Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 1, 69-79

DOI: 10.2478/amcs-2019-0005

PARALLELIZING USER-DEFINED FUNCTIONS IN THE ETL WORKFLOW
USING ORCHESTRATION STYLE SHEETS

SYED MUHAMMAD FAWAD ALI ®*,

JOHANNES MEY ¢, MAIK THIELE ¢

“Faculty of Computing
Poznan University of Technology, Piotrowo 2, 60-965 Poznati, Poland

Data Engineering
trivago N.V. Leipzig, Bosestrasse 4, 04109, Leipzig, Germany
e-mail: |[fawadali.ali@gmail .com

“Faculty of Computer Science
Technical University of Dresden, Helmholtzstrasse 10, 01069, Dresden, Germany

Today’s ETL tools provide capabilities to develop custom code as user-defined functions (UDFs) to extend the expressive-
ness of the standard ETL operators. However, while this allows us to easily add new functionalities, it also comes with the
risk that the custom code is not intended to be optimized, e.g., by parallelism, and for this reason, it performs poorly for
data-intensive ETL workflows. In this paper we present a novel framework, which allows the ETL developer to choose a
design pattern in order to write parallelizable code and generates a configuration for the UDFs to be executed in a distributed
environment. This enables ETL developers with minimum expertise in distributed and parallel computing to develop UDFs
without taking care of parallelization configurations and complexities. We perform experiments on large-scale datasets
based on TPC-DS and BigBench. The results show that our approach significantly reduces the effort of ETL developers
and at the same time generates efficient parallel configurations to support complex and data-intensive ETL tasks.

Keywords: ETL workflow, parallel ETL operators, parallel algorithmic skeletons, user-defined functions.

1. Introduction

As the volume, variety, and velocity (3Vs) of data are
growing at a record rate, extract-transform-load (ETL)
processes and data analysis workflows are becoming
more and more sophisticated. Especially the variety of
today’s data but also the wide range of different analytical
use-cases increasingly exceed the expressiveness of
standard ETL operators. As an example from the data
cleansing perspective, the messy and noisy nature of big
data demands new types of cleansing operators, such as
outlier detection or de-duplication, that specifically fit
the ever-changing characteristics of the data. The same
applies to the data analytics perspective, where we find
a zoo of algorithms such as classification, regression,
clustering, collaborative filtering, and many more.

To overcome the limited expressive power provided
by the standard ETL operators, most ETL tools offer

*Corresponding author

the functionality to write custom code as user-defined
functions (UDFs). A UDF is a software program written
in any programming, scripting, or procedural language.
These UDFs allow the ETL developer to extend the
functionality of an ETL tool that is outside a scope of the
already provided built-in ETL operators. For example, a
UDF can be used to perform aggregations or any kind of
run-time intensive computations on a data set that may be
necessary before loading into a data warehouse (DW). It
may be written by the ETL developer who is developing
a data pipeline (ETL) or by any third-party. Therefore,
it may be more prone to errors and less efficient, which
may result in a performance bottleneck due to its poor
code and high computational complexity. In an ETL
workflow, a UDF is normally considered a black-box
activity, i.e., it is difficult to assess the run-time and space
complexity of a UDFE. However, if the UDF is already
optimized, or is configurable to be optimized by an ETL
framework without changing its code, it may help the ETL

@

fawadali.ali@gmail.com

s\

S.MLF. Ali et al.

developer to optimize the blocking UDF activities in an
ETL workflow.

We carried out a thorough research on existing
techniques for optimizing ETL workflows in an ETL
framework (Ali and Wrembel, 2017), and one of the
conclusions of our research was to incorporate in an ETL
framework the functionality to allow ETL developers to
write parallelizable user-defined functions that tackle the
range of different analytical use-cases.

In this paper, we present a novel approach to
incorporate the functionality in an ETL framework which
assists the ETL developer in writing parallelizable UDFs
to be executed in a distributed environment, e.g., Hadoop,
Flink, etc. To achieve our goal, we leverage the
so-called orchestration style sheet (OSS) processor that
encapsulates and separates the parallelization concern
from the development of UDFs. This processor generates
parallelizable code and a set of configurations to execute
a generated UDF in a distributed environment.

In particular, our contributions are the following:

e We provide a software application for the integration
of any open source ETL framework to facilitate
the ETL developer in writing a UDF by separating
parallelization concerns from the code, thus reducing
potential error sources in the otherwise manual and
cumbersome parallelization process. The choice of
the open source ETL tool was made to use it as a
sandbox for our approach, because it provides more
flexibility and control to the developers in order to
develop custom ETL operators and alter currently
existing ones. For example, in this paper, we used
Pentaho Data Integrator, which allows the developers
to program user-defined functions and generate them
as any other built-in ETL operator.

e We provide code skeletons or design patterns to be
used by our application to reduce the amount of effort
required by the ETL developer in writing complex
and efficient programs.

e We present experiments on a large-scale dataset
based on BigBench (Ghazal et al., 2013), proving
that optimizing the computing-intensive user-defined
activity improves the overall performance of an ETL
workflow.

Related work is presented in Section 2l In Section [3] we
describe the use case scenario of our running example,
which we will use throughout the paper. We then
introduce the orchestration style sheet (OSS) processor
in Section @l Our proposed framework and approach
towards generating parallelizable UDFs using the OSS
are described in Section [5Sl Experimental evaluation for
the feasibility of our approach is discussed in Section
Conclusions are included in Section[7l

2. Related work

There has been a lot of research for the past decade
on the optimization of ETL workflows due to a critical
requirement on execution time. The research by
Simitsis et al. (2005; 2010), Tziovara et al. (2007),
Kumar and Kumar (2010), Karagiannis et al. (2013),
or Vassiliadis et al. (2009) highlights the problem of
ill-timed completion of an ETL workflow and discusses
the methods to improve its execution performance.

The work presented by Simitsis er al. (2005)
proposes to optimize the ETL workflow by re-ordering
the ETL activities in a directed acyclic graph (DAG) by
pushing the highly-selective activities at the beginning of
the flow. Simitsis et al. (2010) use the same approach
as previously (Simitsis et al., 2005), but now it is more
focused on generating an optimal ETL workflow in terms
of performance, fault-tolerance, and freshness. Similarly
to the aforementioned approaches in terms of ETL
workflow design, Tziovara et al. (2007) propose to change
the order of input tuples to improve the execution cost of
an ETL activity, which results in the optimal overall cost
of execution flow. Kumar and Kumar (2010) propose a
slightly different approach for logical optimization of ETL
workflows by using the dependency graph and efficient
heuristics. The above approaches can be categorized as
graph-based ones. Their pros and cons are summarized
as follows:

Pros: The approach to optimize the ETL workflow is
semi-autonomous, i.e., algorithms are used to transform
the given input graph-based ETL workflow to the more
efficient but semantically equivalent workflow.

Cons: However, the optimization algorithm may take
a long time to generate the efficient ETL workflow in
the case of large and complex input ETL workflows.
Furthermore, the aforementioned approaches do not
support UDFs.

Karagiannis et al. (2013) discuss the scheduling
strategies to optimize the performance of an ETL
workflow in terms of execution time and memory
consumption without a loss of data.

Pros: The aforementioned scheduling strategy is also
semi-autonomous, i.e., it takes the ETL workflow as user
input and applies an algorithm on it based on different
policies in order to generate an efficient workflow. On
top of this, monitoring ETL workflows is in place for
scheduling ETL activities in a workflow.

Cons: There is a possibility of losing data during
scheduling. Therefore, the approach is not applicable to
most of the traditional ETL processing. Moreover, the
approach does not support UDFs in an ETL workflow.

Parallel programming is a popular strategy to
improve the performance of data and computation of
intensive workflows. Parallelism can be achieved either
by partitioning the data into N subsets and process each

Parallelizing user-defined functions in the ETL workflow using orchestration style sheets

subset in N parallel sub-flows (data parallelism), or by
using pipeline parallelism (task parallelism).

Currently, in the literature, research work on
parallelizing ETL workflows is not attracting much
attention and most of the work is related to the
traditional data-flow parallelism. MapReduce (Dean and
Ghemawat, 2008) is one of the popular programming
models focusing on automatic data-flow parallelism.
It is a popular choice to perform big data analysis
with data mining algorithms in a parallel distributed
computing environment (Weinberg and Last, 2017). The
MapReduce programming model has proven a significant
decrease in the execution time of computing-intensive
workflows or processes when executing in a distributed
parallel environment, e.g., Hadoop (Gonzdlez-Vélez and
Kontagora, 2011).

Parallelization Contract (PACT) (Battré et al., 2010)
is another programming model for parallel processing
of a massive data set and is based on the MapReduce
model. Another approach towards parallelizing the data
flow is Structured Computations Optimized for Parallel
Execution (SCOPE) (Chaiken et al., 2008). It is a
declarative and extensible scripting language similar to
SQL to simplify data analysis of a massive amount of data
residing on clusters of hundreds or thousands of machines.

Liu et al. (2013) as well as Thomsen and Pedersen
(2011) propose approaches towards incorporating
parallelism in the ETL workflow. Liu et al. (2013)
present a parallel dimensional ETL framework based
on MapReduce called ETLMR. Thomsen and Pedersen
(2011) propose a method to exploit parallelism in the ETL
workflow at a code level by introducing both task parallel
and data parallel strategies to attain the maximum
performance. It provides different constructs that allow
the ETL developer to convert the linear ETL workflow
into its corresponding parallel flow. These constructs
can provide significant improvement in performance if
applied carefully at the parts of the ETL workflow which
do not prevent parallelization. For the aforementioned
parallelism based approaches, the pros and cons are
summarized as follows:

Pros: The proposed approaches provide a detailed
account of parallelization techniques to improve the
execution and cost performance of ETL workflows. They
also partially support UDFs in ETL workflows, although
do not support the optimization of UDFs.

Cons: The proposed approaches do not provide any cost
model to identify the required degree of parallelism.
Hence, the ETL developer has to either perform a
trial-and-error method or to execute ETL transformations
using test data to figure out the required degree of
parallelism.

Most of the discussed approaches are limited to
relational operators, whereas it is important to optimize
both relational operators as well as UDFs in order to

optimize complex ETL workflows. In our paper, we
address the optimization of the ETL workflow through
parallelizing UDFs. Similarly to Thomsen and Pedersen
(2011), we provide constructs (style-sheets) to write
efficient parallel UDFs without concerning parallelism.
Furthermore, we are additionally focusing on the UDFs
that support semi-structured and unstructured data sets to
pre-compute computing-intensive analytic queries.

Grofle et al. (2014) acknowledge the importance
of optimizing both relational operators and UDFs to
optimize the execution performance. This work leverages
the use of annotations in order to parallelize UDFs.
However, the approach is limited to the UDFs written
as table functions. Also, it requires the developer to
annotate the custom code using annotations supported by
the optimizer to generate the optimized parallel execution
plan. This requires the developer to predict which parts
of the code needs to be parallelized in order to maximize
the execution performance, whereas we provide the
ETL developer with style-sheets as Java code templates.
Our solution is programming language-independent,
extensible, and capable of generating parallel programs
in different procedural and declarative programming
languages. Hence, in this paper we address parallelization
of UDFs in ETL workflow, which is realized by
using re-usable style sheets (OSS) to facilitate the ETL
developers to write efficient parallelizable UDFs in an
ETL framework (PDI) with minimum programming effort
and limited knowledge of the distributed environment and
programming.

3. Running example

To motivate our discussion, we borrowed the product
retailer use case of BigBench (Ghazal et al., 2013),
which covers 3Vs of big data. The data model
consists of structured, semi-structured, and unstructured
components. The structured part of data is adopted
from the TPC-DS benchmark (Nambiar and Poess, 2006).
The semi-structured data consists of user clicks on the
product retailer’s website. The unstructured portion of
data comprises product reviews submitted online in the
English language.

As a use case for the remainder of the paper we focus
on an analytical scenario that compromises sentiment
analysis of product reviews. The data set contains one
or more reviews for each product submitted online by the
users of the products. Since it would not be acceptable
to perform sentiment analysis over a huge amount of
data every time during query processing, we want to
pre-compute the sentiments. The respective ETL process
developed in Pentaho Data Integrator (PDI) is depicted
in Fig. [l The ETL workflow sources data from tables
INVENTORY, DATE DIM, WAREHOUSE, ITEM, and
PRODUCT_-REVIEWS. The process fetches the products

D

S.MLF. Ali et al.

DATE DIM

WAREHOUSE Sortw_wh_sk

PRODUCT_REVIEWS

Merge Join CPUDF_DWH_OUT

Sort pr_item_sk

Fig. 1. ETL workflow for the running example.

present in the inventory since the year 2000 onward and
are available in all the warehouses located in the US.
Then it applies the sentiment analysis algorithm on the
incoming data set in order to classify the unstructured
product reviews as Negative or Positive. This functionality
is implemented as a UDF called CPUDF_DWH_OUT.
Finally, the computed result is exposed for analysis as a
table that can be queried later by the analyst.

4. Orchestration style sheets (OSSs)

To support multiple, potentially differently parallelized
target platforms with as little implementation overhead
as possible, parallel algorithmic skeletons (PASs)
can be used. PASs are defined as algorithmic
skeletons, or parallelism patterns, which are high-level
parallel programming models for parallel and distributed
computing. These can be provided as libraries working
on specific data structures like vectors and matrices as
well as algorithms like MapReduce. However, these
libraries are constrained to their supported data structures
and algorithms, making them unsuitable for problems not
meeting these constraints.

In these cases, pragma languages offer a very
flexible, yet low-level, alternative: languages like
OpenMP (Dagum and Menon, 1998) support a
wide range of target platforms while offering high
customizability. The price for this, however, is an
increased implementation overhead.

Pragma languages are also known as directive
languages. These are described as a construct that
specifies how a compiler processes its input. Directives
are not part of the grammar of a programming language,
and may vary from compiler to compiler. They can
be processed by a pre-processor to specify compiler
behavior. In both task- and loop-based parallelization, the
pragmas have to be repeated for every task or loop, each
time with slightly different parameters.

OSSs (Mey et al., 2016) provide a way to combine
the simplicity of skeleton libraries with the flexibility of
pragma languages using invasive software composition
(ISC) (ABmann, 2003), hence achieving language and

platform independence. The central idea is to split the
code into reusable code fragments that can be woven into
different variants of the source code. Two aspects of this
weaving process are particularly important.

First, fragment specification and weaving
specification are performed declaratively in style sheets
and recipes. The former contain styles consisting of code
fragments and addressing expressions determining the
positions in the source code in which they can be inserted.
The code fragments themselves can contain variability
points, slots, that can serve as positions in which other
fragments can be inserted. The latter specification is
done with recipes that determine the selection and order
of styles to be applied to the code. Different recipes
can be used to acquire different code variants. Figure 2l
gives an overview over the involved artifacts in OSS code
weaving.

The second important aspect is that fragment
specifications can contain attributes, special code
fragments that are not contained in the style definition
but rather computed using the program code. Using
attributes, the results of problem-specific, user-defined
static analyses of the source code can be directly inserted
into the code. In the presented use case, this analysis
is employed to discuss and transform data types to
adapt them to the interfaces provided by the distributed
framework—Hadoop.

Furthermore, attributes can be used to specify
application-specific variability points. This permits all
OSS-specific parts of the code to be hidden from the
application developer. Code fragments specified by
him/her do not have to be included in style files but can
also be specified implicitly, e.g., as class members at
specifically defined positions. This method is used in the
example as shown in Listing [T}

Source code composition of OSSs including
fragment computation with attributes is performed
utilizing reference attribute grammars (RAGs)
(Hedin, 2000), a well-known technology in compiler
construction. The OSS processor uses SkAT
(Karol, 2015), a composition system built using the
RAG tool JastAdd (Ekman and Hedin, 2007), which

Parallelizing user-defined functions in the ETL workflow using orchestration style sheets

Style A

Fragments

code.java

algorithm code

v

Orchestration)
Style code.java code java

Sheet
Processor

variant one variant two

Fig. 2. Workflow of the OSS processor showing the required and generated artifacts.

allows type-safe and well-formed composition of code
fragments and utilization of an extensible Java compiler,
ExtendJ. The OSSs processor replaces the programmatic
code composition of SKAT with the presented declarative
approach. The computed fragments used by OSS are
implemented as attributes of the attribute grammar, which
in JastAdd are simply specifically annotated methods
added to language elements with an aspect weaver
(Kiczales et al., 1997). Thus, writing new, user-defined,
and problem-specific attributes is a feasible task for a
Java and Hadoop developer, enabling future extensions
to distributed frameworks and programming paradigms
other than Hadoop, e.g., Spark, Flink.

5. Generating parallelizable UDFs for an
ETL workflow

In order to facilitate the ETL developer to write
parallelizable UDFs without the parallelization and
optimization aspects of a program, we contribute the
configurable-parallelizable UDF generator (cp-UDF).
It can easily be integrated into an open source ETL
framework, e.g., Pentaho Data Integrator (Spoon), as a
third-party tool. It utilizes OSSs to generate parallelizable
code. In this approach we used an OSS because it is a
lightweight and extensible approach that can be adopted
to any target run-time on any high performance computing
(HPC) cluster, e.g., a graphics processing unit (GPU), or
can be adopted by parallel computing frameworks such as
Hadoop and Spark.

Figure [] shows the three-tier architecture of our
proposed framework. The top layer depicts Pentaho
Data Integrator (PDI), which provides a graphical user
interface to create ETL workflows. The middle layer
comprises cp-UDF and the OSS composition system to
provide parallel skeletons to the ETL developer, thus
enabling him/her to write parallelizable code without
taking care of the critical parallelization details (i.e.,
degree of parallelization—specified by the number of data
partitions, the number of map and reduce tasks in the case
of Hadoop as a distributed framework). Subsequently,
an OSS is used to generate configurations for the
user’s code, which are finally executed in a distributed

environment—Hadoop, as shown in the bottom tier.

The involved artifacts and procedures are enumerated
in Fig. (8] and will be explained in the following section
to illustrate the process of generating optimized UDFs
to be executed in a distributed environment. We will
explain the working of cp-UDF and application of the
OSS processor with the help of our running example
described in Section[3l

Pentaho Data Integrator (PDI) @

lz. MapReduce Skeleton

with User Code

cp - UDF

Fig. 3. cp-UDF high-level design for the generation of paral-
lelizable code using an OSS.

5.1. Using map-reduce OSS for sentiment analysis
UDF. The running example in Section [3] discusses the
use case of sentiment analysis of product reviews as a
UDF in an ETL workflow performed by a user-defined
step depicted as CPUDF_DWH_OUT in Fig. [I (cf.
Section[3)). The idea is to pre-compute the user sentiments
during the ETL phase and propagate the computed results
into a data mart. This would help the data analysts to avoid
executing the high latency query every time they want to
make decisions based on the user sentiments.

To assist the ETL developer to write parallelizable
code for sentiment analysis, we provide him/her
with different parallel algorithmic skeletons (PASs) or
code skeletons that can be executed in a distributed
environment, for example, worker-farm, divide and
conquer, branch and bound, systolic, MapReduce or Spark
code skeleton, where the ETL developer has to insert
his/her code for sentiment analysis into the provided

aamcs

s\

S.MLF. Ali et al.

skeleton (Fig.[3 Step 1).

Listing [I] shows the template for the Hadoop
MapReduce use case with comments highlighting the
positions at which the user can include his/her codetl.

As the template is a regular Java class, additional
code like helper functions and definitions of fields can
be added, if necessary. The template is filled with the
required map and reduce code by the ETL developer and
is sent to cp-UDF, as depicted in Fig. 3l Step 2. The
ETL developer only has to know the theoretical details of
MapReduce paradigm so that he/she can logically divide
the UDF code into the map and reduce functions.

The critical and most important mode of
parallelization, i.e., deciding on the optimal number of
mappers and reducers, the number of partitions to make,
the processing power of the virtual machine to execute
the UDF in order to achieve maximum performance and
all modifications to the code, is denoted in style sheets
(Runner Class in the case of the MapReduce paradigm)
automatically provided by cp-UDF, hence separating the
parallelization concerns from the code.

Therefore, the ETL developer does not have to
provide the critical details of parallelization. cp-UDF will
provide the best possible configuration for executing the
UDF in a distributed framework using recipes in the form
of a Runner class.

Listing 2] depicts an example of a Map style sheet,
which modifies the map method provided by the ETL
developer in Listing [Tl inserts the required data types and
returns values.

A recipe is used to trigger the composition (Fig. 3l
Steps 3 and 4). The recipe determines the selection and
order of styles to be applied to the code. Listing
contains the recipe used, which first applies map and then
reduce style sheets (cf. Lines 2 and 3, respectively) on
to the provided UDF code as well as appends the runner
class to the UDF in order to specify the parallelization
configuration. Finally, with the provided skeleton code
including the UDFs, cp-UDF invokes the OSS processor
to build a parallelized version. The OSS processor is
considered a black-box for cp-UDF and we assume that
the output of the OSS processor will always be correct
and accurate.

Using these input artifacts, the OSS generates a
MapReduce (parallelized) version of the user-defined
function (Fig. Bl Step 5) that is subsequently processed
by Hadoop.

Currently, in the proposed framework, we
used a runner class (i.e., a configuration class for
optimal parallelization) best suited for the available
distributed environment. However, in a future work,
we will introduce the mechanism in our proposed

!In addition to the method bodies, the parameter types have to be
adapted accordingly.

framework to generate multiple recipes, i.e., multiple
parallel configurations, and then to choose an optimal
configuration for the distributed environment based
on cost and computation performance requirements.
Furthermore, we will add more code skeletons (PAS),
e.g., for Spark, Flink, etc., in our library of skeletons.

6. Evaluation

In this section we discuss the execution performance (i.e.,
execution time of the ETL workflow) of the sentiment
analysis code as a UDF generated by cp-UDF (.e.,
parallelizable code). The generated parallelized UDF is
executed in a cloud-based distributed environment and
a non-parallelizable UDF program executed in a cloud
based non-distributed environment.

We created two versions of the sentiment analysis
algorithm in order to show two different variants of the
same algorithm, which are semantically equivalent.

The first sample variant of a sentiment analysis
algorithm, called naive, is a handwritten custom code
and is taken from the work of Cloudera (2016). It
counts the number of positive and negative words in a
review by comparing them with positive and negative
dictionaries loaded into the memory as a part of the initial
conﬁguration@ For each positive and negative word it
increments a respective counter. Finally the sentiment
score is calculated by the formula positivity=good / (good
+ bad). To categorize the user review, each result above
a THRESHOLD value is classified as Positive, otherwise
as Negative.

The second variant of the algorithm, called CoreNLP,
is a long running, computing-intensive program, which
uses the Stanford CoreNLP framework (Manning et al.,
2014). Tt provides natural language tools to annotate
sentences to indicate parts of speech, named entities, word
dependencies, and sentiment.

The idea behind testing different variants in
different environments (i.e., a cloud-based distributed
environment, pseudo-distributed environment (single
node EMR cluster), and a non-distributed and a
non-EMR environment) was to prove the following two
assumptions:

e Non computing-intensive code (i.e., naive) normally
does not effect the overall performance of an ETL
workflow whether it is executed in a distributed
or a non-distributed environment. In most cases,
the non-compute intensive program has an extra
overhead if executed in a distributed environment.
Nevertheless, if execution performance is a strict
requirement, it will require a lot more resources and

2The configuration can also be done using the setup method of the
Map class.

Parallelizing user-defined functions in the ETL workflow using orchestration style sheets a amcs

/1 #HADOOP MAP REDUCE#

1

2| public class Template {

3 public static class Map {

4 void setup () {

5 // add setup code here

6 }

7 void map(MapKeyType key, MapValueType value, Context context) {
8 // add map code here

9 }

10 }

11 public static class Reduce {

12 void setup() {

13 // add setup code here

14

15 public void reduce (ReduceKeyType key, Iterable <ReduceValueType> values, Context context) {
16 // add reduce code here

17 }

18

19 void config() {

20 // add configuration code here
21 }

2|}

Listing 1. Empty template (PAS) provided to the user.

|| style map:hadoop {

2 fragment MethodSlot * if (isMapMethod) {

3 slot KEYTYPE : mapKeyType

4 slot VALUETYPE : mapValueType

5 code:

6 <Method>

7 @Override

8 public void map(#KEYTYPE# key, #VALUETYPE# value, Context context) throws IOException,
InterruptedException {

9 #INNER#

10 }

11 </Method>

2|}

13 // other fragments

14] }

Listing 2. Excerpt from the Hadoop-MapReduce OSS style.

1| recipe cpUDF {

2| map:hadoop

3 reduce : hadoop

4 runner : benchmark
5

}

Listing 3. OSS recipe used in cp-UDF.

s\

S.MLF. Ali et al.

the improvement of execution performance would
still be much lower than expected.

e The computing-intensive tasks become a bottleneck
in an ETL workflow and must be optimized, because
even a small change in the distributed factor can
make a big difference in improving the execution
performance of an overall ETL workflow.

To evaluate our approach, we used a
BigBench (Ghazal et al., 2013) data set on around
20 million product review tuples. Each product has about
3 reviews, and each review consists of approximately
36 words. Following are the details and learning of our
experiment.

To carry out the evaluation, we wused the
M3 .xlarge model of EC2 instances, each having similar
specifications, i.e., Intel processors with 4 core vCPU
and 15 GB RAM. We evaluated the non-parallelizable
version of the UDF on the non-distributed EC2 instance
with the same system configurations and specifications.
We evaluated our MapReduce UDFs on a single node
(MR-SN) Amazon Elastic MapReduce (EMR) cluster to
depict a pseudo-distributed environment and on a six node
EMR cluster (MR-EMR) as a distributed environment.
One node served as the master and the rest as core
workers. We tested the execution time of both parallel
and non-parallel UDFs with different sizes of data sets
ranging from one thousand tuples to 20 million tuples of
unstructured data. Each test was executed at least five
times and the presented results are the average values of
those test runs.

The performance execution comparison of a
non-parallelizable naive sentiment analysis program
vs. a semantically equivalent parallelizable MapReduce
version is shown in Figs. @ and Bl The graph in Fig. @
shows (1) the execution time of the non-parallelizable
variant of naive code, (2) its corresponding MapReduce
version executed in a single-node (MR-SN) EMR cluster,
and (3) the MapReduce version executed in the six node
Amazon EMR cluster (MR-EMR).

For a data set ranging from one thousand to less than
one million tuples, the naive non-parallelizable program
is more efficient in terms of execution performance
as compared to its MapReduce variants (MR-SN and
MR-EMR). As the number of tuples increases to more
than one million, the execution time of MR-EMR
reduces as compared to MR-SN as well as the
non-parallelizable program. The graph in Fig. [5| shows
that the speedup of MR-EMR is small, i.e., by a factor
of two, and the speedup of MR-SN is worse than
the non-parallelizable variant because of the Hadoop
overhead. The speedup is determined as the execution
time of a MapReduce program divided by the execution
time of a non-parallelizable program. This proves our first
assumption that non computing-intensive code normally

does not effect the overall performance of an ETL
workflow whether it is executed in a distributed or a
non-distributed environment.

Performance execution comparison of a
non-parallelizable CoreNLP sentiment analysis program
vs. the semantically equivalent parallelizable MapReduce
version is shown in Figs.[6land [7]

Figure |6 shows the execution time of the CoreNLP
variant of the sentiment analysis program. The execution
time for MR-SN and for the non-parallelizable version
is similar. The execution time difference between the
MR-EMR and the non-parallelizable program is small for
the number of rows less than or equal to 0.1 million.
However, as the data size increases, the MR-EMR
execution performance increases as the number of Map
workers increases and computing intensive tasks are
executed in parallel. Figure [7] shows a notable speedup
for MR-EMR for 0.5 million tuples and above. However,
there is no speedup for MR-SN since there are only two
Map workers in a pseudo-distributed environment.

10000

1000

100

Execution Time (ms)

/ —e— MR-EMR
10 o« -=— MR-SN
L —e— non-parallel

0.001 0.01 0.1 1 10
No. of Rows (in Millions)

Fig. 4. MapReduce vs. non-parallelizable naive code execution
time.

2
“| | +—MR-EMR

Speedup Factor (x times)

0.001 0.01 0.1 1 10
No. of Rows (in Millions)

Fig. 5. Parallelizable MapReduce speedup for naive code.

Hence, the results prove our second assumption that,

Parallelizing user-defined functions in the ETL workflow using orchestration style sheets

1000

100

Execution Time (ms)

—e— MR-EMR
—a— MR-SN
—e— non-parallel

10

0.001 0.005 0.01 0.05 0.1 0.5 1
No. of Rows (in Millions)

Fig. 6. MapReduce vs. non-parallelizable CoreNLP code exe-
cution time.
10

—o— MR-EMR
—a— MR-SN

6

Speedup Factor (x times)
'S

-8 ———u

0.001 0.005 0.01 005 0.1 0.5 |
No. of Rows (in Millions)

Fig. 7. Parallelizable MapReduce speedup for coreNLP code.

for computing-intensive ETL tasks, even a small change
in the distributed factor can make a big difference in
improving the execution performance of an overall ETL
workflow.

We also analyzed the time saved by the programmers
in developing or designing such UDFs using or not using
cp-UDF to address the second contribution of this paper,
i.e., code skeletons or design patterns to be used in
cp-UDF help to reduce the amount of effort required
by the ETL developer in writing complex and efficient
programs. Figures[8la) and[8(b) shows the effort required
by the ETL developer in terms of line of code (LOC) to
write an efficient parallel sentiment analysis program. The
black portion of the figure shows the user-defined code
weaved together with the gray portion of the code, which
is generated by cp-UDF using the OSS processor. In the
naive version, almost 50% of the code and in case of the
CoreNLP version almost 65% of the code is generated
automatically by the cp-UDF framework.

Overall, we can observe that cp-UDF significantly
reduces the effort required by the ETL developer to write
parallel code and ensures error-free code by replacing
otherwise manual steps in the parallelization process

with automatized semantic analysis. Also, it hides the
low level details of parallel execution of a program
from the ETL developer, in addition accomplishing
considerable speedup without worrying about controlling
the costs occurred by processes, communication, and
data distribution. The directive code and parameterized
attributes make the OSS flexible and extensible, easily
adoptable to other use cases with special, user-defined
analysis attributes, and even to other languages (e.g,
Python, Fortran).

7. Conclusion

This paper is the first step towards a fully automated
ETL framework, which overcomes the deficiencies and
limitations of existing ETL frameworks as discussed
by Ali and Wrembel (2017) as well as Ali (2018).
That is, there is a need for an ETL framework that
will reduce the work of the ETL developer from a
design and performance optimization perspective. The
framework should provide recommendations on (1) an
efficient design of an ETL workflow according to the
business requirements, (2) how and when to improve
the performance of an ETL workflow without conceding
other quality metrics. Furthermore, there is a need to
consolidate and fully support UDFs in an ETL workflow
along with traditional ETL operators.

In this paper, we focused on providing a component
to assist ETL developers in writing parallelizable UDFs
for an ETL workflow. Although most ETL tools provide
the functionality to write custom code as UDFs, a UDF
to transform large and partially structured data can be
very complex and may become a performance bottleneck
if not implemented optimally. One of the possible
ways to implement an efficient program is parallelizing
its execution, which requires expertise as well as deep
understanding and knowledge of parallel and distributed
programming. To provide the ETL developer with
out-of-the-box functionality in an ETL framework to
write efficient parallel custom programs, we proposed
cp-UDF, which separates the parallelization concern from
the development of UDF activities for data-intensive ETL
workflows. Currently, cp-UDF supports Hadoop as a
distributed framework to execute UDFs in a parallel
environment. However, it is extensible and can be
integrated with other parallel and distributed frameworks,
e.g., Flink and HPC clusters.

On top of that, we showed that cp-UDF provides
an easy, fast, and flexible way for the ETL developer
to write efficient and error-free parallel programs for
data-intensive tasks.

In the future, we will extend our framework by
introducing more programming paradigms and data
processing engines, e.g., Flink, Spark, Hive, Impala and
HPC clusters, where an ETL developer can chose from

& -

S.MLF. Ali et al.

code generated by cp-UDF

=

B user-specified code

Fig. 8. Estimate of effort required by the ETL developer to write a MapReduce program using an OSS in terms of LOC: naive version

(a), CoreNLP version (b).

the engine specific PAS in order to achieve the desired
degree of performance. Furthermore, we will extend our
approach by developing an automated ETL framework,
which allows the ETL developer to utilize cp-UDF as an
integrated component. The ETL framework will generate
the more efficient solution for a particular ETL scenario
based on execution and monetary cost constraints. We will
also provide a cost model to choose an optimal variant of
the UDF generated by cp-UDF.

Acknowledgment

This research has been funded by the European
Commission through the Erasmus Mundus Joint
Doctorate Information Technologies for Business In-
telligence Doctoral College (ITABI-DC) and trivago
N.V.

References

Ali, S.M.F. (2018). Next-generation ETL framework to address
the challenges posed by big data, Workshop Proceedings of
the EDBT/ICDT Joint Conference, Vienna, Austria.

Ali, S.M.F. and Wrembel, R. (2017). From conceptual design
to performance optimization of ETL workflows: Current
state of research and open problems, The VLDB Journal
26(6): 1-25.

ABmann, U. (2003). Invasive software composition, Inva-
sive Software Composition, Springer, Berlin/Heidelberg,
pp. 107-145.

Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V. and
Warneke, D. (2010). Nephele/PACTs: A programming
model and execution framework for web-scale analytical
processing, Proceedings of the Symposium on Cloud Com-
puting, Indianapolis, IN, USA, pp. 119-130.

Chaiken, R., Jenkins, B., Larson, P-A., Ramsey, B., Shakib, D.,
Weaver, S. and Zhou, J. (2008). Scope: Easy and efficient

parallel processing of massive data sets, Proceedings of the
VLDB Endowment 1(2): 1265-1276.

Cloudera (2016). Example: Sentiment analysis using
MapReduce custom counters, https://www.clo
udera.com/documentation/other/tutorial
/CDH5/topics/ht_example_4_sentiment_an
alysis.html.

Dagum, L. and Menon, R. (1998). OpenMP: An industry
standard API for shared-memory programming, IEEE
Computational Science and Engineering 5(1): 46-55.

Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data
processing on large clusters, Communications of the ACM
51(1) 107-113.

Ekman, T. and Hedin, G. (2007). The JastAdd system modular
extensible compiler construction, Science of Computer
Programming 69(1-3): 14-26.

Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte,
A. and Jacobsen, H.-A. (2013). Bigbench: Towards an
industry standard benchmark for big data analytics, Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, New York, NY, USA,
pp. 1197-1208.

Gonzdlez-Vélez, H. and Kontagora, M. (2011). Performance
evaluation of MapReduce using full virtualisation on
a departmental cloud, International Journal of Applied
Mathematics and Computer Science 21(2): 275-284, DOI:
10.2478/v10006-011-0020-3.

Grofie, P, May, N. and Lehner, W. (2014). A study of
partitioning and parallel UDF execution with the SAP
HANA database, Proceedings of the 26th International
Conference on Scientific and Statistical Database Manage-
ment, Aalborg, Denmark, p. 36.

Hedin, G. (2000). Reference attributed grammars, Informatica
(Slovenia) 24(3): 301-317.

Karagiannis, A., Vassiliadis, P. and Simitsis, A. (2013).
Scheduling strategies for efficient ETL execution, Informa-
tion Systems 38(6): 927-945.

https://www.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html.
https://www.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html.
https://www.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html.
https://www.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html.

Parallelizing user-defined functions in the ETL workflow using orchestration style sheets

Karol, S. (2015). Well-formed and Scalable Invasive Software
Composition, PhD dissertation, Technische Universitat
Dresden, Dresden.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M. and Irwin, J. (1997). Aspect-oriented
programming, in M. Aksit and S. Matsuoka (Eds.),
European Conference on Object-oriented Programming,
Springer, Berlin/Heidelberg, pp. 220-242.

Kumar, N. and Kumar, P.S. (2010). An efficient heuristic
for logical optimization of ETL workflows, International
Workshop on Business Intelligence for the Real-Time En-
terprise, Singapore, Singapore, pp. 68-83.

Liu, X., Thomsen, C. and Pedersen, T.B. (2013). ETLMR:
A highly scalable dimensional etl framework based on
MaprEduce, in A. Hameurlain et al. (Eds.), Transactions
on Large-Scale Data-and Knowledge-Centered Systems
VIII, Springer, Berlin/Heidelberg, pp. 1-31.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.
and McClosky, D. (2014). The Stanford CoreNLP natural
language processing toolkit, Proceedings of the 52nd An-
nual Meeting of the Association for Computational Lin-

guistics: System Demonstrations, Baltimore, MD, USA,
pp- 55-60.

Mey, J., Karol, S., ABmann, U., Huismann, I., Stiller, J. and
Frohlich, J. (2016). Using semantics-aware composition
and weaving for multi-variant progressive parallelization,
Procedia Computer Science 80: 1554—1565.

Nambiar, R.O. and Poess, M. (2006). The making of TPC-DS,
Proceedings of the 32nd International Conference on Very
Large Data Bases, Seoul, Korea, pp. 1049-1058.

Simitsis, A., Vassiliadis, P. and Sellis, T. (2005). State-space
optimization of ETL workflows, IEEE Transactions on
Knowledge and Data Engineering 17(10): 1404-1419.

Simitsis, A., Wilkinson, K., Dayal, U. and Castellanos, M.
(2010). Optimizing ETL workflows for fault-tolerance,
IEEE 26th International Conference on Data Engineering
(ICDE), Long Beach, CA, USA, pp. 385-396.

Thomsen, C. and Pedersen, T.B. (2011). Easy and effective
parallel programmable ETL, Proceedings of the ACM 14th
International Workshop on Data Warehousing and OLAP,
New York, NY, USA, pp. 37-44.

Tziovara, V., Vassiliadis, P. and Simitsis, A. (2007). Deciding the
physical implementation of ETL workflows, Proceedings
of the International Workshop on Data Warehousing and
OLAP, New York, NY, USA, pp. 49-56.

Vassiliadis, P., Simitsis, A. and Baikousi, E. (2009). A taxonomy
of ETL activities, Proceedings of the ACM 12th Interna-
tional Workshop on Data Warehousing and OLAP, New
York, NY, USA, pp. 25-32.

Weinberg, A.l. and Last, M. (2017). Interpretable decision-tree
induction in a big data parallel framework, International
Journal of Applied Mathematics and Computer Science
27(4): 737-748, DOI: 10.1515/amcs-2017-0051.

Syed Muhammad Fawad Ali received his MSc
degree from the Lahore University of Manage-
ment Sciences, Pakistan, in 2012. He is a techni-
cal lead data engineer at trivago N.V., Leipzig,
Germany, and a PhD candidate at the Poznan
University of Technology, Poland. His research
interests include ETL performance optimization
and user-defined functions in the domain of ETL
and big data.

Johannes Mey is a PhD student at the Chair
of Software Technology at TU Dresden. His re-
/[search interests are in the areas of component-
\ based software engineering and the modelling of
Y adaptive systems, for both of which he employs
attribute grammar-based approaches.

Maik Thiele is a postdoc researcher at the
Database Systems Group at TU Dresden, where
he finished his dissertation on quality-driven data
production controlling in real-time DW systems
in 2010 and received his doctorate with distinc-
tion. He has been a visiting scientist at UBS
Zurich, GfK Nuremberg, and HP Labs Palo Alto.
His research interests include large-scale data
processing, information extraction and data inte-
gration.

Received: 4 March 2018
Revised: 2 October 2018
Accepted: 10 December 2018

aamcs

	Introduction
	Related work
	Running example
	Orchestration style sheets (OSSs)
	Generating parallelizable UDFs for an ETL workflow
	Using map-reduce OSS for sentiment analysis UDF

	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

