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Computer-aided breast ultrasound (BUS) diagnosis remains a difficult task. One of the challenges is that imbalanced BUS
datasets lead to poor performance, especially with regard to low accuracy in the minority (malignant tumor) class. Missed
diagnosis of malignant tumors can cause serious consequences, such as delaying treatment and increasing the risk of death.
Moreover, many diagnosis methods do not consider classification reliability; thus, some classifications may have a large
uncertainty. To resolve such problems, a bounded-abstaining classification model is proposed. It maximizes the area under
the ROC curve (AUC) under two abstention constraints. A total of 219 (92 malignant and 127 benign) BUS images are
collected from the First Affiliated Hospital of Harbin Medical University, China. The experiment tests BUS datasets of
three imbalance levels, and the performance contours are analyzed. The results demonstrate that AUC-rejection curves are
less affected by class imbalance than accuracy-rejection curves. Compared with the state-of-the-art, the proposed method
yields a significantly larger AUC and G-mean using imbalanced BUS datasets.
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1. Introduction

Breast cancer is the second leading cause of cancer
death among women worldwide (Acharya et al., 2017;
Monticciolo et al., 2017). Approximately 1 in 38
women die of breast cancer (https://www.cancer.
org/cancer/breast-cancer). The pathology
result of a biopsy is widely considered to be the
golden standard for tumor diagnosis (Fu et al., 2018).
However, biopsy is an invasive procedure that causes
physical and mental stress to patients. Medical
imaging techniques provide significant assistance toward
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early detection and diagnosis (Yassin et al., 2017).
Ultrasonography is a popular detection means because it
is non-radioactive, non-invasive, easily implemented, and
low-cost (Rahmawaty et al., 2016).

Interpreting a large number of breast ultrasound
(BUS) images is a cumbersome and repetitive task.
Furthermore, the analysis of these images depends on
the observer’s personal skills and subjective experience,
leading to inter- and intra-observer variations (Rawashdeh
et al., 2018). Computer-aided diagnosis (CAD)
techniques can improve the accuracy and objectivity of
diagnosing breast tumors, and provide a second opinion
to assist experts. In CAD systems, image enhancement

mailto:yingtao@hit.edu.cn
https://www.cancer.org/cancer/breast-cancer
https://www.cancer.org/cancer/breast-cancer


326 H. Guan et al.

and speckle reduction are usually implemented to improve
contrast and enhance edges. Histogram equalization and
its variations are the main contrast enhancement methods
(Mousania and Karimi, 2019; Shi et al., 2010). Wavelet
transformation-based filtering shows the effectiveness of
removing speckles and preserving the fine details of
BUS images (Singh et al., 2017a; Zhang et al., 2015).
Image preprocessing is followed by feature representation
and pattern classification. It has been demonstrated
that morphological and texture features can effectively
distinguish between benign and malignant breast tumors
(Abdel-Nasser et al., 2017; Shan et al., 2016). Support
vector machines (SVMs) (Cai et al., 2015; Daoud et al.,
2016), neural networks (Lin et al., 2014; Shan et al.,
2016), or AdaBoost (Zhou et al., 2013) are popular
classification methods.

BUS diagnosis can be regarded as a binary
classification problem. Although many studies on this
type of diagnosis have shown promising classification
performance, they ignore the important fact that the
BUS characteristics of benign and malignant tumors
have a significant overlap due to the heterogeneity in
breast cancer (Chang et al., 2011; Chen et al., 2004;
Garcia-Closas et al., 2008; Li et al., 2017). In other
words, some tumors are difficult to distinguish due to
overlapping features. Therefore, forcing classification
of ambiguous instances is unreasonable and can lead
to errors. Furthermore, the cost of misclassifying
breast tumors is very high. If the misclassification
by the classifier is unavoidable, abstaining classification
of uncertain and difficult examples can ensure reliable
outputs. The classified examples are assigned their class
labels with a large certainty. The rejected examples
could have ambiguous features of benign or malignant
tumors; therefore, such tumors should be studied more
closely. Performing other examinations and organizing
expert consultation will likely provide the appropriate
outcome.

Imbalanced datasets, which are a common
occurrence in the field of medical diagnosis, pose
another problem. The number of malignant (positive
class) tumors is commonly smaller than that of benign
(negative class) ones. Some abstaining classification
methods minimize the average cost, and thus they are
required to be equipped with information on costs.
However, in practice, it is difficult to obtain or estimate
misclassification costs. Some abstaining classification
methods aim to obtain high accuracy or a low error
rate for a given reject rate (Fischer et al., 2015; Kang
et al., 2017; Pietraszek, 2007; Wang et al., 2017).
However, when datasets are imbalanced, obtaining high
accuracy may not be relevant. The optimization metrics
(accuracy or the error rate) can guide learning algorithms
to be biased toward the majority (negative) class (López
et al., 2013). Consequently, the recognition rate of the

minority (positive) class is low. When the negative class
size is much larger than that of the positive class, if all
examples are classified as negative in an extreme case,
the overall accuracy may be high. However, in this case,
all the positive examples will be misclassified. That is,
all malignant tumors will be missed. Imbalanced datasets
are prevalent not only in medical diagnosis (Yu and
Ni, 2014), but also in other safety-critical fields such as
intrusion detection (Tesfahun and Bhaskari, 2013).

To address such problems, we propose an abstaining
classification model with two abstention constraints. The
conditional model maximizes the AUC metric instead
of accuracy. This allows the model to adapt to
situations where datasets are imbalanced. Note that
the AUC denotes the area under the receiver operating
characteristic (ROC) curve. Furthermore, the proposed
method avoids setting costs which are usually unknown in
practice. The performance-abstention trade-off curves are
analyzed through experiments using different imbalance
level BUS datasets.

2. Methods

Figure 1 shows the entire process of BUS diagnosis
discussed in this paper. In Section 2.1, the first two
steps, i.e., denoising to reduce speckle and annotating
tumor boundaries, are introduced. Section 2.2 introduces
the morphological and texture features used in the
experiments. Section 2.3 describes the infinite latent
feature selection (ILFS) (Roffo et al., 2017) algorithm
in brief. The proposed method and related works are
presented in Section 2.4. The results of using the
leave-one-out cross-validation (LOOCV) procedure are
reported and analyzed in Section 3.
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Fig. 1. BUS diagnosis procedure in this paper.
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2.1. Image acquisition and preprocessing. A BUS
image database including 219 (92 malignant and 127
benign) images was collected from the First Affiliated
Hospital of Harbin Medical University, China, using
a VIVID 7 ultrasound scanner (GE, Horten, Norway)
with a linear probe of 5–14 MHz. The tumor type
(benign or malignant) was confirmed through surgery
and pathological examination. Informed consent was
obtained from each participant and the patient’s privacy
was well protected. The study was approved by the related
Institutional Review Board.

Ultrasound images suffer from speckle noise, which
degrades image quality and affects post-processing steps,
including feature extraction and tumor classification
(Cheng et al., 2010; Gai et al., 2018; Roy et al., 2018;
Singh et al., 2017b). Haar wavelet-based wavelet filtering
was used to reduce speckles and preserve details of
tumor images (Singh et al., 2017a). The two-level
wavelet decomposition was performed for each BUS
image. Consequently, approximation coefficients (LL2)
and detail coefficients (HH1, HL1, LH1, HH2, HL2, and
LH2) were generated. High frequency and speckle noise
are commonly contained in HH bands. Here, the HH1
and HH2 coefficients were eliminated, and the residual
coefficients were used to reconstruct the denoised image.

Segmentation of tumor regions is a difficult task due
to various shapes, sizes, and positions of lesions. In
this study, the tumor boundaries of the BUS images were
manually delineated by an experienced radiologist from
the First Affiliated Hospital of Harbin Medical University,
China. Figure 2 shows samples of benign and malignant
tumors, respectively.

2.2. Feature extraction. The Breast Imaging
Reporting and Data System (BI-RADS) provides
a standard characterization of breast tumor images
(Liberman and Menell, 2002). The BI-RADS
describes breast tumors based on shape, boundary,
orientation, echo pattern, acoustic shadowing, and so
on (Rodriguez-Cristerna et al., 2018; Yu et al., 2018).
According to the system, benign tumors are usually
round or elliptical, with smooth and clear borders
and homogeneous internal echoes. Malignant tumors
typically appear as irregular shapes, blurry borders,
spiculated margins, and heterogeneous internal echoes
with posterior acoustic shadowing.

Morphology and texture features are two main
categories that describe and analyze breast tumor images
(Lee et al., 2018). According to the BI-RADS, 13
morphological features describing the shape, margin, and
orientation of tumors were extracted from each BUS
image (Cheng et al., 2010; Moon et al., 2018). In addition,
Haralick’s texture features were extracted (Haralick et al.,
1973). Table 1 summarizes these features. A total of
168 Haralick’s texture features t1 − t168 were computed

(a) benign tumor images

(b) malignant tumor images

Fig. 2. Samples of tumor images.

based on the gray-level co-occurrence matrix (GLCM)
(Haralick et al., 1973). Each GLCM element Pd,θ(i, j) is
the joint probability of the tumor gray values at distance
d in direction θ. Specifically, the GLCM is computed as
follows (Liu et al., 2012):

P d,θ(i, j) = ‖{(x1, y1), (x2, y2)}|
{x2 − x1 = dcosθ, y2 − y1 = dsinθ,

I(x1, y1) = i, I(x2, y2) = j}‖, (1)

where (x1, y1) and (x2, y2) are the positions of two
pixels in the tumor, I is the gray matrix of the tumor,
and ‖ · ‖ denotes the number of pixel pairs satisfying
the conditions in Eqn. (1). Based on the GLCM,
fourteen feature descriptors were calculated: angular
second moment, contrast, correlation, variance, inverse
difference moment, sum average, sum variance, sum
entropy, entropy, difference variance, difference entropy,
information measure of correlation (I, II), maximal
correlation coefficient. In this study, three distances (d
=1, 2, 3) and four directions (θ = 0◦, 45◦, 90◦, 135◦)
were employed; therefore, 168 (3×4×14) GLCM-based
Haralick’s features were obtained. In addition to the
13 morphological features, a total of 181 features were
extracted from each BUS tumor image.

2.3. Feature selection. Too many features can
increase model complexity and computational cost.
Furthermore, using more features has a greater risk of
overfitting. Feature selection can improve classification
performance by removing irrelevant or redundant features.
Feature selection methods can be mainly divided into
three categories: wrappers, embedded methods, and
filters (Guyon and Elisseeff, 2003). Wrapper feature
selection methods are dependent on specific classification
algorithms and utilize the classification performance
to evaluate the candidate feature subsets. Embedded
methods perform feature selection in the process of model
training. Filter feature selection methods contain two
steps: ranking and selecting. In the first step, all
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Table 1. Summary of morphological and texture features.
Morph. features Description

Shape
s1 circularity
s2 length-to-width ratio of enclosing rectangle
s3 ratio of max-to-min radial length
s4 average of normalized radial length
s5 standard deviation of norm. radial length
s6 entropy of normalized radial length
s7 area ratio
Boundary
b1 boundary roughness
b2 number of lobulations
b3 spiculation
b4 elliptic-normalized circumference
b5 elliptic-normalized skeleton
Orientation
θ angle

Texture features Description

t1 − t12 angular second moment (energy)
t13 − t24 contrast
t25 − t36 correlation
t37 − t48 variance
t49 − t60 inverse difference moment (homogeneity)
t61 − t72 sum average
t73 − t84 sum variance
t85 − t96 sum entropy
t97 − t108 entropy
t109 − t120 difference variance
t121 − t132 difference entropy
t133 − t144 information measure of correlation I
t145 − t156 information measure of correlation II
t157 − t168 maximal correlation coefficient

m candidate features are ranked according to a score
assignment strategy. Then, the top m̃ (m̃ � m)
features are chosen using cross-validation. Filter methods
are usually faster than wrapper methods, and they are
independent of specific algorithms. Therefore, in the
study, a filter method was chosen for feature selection.

The infinite latent feature selection (ILFS) algorithm
is a popular filter method. To rank all features, three
steps were enforced: preprocessing, graph-weighting,
and ranking. During the preprocessing, each feature �xi

was mapped to a descriptor �fi using a discriminative
quantization (DQ) process. Assume that there were n
examples and m features. Both �xi and �fi were n × 1
vectors. The number of distinct values in �xi may be very
large. Thus, the DQ process mapped the large set of raw
values as a smaller set that contains countable tokens. In
the second step, an undirected fully connected graph was
built. In the graph, each node denoted a feature descriptor
fi, and the weighted edge between fi and fj represented

the probability that features xi and xj were relevant. The
weights were obtained by learning a probabilistic latent
semantic analysis (PLSA) model (Hofmann, 1999). The
PLSA model introduced two topics, which represented
two latent variables: relevancy and irrelevancy. Thus,
PLSA built a simple Bayesian network and modeled the
probability of token-descriptor co-occurrences. After
deriving the weights between every two nodes, the joint
probability of each path of length l (l = 1, 2, . . . ) was
estimated, and finally, features were ranked according
to descending scores, following the idea of the infinite
feature selection algorithm (Roffo et al., 2015). For
details of the ILFS algorithm, please refer to the work of
Roffo et al. (2017).

2.4. Abstaining classification.

2.4.1. Related works. In the traditional binary
classification problem, the classification rule is as follows:
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class =

{
positive if s(m) > t,

negative otherwise,
(2)

where t is the decision threshold and s(m) is the
confidence score of example m belonging to the positive
class. In the classification with reject option, the
classification rule is as follows:

class =

⎧⎪⎨
⎪⎩

positive if s(m) > t2,

negative if s(m) ≤ t1,

reject otherwise.

(3)

Confidence scores can be obtained using traditional
classifiers (Fawcett, 2004; 2006). In this paper, the
k-nearest neighbor (kNN) and SVM algorithms are used
as scoring classifiers to generate confidence scores.

Abstaining classification models are built to
determine the rejection thresholds t1 and t2 (t1 < t2).
Tortorell (2000; 2004) proposes an abstention model,
which minimizes the average cost:

min
t1,t2

cost(t1, t2), (4)

where

cost(t1, t2)

= p(+) · CFN · fnr(t1) + p(−) · CTN · tnr(t1)

+ p(+) · CTP · tpr(t2) + p(−) · CFP · fpr(t2)

+ p(+) · CRP · rpr(t1, t2)

+ p(−) · CRN · rnr(t1, t2).

(5)

Here p(+) and p(−) are the prior probabilities of the
positive and negative classes, respectively, CTN, CTP,
CFP, and CFN are the costs of true negatives, true
positives, false positives, and false negatives, respectively,
‘tnr’ and ‘fpr’ are the true negative rate and false positive
rate among all negative examples, respectively, ‘tpr’ and
‘fnr’ denote the true positive rate and false negative rate
among all positive examples, respectively, CRP and CRN
indicate the rejection costs regarding positive and negative
classes, respectively, and ‘rpr’ and ‘rnr’ are the ratios of
rejected positive and negative examples, respectively. In
such abstention models, the costs of classification and
rejection are required to be known. However, costs are
unbounded values, which are usually difficult to obtain or
estimate in practice.

Pietraszek (2007) proposes a bounded-abstention
(BA) model, which adds a rejection constraint. The BA
model is as follows:

min
t1,t2

CFN · FN(t1) + CFP · FP (t2)

TN(t1) + FP (t2) + TP (t2) + FN(t1)

subject to

rej(t1, t2) ≤ kmax,

(6)

where FN (FP) means the number of false negatives
(positives), TN (TP) is the number of true negatives
(positives), ‘rej’ denotes the overall reject rate, i.e., the
number of rejected examples divided by the sample size.
When misclassification costs CFN and CFP are the same,
the BA model in Eqn. (6) starts minimizing the error rate
under a reject rate constraint. In such a case, the BA
model is not suitable to deal with imbalanced datasets
since the optimization of the error rate can lead to a biased
classification performance.

2.4.2. Proposed abstention model. The ROC/AUC is
insensitive to an imbalanced class distribution and unequal
misclassification costs (Fawcett, 2004; Prati et al., 2011).
The proposed model aims to obtain the maximum AUC
under two abstention constraints (Guan et al., 2019). The
optimization problem is formalized as follows:

max
t1,t2

AUC(t1, t2)

subject to {
rnr(t1, t2) ≤ nmax,

rpr(t1, t2) ≤ pmax.

(7)

AUC(t1, t2) is defined as (Hong et al., 2007; López et al.,
2013)

AUC(t1, t2) =
1 + tpr(t1, t2)− fpr(t1, t2)

2

=
tpr(t1, t2) + tnr(t1, t2)

2
.

(8)

Note that ‘tpr’ in Eqn. (8) is different from that in
Eqn. (5). Here, ‘tpr’ is the ratio of true positives in
the classified positive examples. Similarly, ‘fpr’ and
‘tnr’ in Eqn. (8) are the ratios of false positives and
true negatives among the classified negative instances,
respectively. The AUC distinguishes the accuracies of the
positive and negative classes. Thus, the AUC can evaluate
the classifier performance impartially when confronting
imbalanced datasets. Addittionally, nmax and pmax are
the hyperparameters of the proposed model. The values
of nmax and pmax are in the interval of [0,1], so the
hyperparameters are bounded.

A method of solving the proposed optimization
problem is the exhaustive algorithm; that is, to try every
possible combination of t1 and t2. Assume that smin

and smax are the minimum and maximum values of
the scores of all training examples, respectively. The
exhaustive algorithm assigns t1 or t2 scores between smin

and smax with step (smax − smin)/k and computes the
corresponding AUC(t1, t2), rpr(t1, t2), and rnr(t1, t2).
Finally, the combination of t1 and t2 that has the largest
AUC and simultaneously satisfies the two constraints is
the empirical solution to the optimization problem. In the
experiment, k is set as 200.
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3. Results and a discussion

3.1. Leave-one-out cross-validation. The size of the
original BUS dataset (a total of 219 examples) is not very
large. Moreover, in Sections 3.4 and 3.5, BUS datasets of
different imbalance levels will be adopted. The sample
size will become smaller. Therefore, in the following
experiments, the leave-one-out cross-validation procedure
is performed. Each time an example was selected as the
test example, and the remaining ones were used as training
examples to determine two rejection thresholds. In the test
phase, the score of the test example was first generated
using the scoring classifier. Then, the test example was
classified or rejected according to Eqn. (3). The entire
process was executed n times until each example ran as
the test example; n is the sample size of the dataset.

3.2. Evaluation metrics. In the paper, the
classification performance was evaluated using accuracy
(ACC), AUC, G-mean, sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), negative predictive
value (NPV), Matthew’s correlation coefficient (MCC).
Their definitions are as follows:

ACC =
TP + TN

TP+FN+TN+FP
, (9)

AUC =
SEN + SPE

2
, (10)

G-mean =
√

SEN × SPE, (11)

SEN =
TP

TP + FN
, (12)

SPE =
TN

TN + FP
, (13)

PPV =
TP

TP + FP
, (14)

NPV =
TN

TN + FN
, (15)

MCC

=
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

(16)

where TP and TN are the numbers of positive and negative
examples that are correctly classified, respectively, while
FN and FP are the numbers of positive and negative
examples that are misclassified, respectively.

3.3. Selecting features. Both the kNN and SVM
algorithms were used to classify the BUS dataset (219
examples) in the LOOCV procedure. After testing
multiple parameters, the experimental setups of the two
scoring classifiers were as follows. The nearest neighbor

size k = 5 was employed in kNN, and the linear kernel
function was used in the SVM. The ILFS algorithm
ranked 181 features, and finally the top 19 features were
selected since using 19 features yielding better results than
employing 181 features. The results of the kNN and SVM
algorithms are summarized in Table 2. In the following
experiments (Sections 3.4 and 3.5), the selected 19
features were employed. They are t54 (inverse difference
moment, d = 2, θ = 45◦), t161 (maximal correlation
coefficient, d = 2, θ = 0◦), t164 (maximal correlation
coefficient, d = 2, θ = 135◦), t57 (inverse difference
moment, d = 3, θ = 0◦), t98 (entropy, d = 1, θ = 45◦),
t100 (entropy, d = 1, θ = 135◦), t103 (entropy, d =
2, θ = 90◦), t58 (inverse difference moment, d = 3, θ =
45◦), b5 (elliptic-normalized skeleton), b3 (spiculation), b2
(number of lobulations), s1 (circularity), θ (angle), t146
(information measure of correlation II, d = 1, θ = 45◦),
s2 (length-to-width ratio of enclosing rectangle), t148
(information measure of correlation II, d = 1, θ = 135◦),
t149 (information measure of correlation II, d = 2, θ =
0◦), t147 (information measure of correlation II, d =
1, θ = 90◦), and t145 (information measure of correlation
II, d = 1, θ = 0◦).

Note that, as the top 19 features were chosen using
all 219 examples, these features could not be the best
ones for the imbalanced datasets in Sections 3.4 and 3.5.
However, considering the small sample size, the number
of futures (i.e., 181) was rather large. Furthermore, we
stress that the following experiments aim to demonstrate
the advantage of the proposed method and not to discuss
the best features. Therefore, in the following experiments,
the chosen 19 features are used.

3.4. Results of using different imbalance level BUS
datasets. In this experiment, we aim to explore the
performance-abstention trade-off when using different
imbalance level datasets, and to discuss how the rejection
parameters pmax and nmax may be chosen. Here, BUS
datasets at three imbalance levels were used. Among
219 BUS examples, 64 (25 or 13) positive examples
were randomly drawn and combined with all 127 negative
examples to form a 1:2 (1:5 or 1:10) imbalanced BUS
dataset. For the proposed method, the parameters
pmax and nmax were set from 0.01 to 1 with step 0.1.
The accuracy and the AUC were used as performance
metrics. The imbalanced datasets were randomly drawn
ten times, and the obtained metrics were averaged.
Finally, iso-performance profiles were plotted to display
the performance change with varying pmax and nmax.
Two scoring classifiers, kNN and the SVM, were used.

Figure 3 shows the accuracy and AUC contours
of using kNN to classify the 1:2, 1:5, and 1:10 BUS
datasets (corresponding to the figures from left to right
in each row). In the subgraphs, the horizontal and vertical
axes denote the parameters nmax and pmax, respectively.
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Table 2. Results of kNN and the SVM using the 19 selected features and all morphological and texture features.
ACC AUC G-mean SEN SPE PPV NPV MCC

KNN
selected(19) 82.65% 81.59% 81.33% 75.00% 88.19% 82.14% 82.96% 64.14%
all(181) 73.52% 71.47% 70.32% 58.70% 84.25% 72.97% 73.79% 44.82%
SVM
selected(19) 87.67% 87.12% 87.06% 83.70% 90.55% 86.52% 88.46% 74.61%
all(181) 87.21% 86.58% 86.49% 82.61% 90.55% 86.36% 87.79% 73.65%

(a) accuracy contours

(b) AUC contours

Fig. 3. iso-Accuracy and iso-AUC contours on 1:2, 1:5, and 1:10 BUS datasets (from left to right in each row) using kNN.

(a) sensitivity contours (b) specificity contours

Fig. 4. iso-SEN and iso-SPE ontours of 1:5 imbalance level using kNN.

Obviously, the larger the imbalance level, the denser the
iso-accuracy lines at the bottom of the graph. For the
AUC contours, such a phenomenon is less serious. This
indicates that AUC is less affected by the class distribution
than accuracy. This may be explained using the sensitivity

(SEN) and specificity (SPE) contours. Figure 4 only
displays the iso-SEN and iso-SPE curves of the imbalance
level 1:5. The iso-SPE contours are located near the
horizontal axis. For a fixed nmax, a small change in pmax

causes a large change in the SPE values. In contrast,



332 H. Guan et al.

(a) accuracy contours

(b) AUC contours

Fig. 5. iso-Accuracy and iso-AUC contours on 1:2, 1:5, and 1:10 BUS datasets using the SVM.

when pmax is fixed, the change in SPE values is small as
nmax increases. This implies that SPE is more sensitive
to pmax than to nmax. The iso-SEN contours are less
biased than the iso-SPE ones. According to the definitions
of accuracy and the AUC, the bias has a greater impact
on accuracy than on the AUC since the negative class
dominates in sample size. In addition, when pmax is fixed
and nmax increases, SEN increases and SPE decreases;
when nmax is fixed and pmax increases, SPE increases and
SEN decreases. However, the changes in the magnitudes
of SEN and SPE are not consistent. Hence, when both
pmax and nmax increase, the gradient direction of the
iso-AUC contours does not follow the y = x line. In
cost-sensitive applications, where the positive class has
higher error cost than the negative class, one can set nmax

larger than pmax to obtain high sensitivity.

Figure 5 displays the accuracy and AUC contours
using the SVM as the scoring classifier. The contours
are similar to those obtained when using kNN. However,
one difference is noted: the gradient directions of the
iso-AUC contours remain almost unchanged when the
imbalance level becomes large. Furthermore, the direction
roughly follows y = x. This is because the SVM is
less susceptible to class imbalance than kNN (Wu and
Chang, 2005). An important point is that using the SVM
yields better classification performance than using kNN.

To summarize, the performance of the proposed

abstaining classifier is associated with scoring classifiers,
datasets to be classified, and abstention parameters. To
obtain good results, one should choose the appropriate
scoring classifier. For a specific application (such as
BUS diagnosis), the data distribution can basically be
determined when a larger number of cases are collected
impartially. For example, we can collect BUS images
of patients who undergo breast cancer screening (not
necessarily malignant) and treat the disease (malignant).
Once the data and the scoring classifier are determined,
the performance-abstention curve is obtained. Therefore,
the practitioner can choose the abstention parameters
according to the trade-off curve. If he/she focuses on the
classification performance, it is possible to select a larger
abstention. If the resources for addressing the rejected
cases are limited, one can use a small abstention.

3.5. Comparison of the proposed method with
the state-of-the-art. The proposed method is compared
with Pietraszek’s BA model (Pietraszek, 2007). BA
determines rejection thresholds by minimizing the
misclassification cost sum of false positives and false
negatives, and constraining the overall reject rate. If the
misclassification costs of the two classes are considered
identical, that is, the cost ratio of false positives to false
negatives is 1, then the optimization goal of BA becomes
the error rate. To ensure the comparability of BA and
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(a) accuracy (b) AUC (c) G-mean

Fig. 6. Performance-rejection trade-off curves of BA and the proposed method.

(a) results of BA (b) results of the proposed method

Fig. 7. Results of sensitivity (SEN) and specificity (SPE) of BA and the proposed method when reject rates are lower than 0.3.

the proposed method, the same pmax and nmax were set
from 0.01 to 1 with step 0.05, and the cost ratio in BA
was set at 1. The overall reject rate in BA was also
set from 0.01 to 1 with step 0.05. The comparative
experiment was implemented using 1:2, 1:5, and 1:10
BUS datasets. The SVM was chosen as the scoring
classifier because it provided better results than kNN.
The performance-abstention curves of the two abstaining
classifiers are shown in Fig. 6, where the horizontal axis
denotes the resulting reject rate and the vertical axis
represents the results of accuracy (a), AUC (b), and
G-mean (c), respectively.

In Fig. 6(a), it is observed that BA yields
better accuracy than the proposed method. The
more unbalanced the class distribution, the larger the
performance difference between the two methods. This
result is attributed to the effect of class imbalance on
the optimization target. Given a fixed reject rate, BA
maximizes the accuracy, whereas the proposed method
maximizes the AUC. When the imbalance level becomes
larger, the influence of the minority class on the accuracy
is weakened to a greater extent than on the AUC. This
can be explained in Fig. 7, which shows the results of
sensitivity and specificity when reject rates are lower than
0.3. In Fig. 7(a), the sensitivity values of BA change
considerably with increasing imbalance levels. When
the imbalance level is 1:10, the sensitivity values at
abstention lower than 0.1 are less than 0.6. However,

all the specificity values are higher than 0.9. Hence, the
results of sensitivity and specificity are very imbalanced
in BA. For the proposed method in Fig. 7(b), the
values of sensitivity and specificity do not display as
large differences as for BA. Therefore, the proposed
method achieves better AUC-abstention (Fig. 6(b)) and
G-mean-abstention (Fig. 6(c)) trade-offs than BA; for a
fixed reject rate, the proposed method has a higher AUC or
G-mean value than BA when reject rates are less than 0.3.
Note that choosing low reject rates is usually significant
in practical applications (Simeone et al., 2012).

The areas under the performance (ACC, AUC, and
G-mean)-abstention curves in the abstention range of
[0,0.3] were estimated, and the mean and standard
deviation were calculated (Table 3). The larger the
average value, the better the classification performance. In
addition, the Wilcoxon signed rank test was performed to
compare BA and the proposed method, and the p-values
are listed in Table 3. The results shown in bold are
statistically significantly better. The results in Table 3
are consistent with those in Fig. 6. The proposed method
performs significantly better than BA in terms of the AUC
and G-mean when the reject rate is in the range of [0,0.3].

4. Conclusions

In BUS diagnosis, reliable classification is essential
because of the high costs of missed diagnosis
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Table 3. Results of mean and standard deviation of areas under performance-rejection curves and the p-values associated with the
Wilcoxon signed rank test.

Area under ACC-abstention curves
BA Proposed p-Value

1:2 0.2581 (0.002) 0.2689 (0.001) 0.002
1:5 0.2707 (0.003) 0.2649 (0.002) 0.002
1:10 0.2837 (0.003) 0.2730 (0.011) 0.002

Area under AUC-abstention curve
BA Proposed p-Value

1:2 0.2545 (0.003) 0.2673 (0.002) 0.002
1:5 0.2350 (0.009) 0.2587 (0.004) 0.002
1:10 0.2491 (0.007) 0.2770 (0.011) 0.002

Area under G-mean-abstention curve
BA Proposed p-Value

1:2 0.2444 (0.005) 0.2625 (0.005) 0.002
1:5 0.1887 (0.017) 0.2500 (0.008) 0.002
1:10 0.2094 (0.011) 0.2821 (0.010) 0.002

and misdiagnosis. We presented a BUS diagnosis
methodology which included image denoising, feature
extraction, feature selection, and abstaining classification.
The proposed bounded-abstaining classification method
utilized AUC as the optimization target to accommodate
imbalanced datasets. According to set conditions, the
method rejected to classify some uncertain instances to
ensure reliability.

The proposed method was validated using BUS
datasets of different imbalance levels. The results showed
that the AUC was less affected by the class imbalance
than accuracy. Compared with an abstaining classification
method, the proposed method yielded a better trade-off
between performance and abstention with abstention
at [0,0.3]; for fixed reject rates, the proposed method
had significantly larger AUC and G-mean values. This
indicates the potential practical value of the proposed
method.

In practice, if some easy tumors can be diagnosed
by CAD methods, this will alleviate doctors’ workload.
Based on the assumption, we proposed our BUS diagnosis
methodology. In BUS diagnosis, the rejected examples
deserve more attention, and domain experts should
analyze these tumor images carefully. Hence, the
abstaining classification method could help screen BUS
images that are difficult to discriminate, thus saving time
and enhancing the efficiency of practitioners. In addition,
the limitation of the study is the small sample size of
the imbalanced datasets. If a large number of instances
are obtained, we believe that the performance-abstention
curves can be more stable, and the appropriate parameters
can be chosen based on the curves.
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