1).
The pair zt = (x(t), xt) ∈ Rn × L2([−hM , 0), Rn) =
M2([−hM , 0], Rn), wherex(t) ∈ Rn is the vector of the
current state andxt(τ) = x(t + τ) for τ ∈ [−hM , 0) is
the segment of the trajectory of lengthhM , which is de-
fined in the time interval[t−hM , t), is called the complete
state of the dynamical system (1) fort ≥ 0.

For a given initial conditionz0 = (x(0), x0) ∈
M2([−hM , 0], Rn) and an admissible controlu ∈
L2([0, t], U), for every t ≥ 0 there exists a unique, ab-
solutely continuous solutionx(t, z0, u) of the differential
equation (1). This solution has the form (Jacobs and Lan-
genhop, 1976; Klamka, 1990):

x(t, z0, u) = x(t, z0, 0) +

t∫
0

F (t− τ)Bu(τ) dτ, (3)

where the(n× n)-dimensional transition matrixF (t) is
the solution of the following linear matrix integral equa-
tion:

F (t) = I +
M∑
i=0

t−hi∫
0

F (τ)Ai dτ for t > 0, (4)
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with initial conditions F (0) = I and F (t) = 0 for t <
0, and x(t, z0, 0) is the so-called free solution of (1) with
zero controlu(t) = 0 for t ≥ 0, given by the formula

x(t, z0, 0)

= F (t)x(0) +
M∑
i=0

0∫
−hi

F (t−τ−hi)Aix0(τ) dτ. (5)

The free component of the solutionx(t, z0, 0) depends
only on the initial complete statez0 = (x(0), x0).

The set of all solutions of the differential equation
with delay argument (1) at timet1 > 0 with initial condi-
tions z0 = (x(0), x0) ∈ M2([−hM , 0], Rn) and admissi-
ble control u ∈ L2([0, t1], U) is called the attainable set
in time t1 > 0 of the dynamical system (1) from the ini-
tial complete statez0 with constrained control. This set is
denoted byKU ([0, t1], z0). Therefore we can formulate
the following definition of the attainable set:

Definition 1. The attainable setKU ([0, t], z0) of the dy-
namical system (1) from the initial complete statez0 =
(x(0), x0) in time t > 0 for u(t) ∈ U is the set

KU ([0, t], z0)

=
{

x(t) ∈ Rn : x(t) = x(t, z0, 0)

+

t∫
0

F (t− τ)Bu(τ) dτ, u ∈ L2([0, t], U)
}

. (6)

Remark 1. The attainable setKU ([0, t], z0) given by (6)
is convex and closed, and0 ∈ KU ([0, t], 0) for every
t ≥ 0 (Chukwu, 1979).

3. Basic Definitions

In this section we shall give the definitions of various
types of controllability with constrained controls for con-
tinuous dynamical systems with delays in the state of the
form (1). We also quote the definition and the necessary
and sufficient condition for the asymptotic stability of the
dynamical system (1).

Based on the definitions of systems with de-
lay in the state, Rn-controllability (Klamka, 1990)
and systems without constrained control controllability
(Klamka, 1990), we define various types of relativeU -
controllability for the dynamical system (1) in the time
interval [0, t1], i.e. the relative controllability with con-
strained values of controls.

Let S ⊂ Rn be any non-empty set.

Definition 2. The dynamical system (1) is said to berela-
tively U -controllable in the time interval[0, t1] from the
complete statez0 = (x(0), x0) ∈ M2([−hM , 0], Rn)
into the setS if for every vector x̃ ∈ S there exists
an admissible control̃u ∈ L2([0, t1], U) such that the
corresponding trajectoryx(t, z0, ũ) of the dynamical sys-
tem (1) satisfies the condition

x(t1, z0, ũ) = x̃.

Definition 3. The dynamical system (1) is said to be
(globally) relatively U -controllable in the time interval
[0, t1] into the setS if it is relatively U -controllable in
the interval [0, t1] into the setS for every initial com-
plete statez0 = (x(0), x0) ∈ M2([−hM , 0], Rn).

Definition 4. The dynamical system (1) is said to be
(globally) relativelyU -controllable fromt0 = 0 into the
set S if for every initial complete statez0 = (x(0), x0) ∈
M2([−hM , 0], Rn) there existst1 ∈ [0,∞) such that the
dynamical system (1) is relativelyU -controllable in the
time interval [0, t1] into the setS.

If S = Rn, then we deal with the (global) relativeU -
controllability in the time interval[0, t1]. WhenS = {0},
we deal with the relative nullU -controllability in [0, t1]
from a complete statez0, and the (global) relative null
U -controllability in [0, t1].

Assume thatS is a linear variety inRn of the form

S = {x ∈ Rn : Lx = c}, (7)

whereL is a known(p×n)-matrix of rankp and c ∈ Rp

is a given vector. In the specific case, whenL = In (the
(n × n)-dimensional identity matrix) andc = 0, we get
S = {0}.

Definition 5. The dynamical system (1) is said to beap-
proximately relativelyU -controllable from the complete
statez0 = (x(0), x0) ∈ M2([−hM , 0], Rn) if there exists
t1 > 0 such that

clKU ([0, t1], z0) = Rn.

The notationclKU ([0, t1], z0) means the closure of
the attainable setKU ([0, t1], z0).

In the sequel, the asymptotic stability of the dynami-
cal system (1) will be exploited.

Definition 6. (Kaczorek, 1977; Klamka and Ogonowski,
1999) The dynamical system (1) is said to beasymp-
totically stable if for any initial complete statez0 ∈
M2([−hM , 0], Rn) and u = 0, the complete state at time
t > 0, i.e., zt = (x(t), xt) satisfies the condition

lim
t→∞

‖zt‖M2 = 0.
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Theorem 1. (Kaczorek, 1977; Klamka and Ogonowski,
1999)The dynamical system (1) is asymptotically stable
if and only if all the rootssi of the quasi-characteristic
equation

ϕ(s) = det
(
sI −

M∑
i=0

Aie
−shi

)
= 0

of the autonomous dynamical system (1) (u(t) ≡ 0) have
negative real parts, i.e.,<[si] < 0 for i = 1, 2, . . . .

4. Controllability Results

In this section we shall formulate some theorems concern-
ing the controllability with constrained controls for the dy-
namical system (1). We shall give criteria of the relative
U -controllability into the setS of the form (7) in the time
interval [0, t1] and the relative nullU -controllability of
dynamical systems with delays in the state (1).

Generalizing the results obtained in (Chukwu, 1979),
we first give a sufficient condition for the relative nullU -
controllability of the dynamical system (1). To this end,
we define the following matrix (Chukwu, 1979; Klamka,
1990):

Qk(s) =
M∑
i=0

AiQk−1(s− hi),

s ∈ [0,∞), k = 1, 2, . . . , (8)

Q0(s) =

{
B for s = 0,

0 for s 6= 0,
(9)

and

Q̃n(t1)={Q0(s), Q1(s), . . . , Qn−1(s), s∈ [0, t1]} (10)

for s = hi, 2hi, 3hi, . . . , i = 0, 1, 2, . . . ,M .

We define the rank of̃Qn(t1) as the rank of the block
matrix composed of all matrices from the setQ̃n(t1).

Lemma 1. (Chukwu, 1979; Klamka, 1990)For every
t1 ∈ (0,∞) the following conditions are equivalent:

(i) if cT F (t)B = 0 for t ∈ [0, t1] and c ∈ Rn, then
c = 0,

(ii) rank Q̃n(t1) = n,

(iii) the dynamical system (1) without constraints on con-
trols is (globally) relatively controllable in the time
interval [0, t1].

Remark 3. The equivalence of Conditions (i) and (ii)
is shown in (Chukwu, 1979), whereas the equivalence

of Conditions (ii) and (iii) is shown in the monograph
(Klamka, 1990).

Based on Lemma 1 we shall formulate a sufficient
condition for the (global) relative nullU -controllability
of the dynamical system (1).

Theorem 2. If for the dynamical system (1), for all
t1 > 0, one of Conditions (i), (ii) or (iii) of Lemma 2
is satisfied and the system is asymptotically stable, then
the dynamical system (1) is (globally) relatively nullU -
controllable.

Proof. Fix a final time t1 > 0. We assume that for
the dynamical system (1) Condition (i) of Lemma 1 is
satisfied and the system is asymptotically stable. Let
Φt1 = {z0 ∈ M2([−hM , 0], Rn): there existsu ∈ U
such thatx(t1, z0, u) = 0, t1 ∈ (0,∞)} denote the do-
main of relative nullU -controllability for the dynamical
system (1) in timet1 > 0. We notice that0 ∈ Φt1 (here,
by 0 we mean the pair(0, 0) ∈ Rn×L2([−hM , 0), Rn)),
because with zero initial conditions, owing to the stability
assumption,x = 0 is the solution of (1) for the admissi-
ble controlu = 0.

Since the attainable setKU ([0, t1], 0) of the dynam-
ical system (1), given by (6), is a convex and closed sub-
set of the spaceRn (cf. Remark 1), from Condition (i) of
Lemma 1,0 ∈ Rn lies in the interior of the attainable set
from the zero initial complete state of the dynamical sys-
tem (1) with constraints, i.e.,0 ∈ intKU ([0, t1], 0) for
every t1 > 0 (Chukwu, 1979, Thm. 2.2).

We shall show that0 ∈ intΦt1 . Assume that0 6∈
intΦt1 . Then there exists a sequence of initial complete
states{z0n}n∈N convergent to zero, and for everyz0n,
z0n 6∈ Φt1 such thatz0n 6= 0 we have

0 6= x(t1, z0n, u) = x(t1, z0n, 0)+
∫ t1

0

F (t−τ)Bu(τ) dτ

for every t1 > 0 and u ∈ U .

We form a sequence of final states
{xn(t1, z0n, 0)}n∈N corresponding to the sequence
of complete initial states{z0n}n∈N, with u = 0. The
elements of this sequence are different from the zero
elements of the attainable setKU ([0, t1], 0) and converge
to zero asn → ∞. Therefore,0 6∈ intKU ([0, t1], 0) for
every t1 > 0. But this contradicts the assumption that
0 ∈ int KU ([0, t1], 0) for every t1 > 0 and any initial
complete statez0. Thus 0 ∈ intΦ.

Since the setΦt1 contains 0 in the interior, it
also contains a neighbourhood of0 = (0, 0) ∈ Rn ×
L2([−hM , 0), Rn). By a neighbourhood in the space
Rn × L2([−hM , 0), Rn) we mean a pair of neighbour-
hoods consisting of a neighbourhood of0 ∈ Rn and a
neighbourhood of0 ∈ L2([−hM , 0), Rn).
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Let an initial complete statez0 = (x(0), x0) 6= 000 of
the dynamical system (1) be given. Using the null control
u(t) = 0, the solutionx(t, z0, 0) satisfies the conditions

lim
t→∞

x(t, z0, 0) ≡ 0, x(t1, z0, 0) ∈ P

for some finite t1 ∈ (0,∞), where P is a sufficiently
small neighbourhood of0 ∈ Rn. Then the instantaneous
state x(t1, z0, 0) can be steered to0 ∈ Rn in a finite
time, so the dynamical system (1) is (globally) relatively
null U -controllable.

In order to formulate the criteria of relativeU -
controllability for the dynamical system (1) on the as-
sumption that the final set is of the form (7), introduce
a scalar functionJ : Rn × R × Rp → R related to
the attainable setKU ([0, t1], z0) of the system (1). The
function J has the following form:

J(z0, t1, v)

= vT Lx(t1, z0, 0)

+

t1∫
0

sup{vT LF (t1 − τ)Bu(τ),

u ∈ L2([0, t], U)}dt− vT c, (11)

wherev ∈ Rp is any vector.

The scalar functionJ , called the supporting function
of the attainable set, was used for dynamical systems with-
out delays in (Schmitendorf and Barmish, 1981; Klamka,
1990).

The theorem below gives the necessary and sufficient
condition of relativeU -controllability from the complete
state z0 = (x(0), x0) ∈ M2([−hM , 0], Rn) into the set
S of the form (7) in the time interval[0, t1] for the dy-
namical system (1).

Theorem 3. Let E ⊂ Rp be any set containing0 as an
internal point. Then the dynamical system with delays in
the state (1) is relativelyU -controllable from the complete
state z0 = (x(0), x0) ∈ M2([−hM , 0], Rn) into the set
S of the form (7) if and only if for somet1 ∈ [0,∞) we
have

min{J(z0, t1, v) : v ∈ E} = 0

or, equivalently, if and only if

J(z0, t1, v) ≥ 0 for every v ∈ E,

where the scalar functionJ(z0, t1, v) is defined by (11).

Proof. The setKU ([0, t1], z0) is compact. In order to
prove this fact, we shall show that for any sequence of
pointsx1(t1), x2(t1), . . . , xk(t1), . . . belonging to the set

KU ([0, t1], z0) of the form (6) we can choose a subse-
quence convergent to a point̄x(t1) ∈ KU ([0, t1], z0).
Since the set of admissible controlsL2([0, t1], U) is
weakly compact in the spaceL2([0, t1], Rm) (Lee and
Marcus, 1972, Lem. 1A, p. 169), there exists a subse-
quence of controlsuki ∈ L2([0, t1], U) which is weakly
convergent to a control̄u such that

lim
ki→∞

t1∫
0

F (t1 − τ)Buki
(τ) dτ =

t1∫
0

F (t1 − τ)Bū(τ) dτ.

Let x̄(t) be the solution corresponding to the control
ū(t). Then, in the time interval[0, t1] we have

x̄(t) = F (t)x(0) +
M∑
i=1

0∫
−hi

F (t− τ − hi)Aix0(τ)dτ

+

t∫
0

F (t− τ)B(τ)ū(τ)dτ = lim
ki→∞

xki(t)

because

x(t, z0, 0) = F (t)x(0)+
M∑
i=1

0∫
−hi

F (t−τ−hi)Aix0(τ)dτ.

Therefore

lim
ki→∞

xki
(t1) = x̄(t1) ∈ KU ([0, t1], z0),

which implies that the attainable setKU ([0, t1], z0) is
compact in the spaceRn.

Moreover, the attainable setKU ([0, t1], z0) of the
dynamical system (1) is convex (see Remark 1).

Owing to the convexity and compactness of the set
KU ([0, t1], z0), the setK̃U ([0, t1], z0) of the form

K̃U ([0, t1], z0)=
{
y∈Rp : y=Lx, x∈KU ([0, t1], z0)

}
is also convex and compact. An initial complete statez0

can be steered to the setS in time t1 if and only if the
vector c and the setK̃U ([0, t1], z0) are not exactly sep-
arable by a hyperlane, i.e., if for all vectorsv ∈ Rp we
have

vT c ≤ sup
{
vT x̃ : x̃ ∈ K̃U ([0, t1], z0)

}
.

This fact follows from the theorem about separating con-
vex sets.

Taking into account the form of the set
K̃U ([0, t1], z0), we can equivalently write the above
inequality as follows:

sup
{ t1∫

0

vT LF (t1 − τ)Bu(τ) dt, u ∈ L2([0, t], U)
}

−vT c ≥ 0.
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Interchanging integration and the supremum opera-
tion, we conclude thatc ∈ K̃U ([0, t1], z0) if and only if
J(z0, t1, v) ≥ 0 for all vectorsv ∈ Rp.

Moreover, we can show that

kJ(z0, t1, v) = J(z0, t1, kv) for every k ≥ 0.

Therefore, limiting attention to vectorsv ∈ E, we obtain
the assertion of the theorem.

Corollary 1. Let E ⊂ Rn be any set containing0 as
an internal point. Then the dynamical system with delays
in the state (1) is relatively nullU -controllable from the
complete statez0 = (x(0), x0) ∈ M2([−hM , 0], Rn) if
and only if for somet1 ∈ [0,∞) the equality

min{J(z0, t1, v) : v ∈ E } = 0

is satisfied or, equivalently, if and only if

J(z0, t1, v) ≥ 0 for every v ∈ E,

where the scalar functionJ(z0, t1, v) is defined by (11).

Proof. This corollary follows directly from Theorem 3 for
S = {0}, i.e., for L = In and c = 0. ThenE is a subset
of the spaceRn.

Now, assume thatU = Rm
+ . We shall give a suffi-

cient condition of the (global) relative controllability with
positive controls for the dynamical system (1).

Theorem 4. The dynamical system (1) is (globally) rel-
atively Rm

+ -controllable in the time interval[0, t1] if the
(n×n)-dimensional controllability matrixW (t1) of this
system, given by

W (t1) =

t1∫
0

F (t1 − τ)BBT FT (t1 − τ)dτ, (12)

satisfies

rank W (t1) = n (13)

and W−1(t1) ∈ Rn×n
+ , BT FT (t1 − t) ∈ Rm×n

+ for
every t ∈ [0, t1] and (x̃ − x(t1, z0, 0)) ∈ Rn

+, where the
transition matrixF (t) is determined by (4).

Proof. Let the assumptions of Theorem 4 be satisfied.
Let z0 = (x(0), x0) ∈ Rn × L2([−hM , 0), Rn) be any
initial complete state of the dynamical system (1) and
x̃ ∈ Rn be any vector. We shall prove that the control
u ∈ L2([0, t], Rm

+ ) of the form

u(t) = BT FT (t1 − t)W−1(t1)(x̃− x(t1, z0, 0)), (14)

for t ∈ [0, t1] steers the system (1) from the initial state
z0 to the statex(t1, z0, u) = x̃. Substituting (14) into (3)
for t = t1, we get

x(t1, z0, u)

= x(t1, z0, 0) +

t1∫
0

(
F (t1 − τ)BBT FT (t1 − τ)

×W−1(t1)
(
x̃− x(t1, z0, 0)

))
dτ

= x(t1, z0, 0)

+W (t1)W−1(t1)(x̃− x(t1, z0, 0)) = x̃.

Since z0 and x̃ were arbitrary, the dynamical sys-
tem (1) is relativelyRm

+ -controllable in the time interval
[0, t1].

We can also formulate an analogous theorem with the
aid of a generalized permutation matrix. A matrix with
non-negative elements is called the generalized permuta-
tion matrix or, briefly, the GPM, if in each row and in
each column only one element is positive and the remain-
ing entries are zero (Kaczorek, 2000; 2002). Recall that in
a permutation matrix all these elements are equal to one.

Theorem 5. The dynamical system (1) is (globally) rel-
atively Rm

+ -controllable in the time interval[0, t1] if the
(n×n)-dimensional controllability matrixW (t1) of this
system

W (t1) =

t1∫
0

F (t1 − τ)BBT FT (t1 − τ) dτ

is a GPM, BT FT (t1 − t) ∈ Rm×n
+ for every t ∈ [0, t1]

and (x̃− x(t1, z0, 0)) ∈ Rn
+, where the transition matrix

F (t) is determined by (4).

Proof. We only have to notice that ifW (t1) is a GPM,
then W−1(t1) ∈ Rn×n

+ . Further, the proof is analogous
to that of Theorem 4.

In general, the calculation of the transition matrix
from (4) is complicated. A more practical way to calculate
the transition matrix is the so-called method of steps, as
known from the literature (Biénkowska-Lipínska, 1974;
Muszýnski and Myszkis, 1984). The method of steps
is based on searching for the solution of the differential
equation with a delay argument in succeeding intervals
whose lengths depend on the delays occurring in the dy-
namical system.

Consider the following system with a single delay:

ẋ(t) = A0x(t) + A1x(t− h) + Bu(t), t ≥ 0. (15)

In the first step, we get a solutionxh(t) of (15) in the
interval [0, h]. Then (t − h) ∈ [−h, 0] and x(t − h) =
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x0(s) for s ∈ [−h, 0], where x0 is a function known
from the initial conditions. Therefore, we get an ordinary
differential equation without delays of the following form:

ẋ(t) = A0x(t)+A1x0(t−h)+Bu(t), t ∈ [0, h], (16)

which has a unique solutionx(t) = xh(t) in the interval
t ∈ [0, h],

xh(t) =x(t)

= eA0tx(0)+

t∫
0

eA0(t−τ)[A1x0(τ−h)+Bu(t)] dτ.

In the next step, we look analogously for the solution
of the equation

ẋ(t) = A0x(t) + A1xh(t− h) + Bu(t) (17)

for t ∈ [h, 2h], with the initial conditionx(h) = xh(h).
Thus

x2h(t) =x(t)

= eA0tx(h)+

t∫
h

eA0(t−τ)[A1xh(τ−h)+Bu(t)] dτ.

Generally, in then-th step we look for the solution
of the equation

ẋ(t) = A0x(t) + A1xnh(t− h) + Bu(t) (18)

for t ∈ [nh, (n+1)h] with the initial conditionx(nh) =
xnh(nh).

Consequently, we get the solution of the differential
equation with the delay argument (15) and the initial con-
dition z0 = (x(0), x0) at time t ∈ [nh, (n + 1)h] by
solving (18) in the interval[nh, (n + 1)h] with the initial
condition x(nh) = xnh(nh), where xnh is obtained by
the method of steps, i.e.,

x(t, z0, u) = xnh(t1) for t1 ∈ [nh, (n + 1)h].

Finally, the solution of (15) at timet1 > 0 has the
form

x(t1, x0, u) = eA0t1x(nh)

+

t1∫
nh

eA0(t1−τ)[A1xnh(τ−h)+Bu(τ)] dτ.

We can also formulate the criteria for the controlla-
bility of the dynamical system (1) without the assumption
on the convexity of the set of admissible control values
U ⊂ Rm. The theorem which characterizes the approxi-
mate controllability in the spaceRn×L2([−hM , 0], Rn)

for dynamical systems of the form (1) assuming thatU
is a cone in the spaceRm, whose convex hull has a non-
empty interior was given in the article (Son, 1990). A
convex hull is denoted byco U . Similarly, we can formu-
late a criterion of approximate relative controllability for
the dynamical system (1) with the same constraints on the
control values.

Introduce the following notation:

Φ(s) = sI −
M∑

i=0

Aie
−shi

and
ϕ(s) = det Φ(s),

whereΦ(s) is an (n× n)-dimensional matrix.

Theorem 6. Assume thatU is a cone in the spaceRm

such thatint coU 6= ∅. Let detAM 6= 0 and m = 1.
The dynamical system (1) is approximately relativelyU -
controllable if and only if

rank [Φ(s), B] = n for every s ∈ C

and the quasi-characteristic equationϕ(s) = 0 has no
real roots.

Proof. This theorem results directly from Theorem 4.3
and Corollary 4.4 in (Son, 1990). The condition
rank [Φ(s), B] = n for every s ∈ C with the assump-
tions detAM 6= 0 and m = 1 is a necessary and suffi-
cient condition for the approximate relative controllability
of the dynamical system (1) without constraints (Klamka,
1990; Son, 1990). If, moreover, the quasi-characteristic
equationϕ(s) = 0 has no real roots, the condition (18)
of Theorem 4.3 in (Son, 1990) is satisfied and the dynam-
ical system (1) with constrained controls is approximately
relatively U -controllable.

Notice that, in a particular case, we can use this the-
orem for dynamical systems with positive controls.

Corollary 2. Assume thatU = Rm
+ . Let det AM 6= 0

and m = 1. The dynamical system (1) is approximately
relatively Rm

+ -controllable if and only if

rank [Φ(s), B] = n for every s ∈ C

and the quasi-characteristic equationϕ(s) = 0 has no
real roots.

Proof. We only have to notice thatU = Rm
+ is a cone in

the spaceRm such thatint coU 6= ∅.

Approximate relative controllability is a weaker no-
tion than relative controllability, but it appears sufficient
for many important controllability tasks.
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5. Examples

This section contains numerical examples illustrating the
theoretical analysis. Moreover, in Examples 2 and 3 we
shall formulate stability conditions for some type of de-
lays and the elements of matricesAi, i = 0, 1, . . . ,M
and B. In Example 4, the way of constructing a transition
matrix by the method of steps will be introduced.

Example 2. We consider a dynamical system with two
delays in the state given by the equation

ẋ(t) = A0x(t)+A1x(t−1)+A2x(t−2)+Bu(t), (19)

where

A0 =

[
0 1

−1 −4

]
, A1 =

[
0 0
0 −2

]
,

A2 =

[
0 0
1 0

]
, B =

[
0
1

]
,

(20)

with control values in them-dimensional unit hypercube

Cm =
{
u(t)∈Rm : |uj(t)|≤1, j =1, 2, . . . ,m}, t>0.

It is a convex and compact set containing0 ∈ intCm.

Then we haveh0 = 0, h1 = 1, h2 = 2, n = 2,
m = 1, M = 2 and U = Cm.

We shall study the stability of the dynamical sys-
tem (19). The quasi-characteristic polynomial of the au-
tonomous equation of this system has the following form:

ϕ(s) = det(sI −A0 − e−sh1A1 − e−sh2A2)

= det

([
s 0
0 s

]
−

[
0 1

−1 −4

]

− e−s

[
0 0
0 −2

]
− e−2s

[
0 0
1 0

])

= det

[
s −1

1− e−2s s + 4 + 2e−s

]

= s2 + 4s + 2se−s − e−2s + 1.

We get the quasi-characteristic equation

s2 + 4s + 2se−s − e−2s + 1 = 0. (21)

We shall show that all roots of the above quasi-
characteristic equation have negative real parts. To obtain
a contradition, assume thats = α + βi is a root of (21)
with a non-negative real partα ≥ 0. Notice thatβ = 0 is

impossible, because in that case the left-hand side of (21)
is positive. Soβ 6= 0 and we have

=(s2 + 4s + 2se−s − e−2s + 1)/β

= 2α + 4 + 2e−α

(
cos β − α

sinβ

β

)

+2e−2α sin 2β

2β
> 4− 2− 1 > 0.

This contradicts the assumption that the complex number
s = α + βi is a root of (21). Therefore, all roots of
the characteristic equation (21) have negative real parts.
Based on Theorem 1, we conclude that the dynamical sys-
tem (19) is stable.

Moreover, we shall show that Condition (ii) of
Lemma 1 is satisfied, i.e.,̃Qn(t1) = n, n = 2 for ev-
ery t1 > 0. To this end, we find all matrices belonging to
the setQ̃2(t1):

Q0(0) = B =

[
0
1

]
and Q0(s) = 0 for s 6= 0.

Since

Q1(s) =
2∑

i=0

AiQ0(s− hi)

= A0Q0(s) + A1Q0(s− h1) + A2Q0(s− h2),

for s = hi, 2hi, 3hi, . . . , i = 0, 1, 2, we get

Q1(0) = A0B =

[
0 1

−1 −4

][
0
1

]
=

[
1

−4

]
,

Q1(h1) = A1Q0(0) =

[
0 0
0 −2

][
1

−4

]
=

[
0
8

]
,

Q1(h2) = A2Q0(0) =

[
0 0
1 0

][
1

−4

]
=

[
0
1

]
,

Q1(2h1) = A2Q0(0) = Q1(h2), as 2h1 = h2.

Hence

Q̃2(t1) = {Q0(0), Q1(0), Q1(h1), Q1(h2)}, n = 2,

and

rank Q̃2(t1) = rank

[
0 1 0 0
1 −4 8 1

]
= 2.

We proved that Condition (ii) of Lemma 1 is satis-
fied in any time interval[0, t1] and the dynamical sys-
tem (19) is stable, so based on Theorem 2, the dy-
namical system (19) is (globally) relatively nullU -
controllable. �
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Example 3. Now, consider a more general case of a dy-
namical system with two delays in the state of the form

ẋ(t) = A0x(t) + A1x(t− h1)

+ A2x(t− h2) + Bu(t), (22)

where

A0 =

[
0 1

−k −b

]
, A1 =

[
0 0
0 −q

]
,

A2 =

[
0 0
d 0

]
, B =

[
0
1

]
,

(23)

and k, b, q, d, h1 and h2 are positive constants.

The quasi-characteristic equation of the autonomous
equation (22) has the form

s2 + bs + qse−sh1 − de−sh2 + k = 0.

Making an analysis analogous to that in Example 2, we
conclude that the dynamical system (22) with system ma-
trices A0, A1, A2 and B of the form (23) is stable if

b > q + d.

If

A0 =

[
0 1

−k −b

]
, A1 =

[
0 0
0 −q

]
,

A2 =

[
0 0
0 −d

]
, B =

[
0
1

]
,

(24)

then the quasi-characteristic equation has the form

s2 + bs + qse−sh1 + sde−sh2 + k = 0.

Again, (22) with system matricesA0, A1, A2 and B of
the form (24) is stable if

b > q + d.

Next, we can easily generalize this method to the
case of a finite number of delays, i.e., to dynamical sys-
tems (1) with system matricesAi, i = 2, . . . ,M of the
form [

0 0
d 0

]
or

[
0 0
0 −d

]
.

Then the dynamical system (1) is stable if

b > q +
M∑
i=2

di.

The stability of dynamical systems with delays in the
state can also be investigated by other methods, e.g. by the
method of Lapunov functionals or theD-section method
(Bieńkowska-Lipínska, 1974; Muszýnski and Myszkis,
1984). �

Example 4. Let a dynamical system of the form (1) be
given in the time interval[0, 3], where

A0 =

[
0 1
0 0

]
, A1 =

[
0 1
1 0

]
,

with a single delayh1 = 1 and the initial conditionsz0 =
(1, 1).

We compute the transition matrixF (t) of the dy-
namical system with delay using the method of steps.

With the aid of the Laplace transform, we calculate

eA0t =

[
1 0
t 1

]
.

In the first step, taking into consideration the initial con-
ditions, in the interval[0, 1] we get

F (t) =

[
1 0
t 1

]
+

1∫
0

[
1 0

t− τ 1

]
dτ =

 2 0

2t− 1
2

2

.

In the next step, with the new initial conditions

x1(1) =

 2 0

3
2

2

 ,

in [1, 2] we get

F (t) =

[
1 0
t 1

] 2 0

3
2

2

+

2∫
1

[
1 0

t− τ 1

]

×

[
0 1
1 0

] 2 0

2(t− τ)− 1
2

2

dτ

=

 2t− 3 2

2t2 − 4t +
49
6

2t− 1

 .

In the last step, with the initial conditions

x2(2) =

 1 2
49
6

1

 ,
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in the interval[2, 3] we have

F (t) =

[
1 0
t 1

] 1 2
49
6

1

+

3∫
2

[
1 0

t− τ 1

][
0 1
1 0

]

×

 2(t− τ)− 3 2

4(t−τ)2−4(t−τ)+
49
6

2(t−τ)−3

dτ

=

 4t2 − 24t +
89
2

2t− 6

4t3−34t2+103t−110
7
12

2t2−11t+
71
6

 .

Finally, the transition matrix in the time interval
[0, 3] of the analysed dynamical system with delay has
the following form:

F (t) =


F1 for t ∈ [0, 1],

F2 for t ∈ [1, 2],

F3 for t ∈ [2, 3],

where

F1 =

 2 0

2t− 1
2

2

 , F2 =

 2t−3 2

2t2−4t+
49
6

2t−1



F3 =

 4t2 − 24t +
89
2

2t− 6

4t3−34t2+103t−110
7
12

2t2−11t+
71
6

.

�

Example 5.Consider the dynamical system (1) withn =
2, m = 1, M = 2, h1 = 1, h2 = 2 and

A0 =

[
a 0
0 b

]
, A1 =

[
0 c

0 0

]
,

A2 =

[
−a 0

0 d

]
, B =

[
p

q

]
,

where a, b, c, d, p and q are positive numbers. We
assume thatU is a cone inRm, having a convex hull
with non-empty interior.

The quasi-characteristic equation of the dynamical
system has the form

s2 − (a + b)s− (d− a)se−2s

− (b− d)ae−2s − ade−4s + ab = 0.

Notice that 0 is a real root of this equation. Then,
based on Theorem 6, this system is not approximately rel-
atively controllable. �

6. Concluding Remarks

In this paper, linear stationary dynamical systems with
multiple constant delays in the state of the form (1) have
been considered. Their relative and approximate con-
trollability properties with constrained controls were dis-
cussed. Definitions of various types of controllability
with constrained controls for systems with delays in the
state (1) were introduced. Some theorems concerning the
relative and the approximate relative controllability with
constrained controls for the dynamical system (1) were
established. Various types of constraints were considered.
The notions of the supporting function (Schmitendorf and
Barmish, 1981; Klamka, 1990) and the general permuta-
tion matrix (Kaczorek, 2000; 2002) were exploited. The
results obtained in this paper constitute an extension of
those published in (Chukwu, 1979; Klamka, 1990) to sys-
tems with delays in the state and constrained controls. As
one of possible practical applications of the theoretical re-
sults, an example of a real technical dynamical system was
presented.
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