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A class of Clifford-valued high-order Hopfield neural networks (HHNNs) with state-dependent and leakage delays is con-
sidered. First, by using a continuation theorem of coincidence degree theory and the Wirtinger inequality, we obtain the
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1. Introduction

It is well known that, in the design, implementation
and application of neural networks, the dynamics of
neural networks are a primary problem that must be
considered. In the past decades, the dynamics of various
neural networks have been extensively studied (Sakthivel
et al., 2013; Selvaraj et al., 2018; He et al., 2007; Li
and Wang, 2013). In recent years, high-order Hopfield
neural networks (HHNNs) have become the topic of
in-depth analysis (Li and Yang, 2014; Li et al., 2017;
2019c; Aouiti et al., 2017; Aouiti, 2018; Zhao et al.,
2018; Xu and Li, 2017; Alimi et al., 2018; Xu et al.,
2006; 2003; Ou, 2008; Lou and Cui, 2007; Xiang et
al., 2006). This is due to the fact that high-order neural
networks have a stronger approximation property, a faster
convergence rate, a greater storage capacity, and higher
fault tolerance than lower-order neural networks. The
applicability of HHNNs lies in their dynamical properties
to a great extent. Therefore, many researchers have
investigated their dynamical behaviour. For example,
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Lou and Cui (2007) studied the problem of global
stability of HHNNs by using the Lyapunov method, linear
matrix inequalities and analytic techniques; Xiang et al.
(2006), by using coincidence degree theory as well as
a priori estimates and a Lyapunov functional, derived
some sufficient conditions for the existence and global
exponential stability of periodic solutions for delayed
HHNNs.

On the one hand, it is known that, as a
generalization of real-valued neural networks, the
research of complex-valued and quaternion-valued neural
networks has attracted more and more attention because
they have more advantages than real-valued neural
networks in many aspects (Hu and Wang, 2012; Kan et
al., 2019; Wang et al., 2019; Li and Qin, 2018; Li et al.,
2019a; 2019b; Liu et al., 2020; 2018).

On the other hand, Clifford algebra, which is a
unital associative algebra, was invented by William
K. Clifford. It has been applied to different areas
such as neural computing (Kuroe, 2011; Corrochano
et al., 1996), computer and robot vision (Hitzer et al.,
2013), image and signal processing (Rivera-Rovelo and
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Bayro-Corrochano, 2006), and others due to its practical
and powerful framework for the representation and
solution of geometrical problems; see the works of Hitzer
et al. (2013), Rivera-Rovelo and Bayro-Corrochano
(2006), Dorst et al. (2007), Bayro-Corrochano and
Scheuermann (2010), Liu et al. (2016), Pearson and
Bisset (1992) and the references therein. Recently, as the
extension of real-valued neural networks, Clifford-valued
neural networks, which include complex-valued and
quaternion-valued neural networks as their special cases,
have been an active research field (Liu et al., 2016;
Pearson and Bisset, 1992; 2007; Buchholz, 2005; Brackx
et al., 1982). For example, in the work of Buchholz
et al. (2007), neural computation in the Clifford-valued
domain was studied, while Kuroe (2011) proposed several
models of fully connected Clifford-valued recurrent
neural networks. In general, the dynamical properties
of Clifford-valued neural networks are more complicated
than those of real-valued and complex-valued ones. Up
to now, very few dynamical properties of Clifford-valued
neural networks have been explored.

In addition, anti-periodic oscillations are a very
important dynamic aspect of neural networks because
the signal transmission process of neural networks can
often be described as an anti-periodic one. Moreover,
anti-periodic functions are periodic ones because
T -anti-periodic functions are 2T -periodic functions, but
not vice versa. Therefore, in recent years, many authors
have studied the problem of anti-periodic oscillation for
various neural networks (Ke and Miao, 2017; Şaylı and
Yılmaz, 2017; Shi and Dong, 2010). For example, Ke
and Miao (2017), by using the Lyapunov method, studied
the existence and exponential stability of anti-periodic
solutions of inertial neural networks with time delays;
Şaylı and Yılmaz (2017) investigated the existence
and exponential stability of anti-periodic solutions for
state-dependent impulsive recurrent neural networks
by employing the method of coincide degree theory
and constructing an appropriate Lyapunov function.
However, anti-periodic solutions for Clifford-valued
neural networks with state-dependent delays have not
been reported yet.

Moreover, as we all know, time delay is inevitable,
and its existence may change the dynamical behavior
of the system. Therefore, the delayed neural network
system can better reflect the real signal transmission and
information processing in the network. In particular,
time delay in the leakage term can greatly change the
dynamical performance of the system to make it complex
or poor. At the same time, a change in time delay may
depend not only on the running time of the system, but
also on its immediate state. Therefore, it is of practical
significance to consider neural network systems with
state-dependent delays and leakage delays.

Motivated by the considerations mentioned above,

in the present work, we study the existence and
global exponential stability of anti-periodic solutions for
Clifford-valued HHNNs with state-dependent and leakage
delays.

We organize the paper as follows. In Section 2,
we introduce the concept of Clifford algebra and
model formulation. In Section 3, we obtain sufficient
conditions for the existence of anti-periodic solutions of
Clifford-valued HHNNs with state-dependent and leakage
delays. In Section 4, the global exponential stability
of anti-periodic solutions of Clifford-valued HHNNs
with state-dependent and leakage delays is studied. In
Section 5, we give two numerical examples to illustrate
the feasibility of the obtained results. We draw a brief
conclusion in Section 6.

Remark 1. It has been proved that Clifford-valued neural
network models can use multi-state activation functions
to process multi-level information, and require fewer
network connection weight parameters (Kuroe, 2011;
Buchholz and Sommer, 2008). Therefore, the study of
Clifford-valued neural networks is of great theoretical
significance and practical value.

2. Preliminaries and the model description

The real Clifford algebra over Rm is defined as

A =

{ ∑
A⊆{1,2,...,m}

aAeA, a
A ∈ R

}
,

where
eA = eh1eh2 · · · ehν

with
A = {h1, h2, . . . , hν},

1 ≤ h1 < h2 < · · · < hν ≤ m.

Moreover, e∅ = e0 = 1 and e{h} = eh, h = 1, 2, . . . ,m
are called Clifford generators which satisfy the relations

e2i = −1, i = 1, 2, . . . ,m,

and

eiej + ejei = 0, i �= j, i, j = 1, 2, . . . ,m.

For simplicity, when one element is the product of
multiple Clifford generators, we will write its subscripts
together. For example, e1e2 = e12 and e3e7e4e5 = e3745.
We define Δ = {∅, 1, 2, . . . , A, . . . , 1 · 2 · · ·m}; then it is
easy to see that

A =

{∑
A

aAeA, a
A ∈ R

}
,

where
∑

A is a brief form of
∑

A∈Δ and A is isomorphic
to R

2m.
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For any x =
∑

A x
AeA ∈ A, the involution of x is

defined as
x =

∑
A

xAeA,

where eA = (−1)
χ[A](χ[A]+1)

2 eA; if A = ∅, then χ[A] = 0
and if A = h1h2 . . . hν ∈ Δ, then χ[A] = ν. From the
definition, it is directly deduced that eAeA = eAeA = 1.
Moreover, for any Clifford number x =

∑
A x

AeA, its
involution can be denoted by x =

∑
A x

AeA. In addition
to this, the involution also satisfies xy = y x, ∀x, y ∈ A.

For a Clifford-valued function z =
∑

A z
AeA : R →

A, where zA : R → R, A ∈ Δ, its derivative is given by

dz(t)

dt
=

∑
A

dzA(t)

dt
eA.

Since eBeA = (−1)
χ[A](χ[A]+1)

2 eBeA, we can
simplify and express eBeA = eC or eBeA = −eC ,
with eC being some basis of the Clifford algebra A. For
example, e12e27 = −e12e17 = −e1e2e2e7 = e1e7 = e17.
Hence it is possible to find a unique corresponding basis
eC for the given eBeA. Define

χ[B · A] =
{

0 if eBeA = eC ,
1 if eBeA = −eC .

Then eBeA = (−1)χ[B·A]eC . In addition, for any
E ∈ A, we can find a unique EC satisfying EB·A =

(−1)χ[B·A]EC for eBeA = (−1)χ[B·A]eC . Therefore,

EB·AeBeA = EB·A(−1)χ[B·A]eC

= (−1)χ[B·A]EC(−1)χ[B·A]eC

= ECeC

and
E =

∑
C

ECeC ∈ A.

In this paper, we consider the following
Clifford-valued high-order Hopfield neural network
with state-dependent and leakage delays:

Ẋi(t) = −ci(t)Xi(t− δi(t))

+

n∑
j=1

aij(t)fj(Xj(τ̆ij(t,Xj(t))))

+

n∑
j=1

n∑
l=1

bijl(t)gj(Xj(σ̆ijl(t,Xj(t))))

× gl(Xl(ν̆ijl(t,Xl(t)))) + Ii(t), (1)

where i = 1, 2, . . . , n and n is the number of units in
the neural network, Xi(t) ∈ A corresponds to the state
vector of the i-th unit at time t, ci(t) > 0 represents
the rate with which the i-th unit will reset its potential to

the resting state in isolation when disconnected from the
network and external inputs, aij(t) ∈ A and bijl(t) ∈ R

are the first-order and second-order connection weights
of the neural network, δi(t) ≥ 0, τ̌ij(t,Xj(t))) ≥ 0,
σ̆ijl(t,Xj(t))) ≥ 0 and ν̆ijl(t,Xl(t))) ≥ 0 correspond
to the leakage and transmission delays, respectively, Ii :
R → A denotes the external inputs and fj, gj : A → A
are the activation functions of signal transmission.

Throughout this paper, we make the following
assumptions:

(A1) Let Xi =
∑

A x
A
i e

A, where xAi : R →
R, i = 1, 2, . . . , n, A ∈ Δ. We assume that
aij(t), fj(Xj), gj(Xj) can be expressed similarly as

aij(t) =
∑
A

aAij(t)e
A,

fj(Xj) =
∑
A

fA
j (x0j , x

1
j , . . . , x

12···m
j )eA,

gj(Xj) =
∑
A

gAj (x
0
j , x

1
j , . . . , x

12···m
j )eA,

where aAij : R → R, fA
j , g

A
j : R2m → R, i, j =

1, 2, . . . , n, A ∈ Δ.

(A2) For i, j, l = 1, 2, . . . , n, bijl ∈ C(R,R), ci ∈
C(R,R+), δi ∈ C(R,R+)∩C1(R,R), τ̌ij , σ̆ijl, ν̆ijl
∈ BC(R×A,R+) satisfying τ̌ij(t, ·) ≤ t, σ̆ijl(t, ·)
≤ t, ν̆ijl(t, ·) ≤ t for t ∈ R, fj, gj ∈ C(A,A),
aij , Ii ∈ C(R,A), and there exists ω > 0 such that

aij

(
t+

ω

2

)
fj(u) = −aij(t)fj(−u),

bijl

(
t+

ω

2

)
gj(u)gl(v) = −bijl(t)gj(−u)gl(−v),

δi

(
t+

ω

2

)
= δi(t), τ̌ij

(
t+

ω

2
, ·
)
= τ̌ij(t, ·),

ci

(
t+

ω

2

)
= ci(t), σ̆ijl

(
t+

ω

2
, ·
)
= σ̆ijl(t, ·),

ν̆ijl

(
t+

ω

2
, ·
)
= ν̆ijl(t, ·), Ii

(
t+

ω

2

)
= −Ii(t),

for t ∈ R, u, v ∈ A.

(A3) There exist positive constants Mf and Mg such that

|fA
j (u)| ≤Mf , |gAj (u)| ≤Mg, ∀u ∈ R

2m ,

where j = 1, 2, . . . , n, A ∈ Δ.

(A4) There exist constants Lf > 0 and Lg >
0 such that, ∀x = (x1, x2, . . . , x2m)T , y =
(y1, y2, . . . , y2m)T ∈ R

2m , j = 1, 2, . . . , n,

|fA
j (x)− fA

j (y)| ≤
2m∑
ν=1

Lf |xν − yν |,

|gAj (x) − gAj (y)| ≤
2m∑
ν=1

Lg|xν − yν |, A ∈ Δ.
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For convenience, we introduce the following
notation:

c+i = sup
t∈[0,ω]

ci(t), c−i = inf
t∈[0,ω]

ci(t),

a+ij = max
A∈Δ

{
sup

t∈[0,ω]

|aAij(t)|
}
, b+ijl = sup

t∈[0,ω]

|bijl(t)|,

δ̇+i = sup
t∈[0,ω]

δ̇i(t), δ+i = sup
t∈[0,ω]

δi(t),

δ+ = max
1≤i≤n

{
sup

t∈[0,ω]

δi(t)

}
,

τ+ = max
1≤i,j≤n

{
sup

t∈[0,ω],x∈A
τ̆ij(t, x)

}
,

σ+ = max
1≤i,j,l≤n

{
sup

t∈[0,ω],x∈A
σ̆ijl(t, x)

}
,

ν+ = max
1≤i,j,l≤n

{
sup

t∈[0,ω],x∈A
ν̆ijl(t, x)

}
,

ρ = max{δ+, τ+, σ+, ν+},
ĪAi = sup

t∈[0,ω]

|IAi (t)|, I+i = max
A∈Δ

ĪAi ,

where i, j, l = 1, 2, . . . , n and A ∈ Δ.
The initial value of the system (1) is given by

Xi(s) = φi(s), Ẋi(s) = φ̇i(s), s ∈ [−ρ, 0],
where i = 1, 2, . . . , n, φi ∈ C1([−ρ, 0],A), A ∈ Δ.

According to the previous discussion, eAēA =
ēAeA = 1 and eB ēAeA = eB , and for any E ∈ A one
can find a uniqueEC satisfying the following property:

ECeCf
AeA = (−1)χ[B·Ā]ECfAeB = EB·ĀfAeB.

Thus, we can decompose the system (1) into the following
real-valued one:

ẋAi (t) = −ci(t)xAi (t− δi(t))

+
∑
B

n∑
j=1

aA·B̄
ij (t)fB

j (xj(τ̃ij(t, xj(t))))

+
∑
B

n∑
j=1

n∑
l=1

bijl(t)g
A·B̄
j (xj(σ̃ijl(t, xj(t))))

×gBl (xl(ν̃ijl(t, xl(t)))) + IAi (t)

� FA
i (t, x(t)), (2)

where i = 1, 2, . . . , n, A ∈ Δ,
∑
A

xAi (t)eA = Xi(t),

aij(t) =
∑
C

aCij(t)eC , bijl(t) =
∑
C

bCijl(t)eC ,

fj(Xj(τ̆ij(t,Xj(t)))) =
∑
C

fC
j (xj(τ̃ij(t, xj(t))))eC ,

gj(Xj(σ̆ijl(t,Xj(t)))) =
∑
C

gCj (xj(σ̃ijl(t, xj(t))))eC ,

τ̃ij , σ̃ijl : R× R
2m → R

+,

for eAēB = (−1)χ[A·B̄]eC , aA·B̄
ij (t) � (−1)χ[A·B̄]aCij(t),

gA·B̄
j (xj(σ̃ijl(t, xj(t))))

� (−1)χ[A·B̄]gCj (xj(σ̃ijl(t, xj(t)))),

fB
j (xj(τ̃ij(t, xj(t))))

� fB
j (x0j (τ̃ij(t, xj(t))), x

1
j (τ̃ij(t, xj(t))), . . . ,

x12···mj (τ̃ij(t, xj(t)))),

gA·B̄
j (xj(σ̃ijl(t, xj(t))))

� gA·B̄
j (x0j (σ̃ijl(t, xj(t))), x

1
j (σ̃ijl(t, xj(t))), . . . ,

x12···mj (σ̃ijl(t, xj(t)))),

gBl (xl(ν̃ijl(t, xl(t))))

� gBl (x0l (ν̃ijl(t, xl(t))), x
1
l (ν̃ijl(t, xl(t))), . . . ,

x12···ml (ν̃ijl(t, xl(t)))),

i, j, l = 1, 2, . . . , n, A,B,C ∈ Δ.
The initial value of the system (2) is given by

xAi (s) = φAi (s), ẋAi (s) = φ̇Ai (s), s ∈ [−ρ, 0].

Remark 2. If x = (x01, x
1
1, . . . , x

1·2···m
1 , x02, x

1
2, . . . ,

x1·2·m2 , . . . , x0n, x
1
n, . . . , x

1·2·m
n )T is a solution to the

system (2), then X = (X1, . . . , Xn)
T must be a

solution to the system (1), where Xi =
∑

A x
A
i eA, i =

1, 2, . . . , n and A ∈ Δ. Thus, the problem of finding
an (ω/2)-anti-periodic solution for the system (1) reduces
to finding one for the system (2). For considering the
stability of solution of the system (1), we just need to
consider the stability of solutions of the system (2).

Remark 3. The Clifford-valued system (1) includes
real-valued (m = 0), complex-valued (m = 1) and
quaternion-valued (m = 2) systems as its special cases.

Definition 1. Let x = (x01, x
1
1, . . . , x

1·2·...m
1 , x02, x

1
2, . . . ,

x1·2·...m2 , . . . , x0n, x
1
n, . . . , x

1·2·...m
n )T be an anti-periodic

solution of the system (2) with the initial value

ϕ = (ϕ0, ϕ1, . . . , ϕ1·2·...m, ϕ0
2, ϕ

1
2, . . . , ϕ

1·2·...m
2 ,

. . . , ϕ0
n, ϕ

1
n, . . . , ϕ

1·2·...m
n )T ,

and let

y = (y01 , y
1
1, . . . , y

1·2·...m
1 , y02 , y

1
2 , . . . , y

1·2·...m
2 ,

. . . , y0n, y
1
n, . . . , y

1·2·...m
n )T
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be an arbitrary solution of the system (2) with the initial
value

ψ = (ψ0, . . . , ψ1·2·...m, ψ0
2 , ψ

1
2 , . . . , ψ

1·2·...m
2 , . . . ,

ψ0
n, ψ

1
n, . . . , ψ

1·2·...m
n )T ,

where ϕ, ψ ∈ C1([−ρ, 0],R2mn) . If there exist constants
λ > 0 and M > 0 such that

‖x(t)− y(t)‖ ≤M‖ϕ− ψ‖1e−λt, ∀t > 0,

then the anti-periodic solution of the system (2) is said to
be globally exponentially stable, where

‖x(t)− y(t)‖ = max

{
max
1≤i≤n

max
A∈Δ

|xAi (t)− yAi (t)|,

max
1≤i≤n

max
A∈Δ

|ẋAi (t)− ẏAi (t)|
}
,

‖ϕ− ψ‖1
= max

{
max
1≤i≤n

max
A∈Δ

sup
s∈[−ρ,0]

|ϕA
i (s)− ψA

i (s)|,

max
1≤i≤n

max
A∈Δ

sup
s∈[−ρ,0]

|ϕ̇A
i (s)− ψ̇A

i (s)|
}
.

Lemma 1. (Amster, 2013) (Wirtinger inequality) If u is
a C1 function such that u(0) = u(T ), then

‖u− ū‖L2 ≤ T

2π
‖u′‖L2 ,

where

‖u′‖L2 :=

(∫ T

0

|u(t)|2 dt
) 1

2

and

ū =
1

T

∫ T

0

u(t) dt.

Lemma 2. (Amster, 2013) Let X andY be Banach spaces,
and let L : DomL ⊂ X → Y be linear and N : X →
Y continuous. Assume that L is one-to-one and H :=
L−1N is compact. Furthermore, assume there exists a
bounded and open subset Ω ⊂ X with 0 ∈ Ω such that the
equation Lx = λNx has no solutions in ∂Ω∩DomL for
any λ ∈ (0, 1). Then the problem Lx = Nx has at least
one solution in Ω.

3. Existence of anti-periodic solutions

In this section, based on a new continuation theorem of
coincidence degree theory, we shall study the existence of
anti-periodic solutions of the system (1).

Let

X =
{
x : x = (x01, x

1
1, . . . , x

1·2·...m
1 , x02, . . . , x

1·2·...m
2 ,

. . . , x0n, . . . , x
1·2·...m
n )T ∈ C(R,R2mn),

x
(
t+

ω

2

)
= −x(t), ∀t ∈ R

}
.

Then X is a Banach space with the norm

‖x‖X = max
A∈Δ

max
1≤i≤n

|xAi |0,

where

|xAi |0 = sup
t∈[0,ω]

|xAi (t)|, i = 1, 2, . . . , n, A ∈ Δ.

Define a linear operator L : Dom(L) ⊂ X → X by

Lx = ẋ,

where DomL = {x : x ∈ X, ẋ ∈ X}, and a continuous
operator N : X → X by

Nx = ((Nx)01, (Nx)
1
1, . . . , (Nx)

1·2·...m
1 , (Nx)02, . . . ,

(Nx)1·2·...m2 , . . . , (Nx)0n, . . . , (Nx)
1·2·...m
n )T ,

where

(Nx)Ai (t) = FA
i (t, x(t)), i = 1, 2, . . . , n, A ∈ Δ.

It is easy to see that kerL = {0} and ImL = X,
so L is reversible. Let H := L−1N . By applying the
Arzela–Ascoli theorem, we know that H is compact.

Theorem 1. Let (A1)–(A3) hold, and assume that

(A5) 1− δ̇+i > 0 and

1

ω
− c+i

2π(1− δ̇+i )
> 0, i = 1, 2, . . . , n.

Then the system (1) has at least one (ω/2)-anti-periodic
solution.

Proof. Let x ∈ DomL ⊂ X be an arbitrary solution of
Lx = λNx for a certain λ ∈ (0, 1); then we have

ẋAi (t) = λFA
i (t, x(t)), i = 1, 2, . . . , n, A ∈ Δ.

(3)
Multiplying both the sides of (3) by ẋAi (t) and then
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integrating the result over the interval [0, ω], we obtain

∫ ω

0

(ẋAi (t))
2 dt

≤
∫ ω

0

∣∣∣− ci(t)x
A
i (t− δi(t))ẋ

A
i (t)

+
∑
B

n∑
j=1

aA·B̄
ij (t)fB

j (xj(τ̃ij(t, xj(t))))ẋ
A
i (t)

+
∑
B

n∑
j=1

n∑
l=1

bijl(t)g
A·B̄
j (xj(σ̃ijl(t, xj(t))))

×gBl (xl(ν̃ijl(t, xl(t))))ẋAi (t) + IAi (t)ẋAi (t)
∣∣∣ dt

≤ c+i

∫ ω

0

|xAi (t− δi(t))ẋ
A
i (t)| dt+

(
2m

n∑
j=1

a+ijMf

+2m
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)∫ ω

0

|ẋAi (t)| dt

≤ c+i

(∫ ω

0

|xAi (t− δi(t))|2 dt
) 1

2
(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

+
√
ω

(
2m

n∑
j=1

a+ijMf

+2m
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

,

that is, for i = 1, 2, . . . , n, A ∈ Δ,

(∫ ω

0

|ẋAi (t)|2dt
) 1

2

≤ c+i

(∫ ω

0

|xAi (t− δi(t))|2 dt
) 1

2

+
√
ω

(
2m

n∑
j=1

a+ijMf

+2m
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)

≤ c+i
1− δ̇+i

(∫ ω

0

|xAi (t)|2 dt
) 1

2

+
√
ω

(
2m

n∑
j=1

a+ijMf

+2m
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)
. (4)

Since x ∈ X is (ω/2)-anti-periodic and x ∈ C1, by
Lemma 1 we have

(∫ ω

0

|xAi (t)|2 dt
) 1

2

≤ ω

2π

(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

, (5)

where i = 1, 2, . . . , n and A ∈ Δ. From (4) and (5), for

i = 1, 2, . . . , n and A ∈ Δ, we can get
(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

≤ c+i ω

2π(1− δ̇+i )

(∫ ω

0

|ẋAi (t)|2dt
) 1

2

+2m
√
ω

( n∑
j=1

a+ijMf +
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)
,

that is,
(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

≤
2m

√
ω

(
n∑

j=1

a+ijMf +
n∑

j=1

n∑
l=1

b+ijlMg
2 + ĪAi

)

1− c+i ω

2π(1−δ̇+i )

. (6)

Again, since x ∈ X is (ω/2)-anti-periodic, there
exist ξAi ∈ [0, ω] such that

xAi (ξ
A
i ) = 0, i = 1, 2, . . . , n, A ∈ Δ. (7)

By (7), for i = 1, 2, . . . , n, A ∈ Δ, we have

|xAi |0 ≤ |xAi (ξAi )|+
∫ ω

0

|ẋAi (t)| dt

≤ √
ω

(∫ ω

0

|ẋAi (t)|2 dt
) 1

2

. (8)

Then, from (6) and (8) it follows that

‖x‖X

≤ max
1≤i≤n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2m
(

n∑
j=1

a+ijMf +
n∑

j=1

n∑
l=1

b+ijlMg
2

)
+ I+i

1
ω − c+i

2π(1−δ̇+i )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

� M.

Take Ω = {x ∈ X : ‖x‖X < M + 1}; then it is
easy to see that all of the requirements of Lemma 2 are
fulfilled. Thus, by Lemma 2, we have that Lx = Nx
has at least one (ω/2)-anti-periodic solution in X, that
is, (2) has at least one (ω/2)-anti-periodic solution. In
view of Remark 2, (1) has at least one (ω/2)-anti-periodic
solution. The proof is complete. �

Remark 4. From the conditions of Theorem 1, one can
see that Theorem 1 is still valid for judging the existence
of anti-periodic solutions of the Clifford-valued system
(1), although it is proved by decomposing the system (1)
into the real-valued systems (2). That is to say, under the
assumption (A1), as long as the system (1) is anti-periodic
and the activation functions and state-dependent delays
are bounded, the system (1) has anti-periodic solutions.
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4. Global exponential stability of the
anti-periodic solution

In this section, we write

‖x(t)‖ = max
1≤i≤n

max
A∈Δ

{|xAi (t)|, |ẋAi (t)|},
for x ∈ C1(R,R2mn) and

‖ϕ‖1 = max
1≤i≤n

max
A∈Δ

{
sup

s∈[−ρ,0]

|ϕA
i (s)|, sup

s∈[−ρ,0]

|ϕ̇A
i (s)|

}

for ϕ ∈ C([−ρ, 0],R2mn).

Theorem 2. Let (A1)–(A4) hold. Furthermore, assume
that

(A7) For i, j, l = 1, 2, . . . , n,

τ̆ij(t, ·) ≡ t− τij(t), σ̆ijl(t, ·) ≡ t− σijl(t),

ν̆ijl(t, ·) ≡ t− νijl(t).

(A8) max
1≤i≤n

{
	i

c−i
, (1 +

c+i
c−i

)�i

}
< 1, where

�i = c+i δ
+
i + 22m

n∑
j=1

a+ijLf

+ 22m+1
n∑

j=1

n∑
l=1

b+ijlMgLg.

Then the system (1) has a unique (ω/2)-anti-periodic so-
lution that is globally exponentially stable.

Proof. By Theorem 1, we know that system (2) has an
ω/2-periodic solution x. Consider it with the initial value
ϕ. Let y be an arbitrary solution of the system (2) with the
initial value ψ. Write u = y − x; by (2) we have

u̇Ai (t) = −ci(t)uAi (t− δi(t))

+
∑
B

n∑
j=1

aA·B̄
ij (t)

(
fB
j (yj(t− τij(t)))

−fB
j (xj(t− τij(t)))

)

+
∑
B

n∑
j=1

n∑
l=1

bijl(t)
(
gA·B̄
j (yj(t− σijl(t)))

×gBl (yl(t− νijl(t))) − gA·B̄
j (xj(t− σijl(t)))

×gBl (xl(t− νijl(t)))
)

(9)

and the initial value of (9) is

uAi (s) = ψA
i (s)− ϕA

i (s), s ∈ [−ρ, 0], (10)

where i = 1, 2, . . . , n and A ∈ Δ.

Rewrite (9) as

u̇Ai (t) (11)

= −ci(t)uAi (t) + ci(t)

∫ t

t−δi(t)

u̇Ai (s) ds

+
∑
B

n∑
j=1

aA·B̄
ij (t)

(
fB
j (yj(t− τij(t)))

−fB
j (xj(t− τij(t)))

)
+
∑
B

n∑
j=1

n∑
l=1

bijl(t)

×(
gA·B̄
j (yj(t− σijl(t)))g

B
l (yl(t− νijl(t)))

−gA·B̄
j (xj(t− σijl(t)))g

B
l (xl(t− νijl(t)))

)
,(12)

where i = 1, 2, . . . , n and A ∈ Δ. Multiplying both the
sides of (9) by e

∫ s
0
ci(u) du and integrating the result over

the interval [0, t], for i = 1, 2, . . . , n and A ∈ Δ, we have

uAi (t) = uAi (0)e
− ∫

t
0
ci(u) du +

∫ t

0

e−
∫

t
s
ci(u) du

×
[
ci(s)

∫ s

s−δi(s)

u̇Ai (θ) dθ +
∑
B

n∑
j=1

aA·B̄
ij (s)

×(
fB
j (yj(s− τij(s)))− fB

j (xj(s− τij(s)))
)

+
∑
B

n∑
j=1

n∑
l=1

bijl(s)

×(
gA·B̄
j (yj(s− σijl(s)))g

B
l (yl(s− νijl(s)))

−gA·B̄
j (xj(s− σijl(s)))

×gBl (xl(s− νijl(s)))
)]
ds. (13)

For ϑ ∈ R, i = 1, 2, . . . , n, we define functions
Γi(ϑ), Γ̃i(ϑ) as follows:

Γi(ϑ) = c−i − ϑ−
(
c+i δ

+
i e

ϑδ+i + 22m
n∑

j=1

a+ijLfe
ϑτ+

ij

+22m
n∑

j=1

n∑
l=1

b+ijlMgLge
ϑσ+

ijl

+22m
n∑

j=1

n∑
l=1

b+ijlMgLge
ϑν+

ijl

)
,

Γ̃i(ϑ) = c−i − ϑ− (
c+i + c−i − ϑ

)(
c+i δ

+
i e

ϑδ+i

+22m
n∑

j=1

a+ijLfe
ϑτ+

ij

+22m
n∑

j=1

n∑
l=1

b+ijlMgLge
ϑσ+

ijl

+22m
n∑

j=1

n∑
l=1

b+ijlMgLge
ϑν+

ijl

)
.
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According to (A3), for i = 1, 2, . . . , n, we have

Γi(0) = c−i −
(
c+i δ

+
i + 22m

n∑
j=1

a+ijLf

+22m+1
n∑

j=1

n∑
l=1

b+ijlMgLg

)
> 0,

Γ̃i(0) = c−i − (
c+i + c−i

)(
c+i δ

+
i + 22m

n∑
j=1

a+ijLf

+22m+1
n∑

j=1

n∑
l=1

b+ijlMgLg

)
> 0.

Obviously, Γi(ϑ) and Γ̃i(ϑ) are continuous on
[0,+∞), Γi(ϑ), Γ̃i(ϑ) → −∞ as ϑ → +∞. Hence,
there exist ϑi, ϑ̃i such that Γi(ϑi) = Γ̃i(ϑ̃i) = 0
and Γi(ϑ) > 0, Γ̃i(ϑ) > 0, where ϑ ∈ (0, ξi),
ξi = min{ϑi, ϑ̃i}, i = 1, 2, . . . , n. Let ξ =
min{ϑ1, ϑ2, . . . , ϑn, ϑ̃1, ϑ̃2, . . . , ϑ̃n}; we have Γi(ξ) ≥
0, Γ̃i(ξ) ≥ 0, i = 1, 2, . . . , n.

By choosing

0 < λ < min{ξ, min
1≤i≤n

{c−i }},

for i = 1, 2, . . . , n, we have

Γi(λ) > 0, Γ̃i(λ) > 0,

that is,

1

c−i − λ

(
c+i δ

+
i e

λδ+i + 22m
n∑

j=1

a+ijLfe
λτ+

ij

+ 22m
n∑

j=1

n∑
l=1

b+ijlMgLg(e
λσ+

ijl + eλν
+
ijl)

)
< 1 (14)

and

(
1 +

c+i
c−i − λ

)(
c+i δ

+
i e

λδ+i + 22m
n∑

j=1

a+ijLfe
λτ+

ij

+ 22m
n∑

j=1

n∑
l=1

b+ijlMgLg(e
λσ+

ijl + eλν
+
ijl )

)
< 1.

(15)

Let

M = max
1≤i≤n

{
c−i

(
c+i δ

+
i + 22m

n∑
j=1

a+ijLf

+ 22m+1
n∑

j=1

n∑
l=1

b+ijlMgLg

)−1}
.

According to (A3), we haveM > 1. It is obvious that, for
i = 1, 2, . . . , n,

1

M
<

1

c−i − λ

(
c+i δ

+
i e

λδ+i + 22m
n∑

j=1

a+ijLfe
λτ+

ij

+ 22m
n∑

j=1

n∑
l=1

b+ijlMgLg(e
λσ+

ijl + eλν
+
ijl )

)
.

(16)

In view of (10), we find

|uAi (t)| = |ψA
i (t)− ϕA

i (t)|, t ∈ [−ρ, 0],

where i = 1, 2, . . . , n and A ∈ Δ; then we have

‖u(t)‖ ≤ ‖ϕ− ψ‖1 ≤M‖ϕ− ψ‖1e−λt, t ∈ [−ρ, 0].

We assert that

‖u(t)‖ ≤M‖ϕ− ψ‖1e−λt, t > 0. (17)

To prove (17), we first prove that, for any l > 1,

‖u(t)‖ < lM‖ϕ− ψ‖1e−λt, t > 0. (18)

On the contrary there must exist t1 > 0, i1, i2 ∈
{1, 2, . . . , n} and A1, A2 ∈ Δ such that

‖u(t1)‖ = max
{|uA1

i1
(t1)|, |u̇A2

i2
(t1)|

}
= lM‖ϕ− ψ‖1e−λt1 (19)

and

‖u(t)‖ < lM‖ϕ− ψ‖1e−λt, t ∈ [−ρ, t1). (20)

By (13), (14), (16) and (20), we have

|uA1

i1
(t1)|

=

∣∣∣∣uA1

i1
(0)e−

∫ t1
0 ci1(u) du +

∫ t1

0

e−
∫ t1
s

ci1(u) du

×
[
ci1(s)

∫ s

s−δi1 (s)

u̇A1

i1
(θ) dθ

+
∑
B

n∑
j=1

aA1·B̄
i1j

(s)
(
fB
j (yj(s− τi1j(s)))

− fB
j (xj(s− τi1j(s)))

)

+
∑
B

n∑
j=1

n∑
l=1

bi1jl(s)
(
gA1·B̄
j (yj(s− σi1jl(s)))
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× gBl (yl(s− νi1jl(s)))− gA1·B̄
j (xj(s− σi1jl(s)))

× gBl (xl(s− νi1jl(s)))
)]

ds

∣∣∣∣
≤ ‖ϕ− ψ‖1e−t1c

−
i1 +

∫ t1

0

e−(t1−s)c−i1

×
[
c+i1δ

+
i1
lMe−λ(s−δi1(s))‖ϕ− ψ‖1

+ 2m
n∑

j=1

a+i1jLf

∑
D

|yDj (s− τi1j(s))

− xDj (s− τi1j(s))|

+
∑
B

n∑
j=1

n∑
l=1

b+i1jl
(∣∣(gA1·B̄

j (xj(s− σi1jl(s)))

− gA1·B̄
j (yj(s− σi1jl(s)))

)
gBl (xl(s− νi1jl(s)))

∣∣
+
∣∣(gBl (xl(s− νi1jl(s))) − gBl (yl(s− νi1jl(s)))

)

× gA1·B̄
j (yj(s− σi1jl(s)))

∣∣)]ds
≤ ‖ϕ− ψ‖1e−t1c

−
i1 +

∫ t1

0

e−(t1−s)c−i1

×
[
c+i1δ

+
i1
lMe−λ(s−δi1(s))‖ϕ− ψ‖1

+ 2m
n∑

j=1

a+i1jLf

∑
D

|yDj (s− τi1j(s))

− xDj (s− τi1j(s))|

+ 2m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(∑
D

|yDj (s− σi1jl(s))

− xDj (s− σi1jl(s))|

+
∑
D

|yDl (s− νi1jl(s))− xDl (s− νi1jl(s))|
)]

ds

≤ ‖ϕ− ψ‖1e−t1c
−
i1 +

∫ t1

0

e−(t1−s)c−i1

×
[
c+i1δ

+
i1
lMe−λ(s−δi1(s))‖ϕ− ψ‖1

+ 22m
n∑

j=1

a+i1jLf lMe−λ(s−τi1j(s))‖ϕ− ψ‖1

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
lMe−λ(s−σi1jl(s))

× ‖ϕ− ψ‖1 + lMe−λ(s−νi1jl(s))‖ϕ− ψ‖1
)]
ds

≤ ‖ϕ− ψ‖1e−t1c
−
i1 + lM‖ϕ− ψ‖1

×
(
c+i1δ

+
i1
eλδ

+
i1 + 22m

n∑
j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
e
λσ+

i1jl + e
λν+

i1jl
))

×
∫ t1

0

e−(t1−s)c−i1 e−λsds

= ‖ϕ− ψ‖1e−t1c
−
i1 + lM‖ϕ− ψ‖1

×
(
c+i1δ

+
i1
eλδ

+
i1 + 22m

n∑
j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
eλσ

+
i1jl + eλν

+
i1jl

))

× e−λt1

c−i1 − λ
(1− e(λ−c−i1)t1)

= lM‖ϕ− ψ‖1e−λt1

{
1

lM
e(λ−c−i1)t1 +

1− e(λ−c−i1)t1

c−i1 − λ

×
(
c+i1δ

+
i1
eλδ

+
i1 + 22m

n∑
j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
e
λσ+

i1jl + e
λν+

i1jl
))}

< lM‖ϕ− ψ‖1e−λt1

{
1

M
e(λ−c−i1)t1 +

1− e(λ−c−i1)t1

c−i1 − λ

×
(
c+i1δ

+
i1
eλδ

+
i1 + 22m

n∑
j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
eλσ

+
i1jl + eλν

+
i1jl

))}

= lM‖ϕ− ψ‖1e−λt1

{(
1

M
− 1

c−i1 − λ

(
c+i1δ

+
i1
eλδ

+
i1

+ 22m
n∑

j=1

a+i1jLfe
λτ+

i1j + 22m

×
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
e
λσ+

i1jl + e
λν+

i1jl
)))

e(λ−c−i1 )t1

+
1

c−i1 − λ

(
c+i1δ

+
i1
eλδ

+
i1 + 22m

n∑
j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
eλσ

+
i1jl + eλν

+
i1jl

))}

≤ lM‖ϕ− ψ‖1e−λt1
1

c−i1 − λ

(
c+i1δ

+
i1
eλδ

+
i1

+ 22m
n∑

j=1

a+i1jLfe
λτ+

i1j

+ 22m
n∑

j=1

n∑
l=1

b+i1jlMgLg

(
eλσ

+
i1jl + eλν

+
i1jl

))

< lM‖ϕ− ψ‖1e−λt1 ,

i = 1, 2, . . . , n, A ∈ Δ. (21)
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In addition, by (13), for i = 1, 2, . . . , n, A ∈ Δ, we
have

u̇Ai (t)

= −ci(t)uAi (0)e−
∫ t
0
ci(u) du + ci(t)

∫ t

t−δi(t)

u̇Ai (θ) dθ

+
∑
B

n∑
j=1

aA·B̄
ij (t)

(
fB
j (yj(t− τij(t)))

−fB
j (xj(t− τij(t)))

)
+
∑
B

n∑
j=1

n∑
l=1

bijl(t)

×(
gA·B̄
j (yj(t− σijl(t)))g

B
l (yl(t− νijl(t)))

−gA·B̄
j (xj(t− σijl(t)))g

B
l (xl(t− νijl(t)))

)

−
∫ t

0

ci(t)e
− ∫ t

s
ci(u) du

[
ci(s)

∫ s

s−δi(s)

u̇Ai (θ) dθ

+
∑
B

n∑
j=1

aA·B̄
ij (s)

(
fB
j (yj(s− τij(s)))

−fB
j (xj(s− τij(s)))

)
+
∑
B

n∑
j=1

n∑
l=1

bijl(s)

×(
gA·B̄
j (yj(s− σijl(s)))g

B
l (yl(s− νijl(s)))

−gA·B̄
j (xj(s− σijl(s)))

×gBl (xl(s− νijl(s)))
)]

ds. (22)

From (15), (16), (20) and (22) it follows that

|u̇A2

i2
(t1)|

≤ c+i2‖ϕ− ψ‖1e−t1c
−
i2 + c+i2δ

+
i2
lM‖ϕ− ψ‖1

× e−λ(t1−δi2(t1)) + 2m
n∑

j=1

a+i2jLf

×
∑
D

|yDj (t1 − τi2j(t1))− xDj (t1 − τi2j(t1))|

+ 2m
n∑

j=1

n∑
l=1

b+i2jlMgLg

(∑
D

|yDj (t1 − σi2jl(t1))

− xDj (t1 − σi2jl(t1))|+
∑
D

|yDl (t1 − νi2jl(t1))

− xDl (t1 − νi2jl(t1))|
)
+

∫ t1

0

c+i2e
−(t1−s)c−i2

×
[
c+i2δ

+
i2
lM‖ϕ− ψ‖1e−λ(s−δ+i2

)

+ 2m
n∑

j=1

a+i2jLf

∑
D

|yDj (s− τi2j(s)))

− xDj (s− τi2j(s)))|

+ 2m
n∑

j=1

n∑
l=1

b+i2jlMgLg

(∑
D

|yDj (s− σi2jl(s))

− xDj (s− σi2jl(s))|
+
∑
D

|yDl (s− νi2jl(s))

− xDl (s− νi2jl(s))|
)]

ds

≤ lM‖ϕ− ψ‖1e−λt1

{
c+i2
lM

e(λ−c−i2)t1

+

(
1 + c+i2

∫ t1

0

e(t1−s)(λ−c−i2)ds

)[
c+i2δ

+
i2
eλδ

+
i2

+ 22m
n∑

j=1

a+i2jLfe
λτ+

i2j

+ 22m
n∑

j=1

n∑
l=1

b+i2jlMgLg

(
e
λσ+

i2jl + e
λν+

i2jl
)]}

< lM‖ϕ− ψ‖1e−λt1

{(
1

M
− 1

c−i2 − λ

[
c+i2δ

+
i2
eλδ

+
i2

+ 22m
n∑

j=1

a+i2jLfe
λτ+

i2j + 22m
n∑

j=1

n∑
l=1

b+i2jlMgLg

× (
eλσ

+
i2jl + eλν

+
i2jl

)])
c+i2e

(λ−c−i2)t1

+

(
1 +

c+i2
c−i2 − λ

)[
c+i2δ

+
i2
eλδ

+
i2

+ 22m
n∑

j=1

a+i2jLfe
λτ+

i2j

+ 22m
n∑

j=1

n∑
l=1

b+i2jlMgLg

(
e
λσ+

i2jl + e
λν+

i2jl
)]}

< lM‖ϕ− ψ‖1e−λt1

(
1 +

c+i2
c−i2 − λ

)

×
[
c+i2δ

+
i2
eλδ

+
i2 + 22m

n∑
j=1

a+i2jLfe
λτ+

i2j

+ 22m
n∑

j=1

n∑
l=1

b+i2jlMgLg

(
eλσ

+
i2jl + eλν

+
i2jl

)]

< lM‖ϕ− ψ‖1e−λt1 . (23)

In view of (21) and (23), we can get

‖u(t1)‖ < lM‖ϕ− ψ‖1e−λt1 ,

which contradicts (19). Hence, (18) holds. Letting p→ 1,
we get that (17) holds. It follows that

‖x(t)− y(t)‖ ≤M‖ϕ− ψ‖1e−λt, t > 0.
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Therefore, the system (2) has a unique
(ω/2)-anti-periodic solution that is global exponentially
stable. The uniqueness of the (ω/2)-anti-periodic
solution follows from its global exponential stability.
In view of Remark 2, the system (1) also has a unique
(ω/2)-anti-periodic solution that is globally exponentially
stable. The proof is complete. �

5. Numerical examples

In this section, we give a numerical example to show the
feasibility and effectiveness of the results obtained in this
paper.

Example 1. Consider the following Clifford-valued
HHNN with time-varying and leakage delays:

Ẋi(t) = −ci(t)Xi(t− δi(t))

+

2∑
j=1

aij(t)fj(Xj(t− τij(t)))

+

2∑
j=1

2∑
l=1

bijl(t)gj(Xj(t− σijl(t)))

× gl(Xl(t− νijl(t))) + Ii(t), i = 1, 2, (24)

where m = 3, the Clifford generators are e1, e2, e3, Xi =
x0i + x1i e1 + x2i e2 + x3i e3 + x12i e12 + x13i e13 + x23i e23 +
x123i e123 ∈ A,

fi(Xi) = sin2 x0i + 3 sin2 x1i e1 + 2 sin2 x2i e2

+ 0.1 cos2 x3i e3 + 5 cos2 x12i e12

+ 2.3 sin2 x13i e13 + 1.5 sin2 x23i e23

+ 0.6 sin2 x123i e123,

gi(Xi) = 3.6 cos2 x0i + 2.8 cos2 x1i e1 + 1.6 cos2 x2i e2

+ 6 sin2 x3i e3 + 5.3 sin2 x12i e12 + sin2 x13i e13

+ 1.5 sin2 x23i e23 + 0.8 sin2 x123i e123,

ci(t) = 10 cos2(30t) + 2,

Ii(t) = sin(30t) + 0.1 cos(30t)e1 + 0.6 sin(30t)e2

+ 0.6 sin(30t)e3 + 0.6 sin(30t)e12

+ 0.6 sin(30t)e13 + 0.6 sin(30t)e23

− cos(30t)e123,

a11(t) = a12(t)

= 2e−1 cos(30t)− 0.6 sin(30t)e1

+ 0.01 sin(30t)e2 + 0.1e−0.1 sin(30t)e3

− 1.5 cos(30t)e12 + cos(30t)e13

+ 2 cos(30t)e123,

a21(t) = a22(t)

= 3 cos(30t) + 2 sin(30t)e1 − 0.3 sin(30t)e2

− sin(30t)e3 − 0.1 sin(30t)e12

− cos(30t)e13 − 2 cos(30t)e23,

bijl(t) = 5e−2 cos(30t) + 2e−3 sin(30t)e1

+ 0.2 sin(30t)e2 + 0.3 sin(30t)e3

+ cos(30t)e12 + sin(30t)e13 + sin(30t)e23,

δi(t) =
1

120
sin(60t), τij(t) =

1

3
| cos(30t)|,

σijl(t) =
1

6
cos2(30t), νijl(t) =

1

10
sin2(30t),

where i, j, l = 1, 2.
It is easy to see that

Mf = 5, Mg = 6, c+i = 12, δ̇+i = 0.5, ω =
π

15
.

Then

1− δ̇+i = 0.5 > 0,
1

ω
− c+i

2π(1− δ̇+i )
≈ 0.95 > 0.

Thus, the conditions (A1)–(A5) are satisfied. Therefore,
according to Theorem 1, the system (24) has a
(π/15)-anti-periodic solution. Setting the three different
initial values, the transient states of eight parts of the
system (24) are shown in Figs. 1–4. �

Example 2. Consider the following Clifford-valued
HHNN with time-varying and leakage delays:

Ẋi(t) = −ci(t)Xi(t− δi(t))

+

2∑
j=1

aij(t)fj(Xj(t− τij(t)))

+

2∑
j=1

2∑
l=1

bijl(t)gj(Xj(t− σijl(t)))

× gl(Xl(t− νijl(t))) + Ii(t), i = 1, 2,
(25)

where m = 2, the Clifford generators are e1, e2, Xi =
x0i + x1i e1 + x2i e2 + x12i e12 ∈ A,

fi(Xi) = 0.03| sinx0i |+ 0.01| sinx1i |e1
+ 0.02| sinx2i |e2 + 0.05| sinx12i |e12,

gi(Xi) = 0.5| sinx0i |+ 0.36| sinx1i |e1
+ 0.01| sinx2i |e2 + 0.26| sinx12i |e12,

ci(t) = 0.01 cos t+ 0.06,

Ii(t) = sin
1

2
t+0.1 cos

1

2
te1+0.6 sin

1

2
te2− cos

1

2
te12,
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Fig. 1. State trajectories for the system (24) with the initial val-
ues x0

i (0) = (0.25,−0.5)T , (1,−1.25)T , (2.5,−3)T

and x1
i (0) = (1, 2)T , (−0.75,−1.25)T , (−2, 0.5)T ,

i = 1, 2.
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Fig. 2. State trajectories for the system (24) with the initial val-
ues x2

i (0) = (2,−1)T , (−1.5,−3)T , (0.75, 1.5)T and
x3
i (0) = (−0.25, 0.5)T , (2.25, 1.25)T , (−2.75,−1)T ,

i = 1, 2.

a11(t) = a12(t)

= 0.02e−1 cos
1

2
t− 0.006 sin

1

2
te1

+0.001e−0.1 sin
1

2
te2 − 0.015e−0.3 cos

1

2
te12,

a21(t) = a22(t)

= 0.005 cos
1

2
t+ 0.002e−2 sin

1

2
te1

−0.003e−3 sin
1

2
te2 − 0.005e−0.1 cos

1

2
te12,

bijl(t) = 0.001e−2 cos
1

2
t+ 0.002e−3 sin

1

2
te1

+0.0003 sin
1

2
te2 + 0.001e−3 cos

1

2
te12,
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Fig. 3. State trajectories for the system (24) with
the initial values x12

i (0) = (0.5,−0.75)T ,
(1,−1.75)T , (−2.25, 2)T and x13

i (0) =
(−1.5, 1)T , (−0.5, 0.5)T , (2,−2.5)T , i = 1, 2.
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Fig. 4. State trajectories for the system (24) with the initial
values x23

i (0) = (1,−1)T , (2,−2)T , (3,−2.75)T and
x123
i (0) = (0.25, 1)T , (−1.25, 1.75)T , (−2,−0.25)T ,

i = 1, 2.

δi(t) =
1

80
sin t+

1

40
, τij(t) =

1

5
| sin t|,

σijl(t) =
1

2
| cos t|, νijl(t) =

1

6
| sin t|+ 1

6
,

i, j, l = 1, 2.

It is easy to see that

Lf =Mf = 0.05, Lg =Mg = 0.5,

a+11 = a+12 = 0.006, a+21 = a+22 = 0.005,

b+ijl = 0.0003, c+i = 0.07, c−i = 0.05,
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δ̇+i =
1

80
, δ+i =

3

80
ω = 4π, i, j, l = 1, 2.

Then
1− δ̇+i ≈ 0.99 > 0,

1

ω
− c+i

2π(1 − δ̇+i )
≈ 0.07 > 0,

�i ≈ 0.02,

max
1≤i≤n

{
�i

c−i
, (1 +

c+i
c−i

)�i

}
≈ 0.436 < 1.

Thus, the conditions (A1)–(A8) are satisfied. Therefore,
according to Theorem 2, the system (25) has a unique
2π-anti-periodic solution that is globally exponentially
stable.

By using the Simulink toolbox in MATLAB, the fact
is verified by the numerical simulation in Figs. 5 and 6 and
there are five differential initial values which shows the
state trajectories of the system (25). Figures 7–10 show
simulation results of the system (25) with 2 random initial
conditions. �

Remark 5. The results of Examples 1 and 2 cannot
be obtained by the approaches outlined by Ou (2008), Ke
and Miao (2017), Şaylı and Yılmaz (2017), Shi and Dong
(2010), Li et al. (2019a; 2019b) and others.

6. Conclusion

In this paper, by using a continuation theorem of
coincidence degree theory with inequality techniques, we
established the existence of anti-periodic solutions for a
class of Clifford-valued HHNNs with state-dependent and
leakage delays. By using the proof by contradiction,
we obtained the global exponential stability of the
anti-periodic solution. This is the first paper to study the
anti-periodic solutions for Clifford-valued HHNNs. The
results of this paper are essentially new even when our
system degenerates into real-valued, complex-valued and
quaternion-valued systems. Our methods can be used
to study other types of Clifford-valued neural network
models with delays.
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