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In this paper, the problem of feedback stabilization for a class of impulsive state-dependent neural networks (ISDNNs) with
nonlinear disturbance inputs via quantized input signals is discussed. By constructing quasi-invariant sets and attracting sets
for ISDNNs, we design a quantized controller with adjustable parameters. In combination with a suitable ISS-Lyapunov
functional and a hybrid quantized control strategy, we propose novel criteria on input-to-state stability and global asymp-
totical stability for ISDNNs. Our results complement the existing ones. Numerical simulations are reported to substantiate
the theoretical results and effectiveness of the proposed strategy.
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1. Introduction

The memristor was called the fourth circuit component
by Chua (1971). It can be used as a synapse in an
artificial neural network or as a transistor in a new
generation of computers. Owing to the appealing physical
characteristics of the memory device, memristive neural
networks (MNNs), a class of state-dependent neural
networks (SDNNs), have attracted close attention in
recent years (Duan et al., 2017; Guo et al., 2018;
Huang et al., 2019; 2018b; Wang et al., 2016; Yang
et al., 2016; 2019; Zhang and Shen, 2015; Zhu et
al., 2018). Guo et al. (2018) analyzed multiple stable
equilibrium points using reasonable assumptions on the
decomposition of index sets and switching thresholds,
and obtained a new theoretical result on recursive neural
network switchings with stable radial basis functions
and state-dependent switchings. Zhang and Shen (2015)
obtained sufficient conditions to guarantee the global
exponential stability of a class of delayed neural networks
with state-dependent switching. The criteria of Lagrange
stability for Takagi–Sugeno (T–S) with time-varying
delays are obtained by constructing a scale-limited
generalized Halanay inequality (Huang et al., 2018b).
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In the realization of electronic networks, due
to the influence of frequency changes, the switching
phenomenon, voltage mutation or sudden noise, the state
of SDNNs may be disturbed by a sudden change and
instantaneous disturbance in some cases. Impulsive
systems are widely used in engineering, physics and
science, which can be used to describe disturbances.
Therefore, it is necessary to study the dynamical behavior
of SDNNs with impulsive effects. For instance, the
exponential stability of the SDNN model with variable
delays and impulsive control is studied by choosing a
suitable function (Duan et al., 2017). A generalized model
of SDNNs with an impulse time window is discussed
by Yang et al. (2016), and the relationship between the
exponential convergence rate and impulsive parameters is
also pointed out. Zhu et al. (2018) studied systems with
event-based impulsive control and applied it to SDNNs.

Many of the results mentioned above ignore the
impact of data quantification, assuming that all data
transmissions can be performed with unlimited precision,
but this is not realistic in real-world networks. As usual,
quantization may change the dynamical behavior of the
system, and it will result in instability, oscillation or chaos.
A quantizer can be regarded as a device that converts a
real-valued signal into a piecewise constant one taking
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on a finite set of values. There have been two main
control methods developed in recent years. One is the
static quantizer, the other is the flexible quantizer (Chang
et al., 2013; Fan et al., 2016; Sun et al., 2019; Wan
et al., 2017; Wu et al., 2018; Hong et al., 2019; Zhang
et al., 2019). The former divides the domain of the
quantized signal and has a fixed quantization level.

Chang et al. (2013) quantified all the error sampling
measurements by a logarithmic quantizer, and studied the
synchronization of complex networks. In order to estimate
the unknown disturbance, Sun et al. (2019) designed a
novel fixed-time disturbance observer and constructed a
fixed-time controller to ensure the convergence of the
system state. Zhang et al. (2019) gave some sufficient
conditions for finite-time and fixed-time synchronization
of discontinuous complex networks under the control
of the static logarithmic quantizer. On the other hand,
the flexible quantizer can be zooming-in or zooming-out
according to the system state.

Fan et al. (2016) used a quantizer with adjustable
time-varying parameters to study the synchronization
of chaotic systems. Wan et al. (2017) proposed
a novel quantized output control strategy to make
discrete closed-loop systems with two quantized
signals asymptotically stable or satisfy a specified H∞
performance. The advantage of this method is that it can
dynamically expand the quantization level to increase the
region of attraction and attenuate the steady-state limit
cycle.

Wu et al. (2018) combined quantitative control
and event triggering control with the bounded
consistency problem of multi-agent systems with
external disturbances. Qian et al. (2012) studied a hybrid
impulsive control system and gave a simple criterion
for system stability. Hao et al. (2011) assumed that the
network has two time-varying additive delays and limited
capacity and proposed a continuous time Takagi–Sugeno
(T–S) fuzzy system correlation stabilization method
for pulse effects to ensure the asymptotic stability
of the closed-loop system. Although some papers have
considered a hybrid pulse system under quantized control,
they often only quantify the disturbance input, but do not
take the quantification of impulse terms into account.

Inspired by the aforementioned discussion, our
purpose is to study how to obtain better performance of
ISDNNs with nonlinear disturbance inputs considering
the quantization effect. Our contributions are highlighted
as follows:

1. It is for the first time that a flexible quantizer is
discussed in ISDNNs. By proposing a quantitative
control scheme, we propose novel criteria on
input-to-state stability (ISS) and global asymptotical
stability for ISDNNs.

2. The control strategy is different from those used

by Wang et al. (2016); we adopt quantized control
for external inputs and impulses, which is divided
into two stages: zooming-in and zooming-out. It is
superior to error-free control (Duan et al., 2017; Guo
et al., 2018; Wang et al., 2016; Zhu et al., 2018).

3. By introducing a quasi-invariant set and an attracting
basin, it can be obtained that the corresponding
trajectory is inside an ellipsoid in a certain time
interval. Through quantized control, the difficulty of
channel blockage and limited channel can be solved.

The rest of the paper is organized as follows. In
Section 2, the model of ISDNNs with quantized control
is given. Some necessary assumptions, definitions, and
lemmas are introduced. In Section 3, we first prove ISS
and introduce quasi-invariant sets and attracting sets for
ISDNNs with an input quantizer. Due to a quantized
input-feedback control, we obtain the global asymptotic
stability of ISDNNs. In Section 4, the numerical results
show that the quantization controller is effective.

Notation. As usual, let R+ = [0,∞) and I be an
identity matrix. Rn denotes the n-dimensional space with
Euclidean vector norm || · || and R

m×n is the set of m×n
real matrices. co{ǎ, â} denotes the closure of the convex
hull generated by real numbers ǎ and â. λmin(·) and
λmax(·) denote the minimum and maximum eigenvalues
of the corresponding matrix, respectively. C[R,R] : R →
R is a continuous function. P > 0 denotes a positive
definite matrix P . By R(z) = {x ∈ R

n|xTPx ≤ z} we
denote the corresponding ellipsoid.

2. Preliminaries and the model

In this section, we give our model description and recall
some useful lemmas.

Define U as the set of measurable locally essentially
bounded functions u : R

n → R
n and V as the set of

bounded functions Jk : Rn → R
n. A function γ : R+ →

R+ is said to be a class of K if it is continuous, strictly
increasing and γ(0) = 0; γ ∈ K∞ if γ ∈ K and also
γ(s) → ∞ as s → ∞; ξ ∈ K L if ξ : R+ × R+ →
R+, ξ(·, t) ∈ K for each fixed t, ξ(s, t) decreases to zero
as t → ∞ for each fixed s.

Consider the following SDNNs with a nonlinear
disturbance inputs model (Wang et al., 2016):

ẋi(t) = −di(xi(t))xi(t) +

n∑

j=1

aij(xi(t))fj(xj(t))

+ ui(xi(t)), t ≥ 0, (1)

where i ∈ N := {1, 2, 3, . . . , n}, xi(t) is the voltage of
the capacitor Ci, n stands for the number of neurons, fj :
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R −→ R is a neural activation function, ui(xi(t)) is the
nonlinear disturbance inputs, di(·) and aij(·) represent the
parallel-memristor corresponding to the capacitor Ci and
the memductances of the memristor between the function
fj(xj(t)) and (xi(t)), respectively, and

di(xi(t)) =

{
di

M , |xi(t)| ≤ Ti,
di

S , |xi(t)| > Ti,

aij(xi(t)) =

{
aMij , |xi(t)| ≤ Ti,
aSij , |xi(t)| > Ti,

where Ti > 0 is a switching jump, while di
M > 0, di

S >
0, aMij , a

S
ij (i, j ∈ N ) are constants which satisfy di

M �=
di

S and aMij �= aSij .

To improve the resistance disturbance capacity of the
SDNNs with nonlinear disturbance inputs (1), we can add
impulsive controllers to the nodes. Then, the SDNNs
of hybrid switching with impulses can be described as
follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xẋi(t) = −di(xi(t))xi(t) +

n∑

j=1

aij(xi(t))fj(xj(t))

+ui(xi(t)), t ≥ 0, t �= tk,

xi(t
+
k ) = Jik(xi

(
t−k

)
), t = tk,

where Jik(xi) ∈ C[R,R], x+(tk) is the reset of x at tk
and tk(k ∈ N ) are the impulsive moments with 0 < tk <
tk+1, limk→∞ tk = ∞. Assume that

0 < θ ≤ tk − tk−1 ≤ ρ, (2)

for all k ∈ N and some numbers θ, ρ. As usual,
if not explicitly stated, signals are assumed to be
right-continuous and to have left limits at all times.

In the control system, since ui is a continuous input
signal and Jik is a discrete one, we call (ui, Jik) the
hybrid input of an impulsive system. In the above
mentioned works, hybrid input is taken directly for the
stability of impulsive systems. Due to limited information
feedback, however, it is interesting that only quantized
input is available to stabilize the system.

Let z ∈ R
n be the variable being quantized, and

q(·) : Rn → U be a quantizer that is a piecewise constant
function, where U is a finite subset of Rn. Usually, we
assume that q(z) = 0 for z in some neighborhood of the
equilibrium point, which satisfies

• If ‖z‖≤ M, then ‖q(z)− z‖≤ Δ.

• If ‖z‖> M, then ‖q(z)‖> M −Δ.

In general, we can view M and Δ as the quantization
range and quantization error, respectively.

In the following control strategy, a flexible quantizer
with one adjustable parameter μ is adopted in the form of

qμ(z) = μq
( z

μ

)
,

where μ > 0. We can get it quite naturally with the
quantization range of μM and the quantization error of
μΔ. We can refer to μ as a “zoom” variable, if we increase
μ that is equivalent to zooming out, which is substantially
getting a new quantizer with or larger quantization range
and a larger quantization error, if we decrease μ that is
equivalent to zoom in, which is substantially getting a
quantizer with smaller quantization rage and a smaller
quantization error.

Definition 1. (Aubin and Cellina, 1984) Consider the
following ordinary differential equation:

dx

dt
= h(x), h(0) = h0 ∈ R

n, (3)

where h(x) : R
n → R

n is not necessarily continuous.
The Filippov set-valued map of h(x) is defined as follows:

F(x) =
⋂

δ>0

⋂

μ(N)=0

K[h(B(x, δ)\N)],

where K(E) is the closure of the convex hull of set
E,B(x, δ) = {y : ||y − x|| ≤ δ} and μ(N) is the
Lebesgue measure of the set N ⊂ R

N .
An absolutely continuous vector valued function x(t)

defined on [0, T] is called a solution in the sense of the
Filippov of dx/dt = h(x) if for almost all t, dx/dt ∈
F(x) and if, it satisfies the initial condition h(0) = h0.

According to Aubin and Cellina (1984), (3) has at
least one Filippov solution on R

n, i.e., there exists a
measurable function χ ∈ F(x(t)) such that

dx

dt
= χ.

For i, j ∈ N , write

di := max{diM , di
S},

di := min{diM , di
S},

aij := max{aMij , aSij},
aij := min{aMij , aSij},
ãij := max{|aMij |, |aSij |}.

Based on Definition 1 and the theory of differential
inclusion, an ISDNN with nonlinear disturbance inputs
model can be described by the following differential
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inclusion:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi(t) ∈ −co{diM , di
S}xi(t) +

n∑

j=1

co{aijM , aij
S}

×fj(xj(t)) + ui(xi(t)), t �= tk,

xi(t
+
k ) = Jik(xi

(
t−k

)
), t = tk.

(4)

There exist measurable functions d̆i(t) ∈ co{diM , di
S},

ăij(t) ∈ co{aijM , aij
S} such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi(t) = −d̆i(t)xi(t) +

n∑

j=1

ăij(t)fj(xj(t))

+ ui(xi(t)), t �= tk,

xi(t
+
k ) = Jik(xi

(
t−k

)
), t = tk.

(5)

Set

DM = diag{dM1 , dM1 , . . . , dMn },

DS = diag{dS1 , dS2 , . . . , dSn},

D = diag{d1, d2, . . . , dn},

D̆(t) = diag{d̆1(t), d̆2(t), . . . , d̆n(t)},

AM = (aMij )n×n,

AS = (aSij)n×n, Ă(t) = (ăij(t))n×n,

Ã = (ãij)n×n,

x(t) = (x1(t), x2(t), . . . , xn(t))
T ,

f(x(t)) = (f1(x(t)), f2(x(t)), . . . , fn(x(t)))
T ,

u(x(t)) = (u1(x(t)), u2(x(t)), . . . , un(x(t)))
T ,

Jk(x(t)) = (J1k(x(t)), J2k(x(t)), . . . , Jnk(x(t)))
T .

Similarly to (4) and (5), we have

⎧
⎪⎨

⎪⎩

ẋ(t) ∈ −co{DM , DS}x(t) + co{AM , AS}f(x(t))
+u(x(t)), t �= tk,

x(t+k ) = Jk(x
(
t−k

)
), t = tk,

or, equivalently, there exist measurable functions D̆(t) ∈
co{DM , DS}, Ă(t) ∈ co{AM , AS} such that

⎧
⎪⎨

⎪⎩

ẋ(t) = −D̆(t)x(t) + Ă(t)f(x(t))

+ u(x(t)), t �= tk,

x(t+k ) = Jk(x
(
t−k

)
), t = tk.

(6)

Based on (6), if the input feedback is quantized, then
the closed-loop ISDNN with quantized measurements is

as follows:
⎧
⎪⎨

⎪⎩

ẋ(t) = −D̆(t)x(t) + Ă(t)f(x(t))

+qμ(u(x(t))), t ≥ 0, t �= tk,

x(t+k ) = qυ(Jk(x
(
t−k

)
)), t = tk,

(7)

where functions u ∈ U , Jk ∈ V are continuous in
R

n, (u, Jk) is the hybrid input, and μ and ν are zoom
variables. We assume that there are some K∞ class upper
bounded functions ū, J̄k such that

‖u(x)‖≤ ū(‖x‖), ‖Jk(x)‖≤ J̄k(‖x‖), (8)

for all x ∈ R
n. Actually, for the existence of the upper

bounded functions, we can take

ū(s) = max
||x||≤s

||u(x)||,

J̄k(s) = max
||x||≤s

||Jk(x)||.

Rewrite the ISDNN system with quantized
measurements (7) as

⎧
⎪⎨

⎪⎩

ẋ(t) = −D̆(t)x(t) + Ă(t)f(x(t))

+u(x) + F (u), t ≥ 0, t �= tk,

x(t+k ) = Jk(x
−) +G(Jk), t = tk,

(9)

where F (u) = F (u(x)) = qμ(u(x)) − u(x), G(Jk) =
G(Jk(x)) = qυ(Jk(x)) − Jk(x).

Remark 1. In previous results, some papers consi-
dered the stability and synchronization of SDNNs under
impulses (Duan et al., 2017; Yang et al., 2016; Zhu
et al., 2018), but they all assumed that the transmission
and exhibit processing of data have zero transmission
delay and infinite precision. Because of the bandwidth
constraint in SDNNs, the observations of the system
state can only be transmitted to the controller through
the finite rate network after quantization and coding,
so that the influence of quantization and coding on the
performance of the control system cannot be ignored. To
the best of the authors’ knowledge, the stability of SDNNs
under quantization impulses has not been taken into
account in previous papers. Therefore, the quantization
technique is used in hybrid systems to quantify the
external disturbances and impulses, which makes the
results more practical.

Definition 2. (Xu and Long, 2012) For compact sets
ϕ, φ ∈ R

n, {ϕ, φ} is called a quasi-invariant pair of (9)
if, for any initial value x0 ∈ ϕ, the solution x(t, t0, x0) of
(9) belongs to the set φ for t ≥ t0. In particular, the set ϕ
is called an invariant set of (9), when ϕ ≡ φ.

Definition 3. (Xu and Long, 2012) For S,D ⊂ R
n, the

set S is called an attracting set of the system (9) and D is
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called an attracting basin of S if, for any initial value x0 ∈
D, the solution x(t, t0, x0) converges to S as t → +∞,
that is,

dist(x(t, t0, x0), S) → 0 as t → +∞,

where

dist(x, S) = inf
y∈S

dist(x, y),

dist(x, y) = sup
s∈(−∞,0]

|x(s)− y(s)|.

Definition 4. The ISDNN is called input-to-state stable
(ISS) with the form of (9) if there exist functions ξ ∈
K L and γ ∈ K∞ such that, for every initial condition
and every input (u, Jk), the solution corresponding to (9)
exists globally and satisfies

|x(t)| ≤ ξ
(
|x0|, t− t0

)

+ γ
(
‖(u, Jk)‖[t0,t)

)
, t ≥ t0,

for any forward complete solution x(t) =
x(t, t0, x0, u, Jk) of (9), where ‖ (u, Jk) ‖[t0,t) denotes
the norm on the interval [t0, t) defined by

‖(u, Jk)‖[t0,t)
:= max

{
ess. sup

s∈[t0,t)

|u(s)|, sup
tk∈[t0,t)

|Jk(tk)|
}
.

Lemma 1. (Huang et al., 2018a) The ISDNN (9) is ISS
with respect to the disturbance (F (u), G(Jk)) if there ex-
ists a candidate exponential ISS-Lyapunov function V :
R

n → R that satisfies

α(‖x‖) ≤ V (x) ≤ β(‖x‖), (10)

∇V (x)ẋ(t) ≤ −cV (x) + ϑ(‖F (u)‖), (11)

V (x+
k ) ≤ e−dV (x) + ϑ(‖G(Jk)‖), (12)

−dN(t, s)− (c− λ)(t− s) ≤ r, t ≥ s ≥ 0, (13)

where x ∈ R
n, α, β, ϑ ∈ K∞, F (u) ∈ U , G(Jk) ∈

V , N(t, s) denotes the number of impulse instants tk in
(s, t], c, d, r, λ are constants and r, λ > 0.

Remark 2. ISS is a stability problem based on
perturbed systems, which was first proposed by Sontag
(2002). Because some unexpected abrupt or instantaneous
disturbances often occur in SDNNs (Wang et al., 2016),
it is interesting to consider the external disturbances and
impulses and quantify them in this paper. However, few
results have been reported in the literature.

Lemma 2. (Yu et al., 2014) Let P be an n×n symmetrical
and positive definite matrix; then, for any x(t) in R

n, the
following inequality holds:

λmin(P )xT (t)x(t)

≤ xT (t)Px(t) ≤ λmax(P )xT (t)x(t).

Lemma 3. (Yang et al., 2011) For any vectors
x(t), y(t) ∈ R

n, the inequality

2xT (t)y(t) ≤ xT (t)Qx(t) + yT (t)Q−1y(t)

holds, in which Q is an n × n matrix or a constant with
Q > 0.

Assumption 1. For j = 1, 2, . . . , n, the activation
functions fj(u) are bounded and there exist nonnegative
scalars σj such that, for ∀x1, x2 ∈ R, x1 �= x2,

0 ≤ fj(x1)− fj(x2)

x1 − x2
≤ σj .

Assumption 2. For j = 1, 2, . . . , n, the jump operators
Jik(x) satisfy the Lipschitz condition with Jik(0) = 0,
i.e., there exist nonnegative scalars ρik such that, for
∀x1, x2 ∈ R, x1 �= x2,

|Jik(x1)− Jik(x2)| ≤ ρik|x1 − x2|.
Assumption 3. For i = 1, 2, . . . , n, the disturbance input
ui(xi(t)) satisfies the Lipschitz condition with ui(0) =
0, i.e., there exist nonnegative scalars Li such that, for
∀x1, x2 ∈ R, x1 �= x2,

|ui(x1)− ui(x2)| ≤ Li|x1 − x2|.

3. Main results

In this section, we analyze some properties like the
quasi-invariant pair and attracting set for ISDNNs with
quantized measurement under Assumptions 1–3, ensuring
that the impulsive control systems (9) are globally
asymptotically stable.

Theorem 1. Under Assumptions 1–3, the ISDNN with
quantized input (9) is ISS if there exist positive constants
r, λ , positive definite matrix C, symmetric and positive
definite matrix P such that

(t− s)(�−1 lnwk + λ− c) ≤ r, t ≥ s ≥ 0, (14)

where

c = −λmax

{
PÃC−1ÃT + PC−1 + I

− 2D + α−1(ΛCΛ + ΞCΞ)
}

with

α = λmin(P ), Λ = diag{L1, L2, · · · , Ln},
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Ξ = diag{σ1, σ2, . . . , σn},

wk =
λmax(ρkPρk)

α

with
ρk = diag{ρ1k, ρ2k, . . . , ρnk},

�=

{
ρ, 0 < wk < 1,

θ, wk ≥ 1.

Proof. Consider the following candidate exponential
ISS-Lyapunov functional:

V (x) = V (x(t)) = xT (t)Px(t).

According to Lemma 2, we get the estimate

α ‖x(t)‖≤ V (x) ≤ β ‖x(t)‖,

where α = λmin(P ), β = λmax(P ), i.e., (10) holds.

Differentiating the functional V (t) along the solution
of the ISDNNs with quantized input (9), we have

V̇ (x) = −2xT (t)D̆(t)Px(t) + 2fT (x(t))ĂT (t)Px(t)

+ 2uT (x(t))Px(t) + 2FT (u)Px(t). (15)

From Lemma 3 and Assumptions 1–3 it follows that

2fT (x(t))ĂT (t)Px(t) ≤ xT (t)PÃ(t)C−1ÃTPx(t)

+ fT (x(t))Cf(x(t))

≤ xT (t)PÃ(t)C−1ÃTPx(t)

+ xT (t)ΞCΞx(t),

2uT (x(t))Px(t) ≤ uT (x(t))Cu(x(t))

+ xT (t)PC−1Px(t)

≤ xT (t)ΛCΛx(t)

+ xT (t)PC−1Px(t),

2FT (u)Px(t) ≤ FT (u)PF (u) + xT (t)Px(t).

From the above inequalities and (15), we obtain

V̇ (x) = −2xT (t)D̆Px(t) + xT (t)PĂC−1ĂTPx(t)

+ xT (t)ΞCΞx(t) + xT (t)ΛCΛx(t) + xT (t)P

× C−1Px(t) + xT (t)Px(t) + FT (u)PF (u)

≤ xT (t)
(
PÃC−1ÃTP +

ΞCΞP

α
+

ΛCΛP

α

+ PC−1P + P − 2DP
)
x(t) + FT (u)PF (u)

= λmax

{
PÃC−1ÃT + PC−1 + I − 2D

+ α−1(ΛCΛ + ΞCΞ)
}
xT (t)Px(t)

+ β‖F (u)‖2

= −cV (x) + β‖F (u)‖2. (16)

When t = tk,

V (x(t+k )) = JT
k (x(t−k ))PJT

k (x(t−k ))

+GT (Jk(x(t
−
k )))PG(Jk(x(t

−
k )))

≤ xT (t−k )ρkPρkx(t
−
k )

+GT (Jk(x(t
−
k )))PG(Jk(x(t

−
k )))

≤ λmax(ρkPρk)

α
xT (t−k )Px(t−k )

+GT (Jk(x(t
−
k )))PG(Jk(x(t

−
k )))

= wkV (x(t−k )) + β‖G(Jk)‖2, (17)

where

wk =
λmax(ρkPρk)

α
,

which implies that (11) and (12) hold.

We know that

(lnwk)N(t, s)− (c− λ)(t− s)

≤ (t− s)(�−1 lnwk + λ− c),

where N(t, s) is the number of impulse instants tk in
(s, t]. Combined with (14), we can obtain that (13) is
valid.

In summary, all the conditions of Lemma 1 are
satisfied, which gives us the desired result. �

Proposition 1. If all the conditions in Theorem 1 are
valid and there exist positive constants Δ,M satisfying
a < b, where

a = βΔ2
(
μ2λ−1 + υ2(1− e−λθ)−1

)
,

b = αe−r min
{
ū−1(μM), J̄k

−1
(vM)

}
, (18)

then {R(z∗),R(erz∗)} is a quasi-invariant set pair of (9)
for any z∗ ∈ (a, b].

Proof. For any initial condition x(t0) = x0, the
solution x(t) = x(t, t0, x0) exists at least locally for the
ISDNN (9). Let Ω = [t0, tm) be the maximum existing
interval, where t0 < tm ≤ ∞. Take V (t) = V (x(t)) =
xT (t)Px(t), and from (16) and (17), we have

{
V̇ (x) ≤ −cV (x) + β ‖F (u)‖2, t �= tk,

V (x+
k ) ≤ wkV (x) + β ‖G(Jk)‖2, t = tk.

By using an impulsive-type comparison result
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(Lakshmikantham et al., 1989), we have

V (x(t)) ≤ Φ(t, t0)V (x(t0))

+ β

∫ t

t0

Φ(t, s) ‖F (u(s))‖2 ds

+ β
∑

t0<tk≤t

Φ(t, tk) ‖G(Jk(t
−
k ))‖

2,

where Φ(t, s) is the Cauchy matrix of

{
Φ̇(t) = −cΦ(t), t �= tk

Φ(t+k ) = elnwkΦ(t), t = tk.

From the condition (14), it follows that

Φ(t, s) = e(lnwk)N(t,s)−c(t−s)

≤ e(t−s)(�−1 lnwk−c)

≤ ere−λ(t−s),

for t0 ≤ s ≤ t. Hence, we get

V (x(t))

≤ ere−λ(t−t0)V (x(t0))

+ βer
∫ t

t0

e−λ(t−s) ‖F (u(s))‖2 ds

+ βer
∑

t0<tk≤t

e−λ(t−tk) ‖G(Jk(t
−
k ))‖

2 . (19)

From a < b, there exists a sufficiently small constant
ε > 0 such that z := z∗ − ε < b, which satisfies

z − a > 0. (20)

We claim that if V (t0) ≤ z, then

V (t) ≤ erz, t ≥ t0. (21)

Otherwise, since V (t) is a piecewise continuous function,
there must be a t∗ > t0 such that

V (t∗) ≥ erz, V (t) ≤ erz, t0 ≤ t < t∗. (22)

From (8), (10) and (22) it follows for t0 ≤ t < t∗, that

‖u(x(t))‖ ≤ ū
(
‖x(t)‖

)

≤ ū

α
V (x) ≤ ū

α
(erb) ≤ μM,

‖Jk(x(t))‖ ≤ J̄k
(
‖x(t)‖

)

≤ J̄k
α
V (x) ≤ J̄k

α
(erb) ≤ υM.

From the definition of quantizers, we can easily obtain that

‖qμ(u(x(t))) − u(x(t))‖ ≤ μΔ,

‖qυ(Jk(x(t))) − Jk(x(t))‖ ≤ υΔ (23)

for t0 ≤ t < t∗. From the inequality (2) and λ > 0,

∑

t0<tk≤t

e−λ(t−tk)

≤
∑

t0<tk≤t

e−λ(t−tk)

× (1− e−λ(tk−tk−1))(1 − e−λθ)−1

≤ (1 − e−λ(t−t0))(1− e−λθ)−1. (24)

Combining (19), (20), (23) and (24), we get

V (t∗) ≤ ere−λ(t∗−t0)V (t0)

+ βer
∫ t∗

t0

e−λ(t∗−s) ‖F (u(s))‖2 ds

+ βer
∑

t0<tk≤t

e−λ(t∗−tk) ‖G(Jk)‖2

≤ ere−λ(t∗−t0)V (t0)

+ βer(μΔ)2
∫ t∗

t0

e−λ(t∗−s) ds

+ βer(υΔ)2(1− e−λ(t∗−t0))(1− e−λθ)−1

≤ ere−λ(t∗−t0)
[
z − β(μΔ)2

λ

− β(υΔ)2(1− e−λθ)−1
]

+ er
(β(μΔ)

2

λ
+ β(υΔ)2(1− e−λθ)−1

)

≤ erz,

which contradicts (22). This implies that the assertion of
(21) holds. Assuming ε → 0, from the estimate (21),
we arrive at the solution x(t) ∈ R(erz). The proof is
completed. �

Proposition 2. If all the conditions in Theorem 1 are
valid, then R(b) is the attracting basin and R(era) is the
attracting set of (9). Furthermore, for any ε > 0, all tra-
jectories of (9) that start in R(b) enter R((a+ ε)er) in a
finite time, which is less than or equal to

T := max

{
0,

ln(b− a)− ln ε

λ

}
. (25)

Proof. For any given x0 ∈ R(b), according to Theorem 1,
we obtain V (t) ≤ erb, t ≥ t0. Then ‖u(x(t))‖≤ μM,
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‖Jk(x(t))‖≤ υM. Namely, (23) holds for t ≥ t0. Thus,

V (t) ≤ ere−λ(t−t0)V (x(t0))

+ βer
∫ t

t0

e−λ(t−s) ‖F (u(s))‖2 ds

+ βer
∑

t0<tk≤t

e−λ(t−tk) ‖G(Jk(t
−
k ))‖2

≤ bere−λ(t−t0) + βer(μΔ)2
∫ t∗

t0

e−λ(t∗−s) ds

+ βer(υΔ)2(1− e−λ(t∗−t0))(1− e−λθ)−1

≤ er(b− a)e−λ(t−t0) + era

≤ er(b− a)e−λT + era

≤ (a+ ε)er, t ≥ t0.

Let ε → 0. We get x(t) ∈ R(era), which implies the
conclusion. �

Remark 3. These two properties tell us that there are two
nested invariant regions in SDNNs, allowing all tracks of
the quantization system (9) starting from the larger region
to enter the smaller region in a finite time. However,
it is not sure that further convergence can be achieved.
Then we will adopt an adjustable quantizer to discuss
further whether the system can achieve global asymptotic
stability.

Theorem 2. If all the conditions in Theorem 1 hold, the
quantized range M and quantized error Δ satisfy

β(μΔ)2[λ−1 + (1− e−λθ)−1] < e−2rα(η(μM)), (26)

where η(s) := min
{
ū−1(s), J̄k

−1
(s)

}
∈ K∞. Then

there exists a hybrid quantized input feedback control
scheme guaranteeing the system (9) is globally asymptot-
ically stable.

Proof. For simplicity, we set μ(t) = υ(t). Note that μ is
a piecewise constant function and the parameters given in
(18) are

a(μ) = β(μΔ)2
[
λ−1 + (1 − e−λθ)−1

]
,

b(μ) = e−rα(η(μM)). (27)

From (26), we take

ε(μ) = ε0(e
−rb(μ)− a(μ)) > 0, (28)

where 0 < ε0 < 1. Thus, T given in (25) satisfies

T (μ) =
ln[b(μ)− a(μ)]− ln ε(μ)

λ
>

− ln(ε0)

λ
> 0.

The control law is determined in the stages that
follow.

Stage 1. (Zooming-out) In this stage, take u(x) =
Jk(x) = 0 so that the system (9) becomes open-loop.
Our aim is to make the system state x(t, 0, x0) enter
the quantized control domain by increasing μ. Let τ be
a positive number. Set μ(t) = 1 for [0, τ). For t ∈
[(k − 1)τ, kτ), k ∈ N , we take

μ(t)

=
1

M
η−1(α−1(er(β max

‖z‖,s≤kτ
‖ς(s, 0, z)‖))), (29)

where ς(t, 0, z) is the solution of impulsive system (9)
with u(x) = Jk(x) = 0. For any given x0, there must
be t0 ∈ [(k − 1)τ, kτ) such that

‖x(t0, 0, x0)‖≤ max
‖z‖,s≤kτ

‖ ς(s, 0, z) ‖ .

From (10), (27) and (29), we have

V (x(t0, x, x0)) ≤ β ‖x(t0, 0, x0)‖
≤ e−rα(η(Mμ(t0)))

= b(μ(t0)). (30)

Then, x(t0, 0, x0) ∈ R(b(μ(t0))), and so the system state
enters the quantized control domain. Hence a controller
can effectively control the state.

Stage 2. (Zooming-in) Let u and Jk satisfy the conditions
in (8). Then (9) becomes closed-loop.

For t ∈ [t0, t0 + T0), let μ(t) = μ0 = μ(t0), where
T0 = T (μ0) is given by (25). We know that x(t0) ∈
R(b(μ0)), according to Propositions 1 and 2 with a =
a(μ0), b = b(μ0), ε = ε(μ0) in (27) and (28); we have
x(t) ∈ R(er(b(μ0))) and x(t0 + T0) ∈ R(er(a(μ0) +
ε(μ0)))).

For t ∈ [t0 + T0, t0 + T0 + T1), let

μ(t) = μ1 = Π(μ0), (31)

where T1 = T (μ1) and

Π(μ0) =
1

M
η−1(α−1(e2r(a(μ0) + ε(μ0)))).

In view of (27), we obtain

Π(μ0) = b−1(er(a(μ0) + ε(μ0))). (32)

From 0 < ε0 < 1 in (28), we arrive at

b−1
(
er
(
a(μ0) + ε(μ0)

))

< b−1
[
er
(
a(μ0) +

ε(μ0)

ε0

)]
= u0,
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which implies Π(μ0) < μ0. By (31) and (32), we get

μ(t) = μ1 < μ0, t ∈ [t0 + T0, t0 + T0 + T1).

Hence, we have μ(t0 + T ) < μ(t0). Combining this with
(31) and (32), we have R(b(μ1)) = R(b(Π(μ0))) =
R(er(a(μ0)+ε(μ0))), which means that we can continue
the analysis for t ≥ t0 + T as before. Then x(t0 + T0) ∈
R(b(μ1)), using Propositions 1 and 2, we obtain that
x(t) ∈ R(er(b(μ1))) and x(t0+T0+T1) ∈ R(er(a(μ1)+
ε(μ1))). For t ∈ [t0 + T0 + · · · + Tk−1, t0 + T0 +
· · · + Tk), k ∈ N , let μ(t) = μk = Π(μk−1), where
Tk = T (μk) and

Π(s) =
1

M
η−1(α−1(e2r(a(s) + ε(s))))

= b−1(er(a(s) + ε(s))), s ≥ 0.

Repeating the process, we obtain that R(b(μk)) =
R((a(μk−1) + ε(μk−1))e

r) and hence x(t0 + T0 + · · ·+
Tk−1) ∈ R(b(μk)). Applying Propositions 1 and 2, we
obtain that x(t) ∈ R(erb(μk)) and x(t0+T0+· · ·+Tk) ∈
R((a(μk)+ε(μk))e

r). From 0 < ε0 < 1 in (28), we have

Π(s) = b−1(er(a(s) + ε(s)))

≤ b−1(er(a(s) +
ε(s)

ε0
)) = s,

which implies 0 < Π(s) < s for s ≥ 0. Then μk → 0
as k → ∞, which implies x(t) → 0 as t → ∞ from
Tk > (− ln ε0)/λ > 0. Therefore, the conclusion is easily
obtained. �

Remark 4. In fact, the scaling of μ is performed at t =
t0 + T0, t0 + T0 + T1, . . . , which is not the only set of
time series. We can replace it with any set of time series
t1, t2, . . . satisfying ti+1 − ti ≥ Ti, i ≥ 0. We can also
obtain μ(t) → 0 as t → 0.

Remark 5. Recently, Wang et al. (2016) studied
the stability criteria for impulsive MNNs by constructing
a Lyapunov–Krasovskii-type functional. In order to
improve the practicability of the obtained results, we
consider the bandwidth constraint problem caused by too
many nodes and too much data transmission. We add
quantization control to external inputs and impulses. By
discretely adjusting the quantization controller, we obtain
that ISDNNs are ISS and globally asymptotically stable.

4. Numerical example

Consider the nonlinear ISDNN with nonlinear disturbance
inputs

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −d1(x1(t))x1(t) + a11(x1(t))f1(x1(t))

+a12(x1(t))f2(x2(t)) + u1(x1(t)), t �= tk,

ẋ2(t) = −d2(x2(t))x2(t) + a21(x2(t))f1(x1(t))

+a22(x2(t))f2(x2(t)) + u2(x2(t)), t �= tk,

xi(t
+
k ) = Jik(xi(t

−
k )), k ∈ N+, t = tk,

(33)

where i = 1, 2, fi(x) = tanh(x), and

d1(x1) =

{
1.5, |x1| ≤ 1,

1.1, |x1| > 1,

d2(x2) =

{
1.1, |x2| ≤ 1,

1.5, |x2| > 1,

a11(x1) =

{
0.2, |x1| ≤ 1,

−0.2, |x1| > 1,

a12(x1) =

{
0.25, |x1| ≤ 1,

−0.25, |x1| > 1,

a21(x2) =

⎧
⎪⎨

⎪⎩

1

6
, |x2| ≤ 1,

−1

6
, |x2| > 1,

a22(x2) =

⎧
⎪⎨

⎪⎩

1

8
, |x2| ≤ 1,

−1

8
, |x2| > 1,

We can obtain

D =

(
1.1 0
0 1.1

)

and

Ã =

⎛

⎜⎝

1

5

1

4
1

6

1

8

⎞

⎟⎠ .

Let ui(xi(t)) ≡ 0, Jik(xi(tk)) ≡ 0. Under these
conditions, the system (33) without disturbance input and
impulse effects is stable, which can be seen in Figs. 1–3.

When we consider nonlinear disturbance
inputs and impulsive effects, let ui(xi(t)) =
sin(xi(t)), Jik(xi(tk)) = atan(xi(tk)). We choose
tk − tk−1 = 0.1, so that θ = ρ = � = 0.1. We can see
that the system (33) is unstable when we add impulses
and disturbance inputs in Figs. 4–6.
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Fig. 1. State x1(t) of the ISDNN (33) without external distur-
bances and impulses.
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Fig. 2. State x2(t) of the ISDNN (33) without external distur-
bances and impulses.
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Fig. 3. Phase curves of the SDNN (33) without external distur-
bances and impulses at different initial values.

Fig. 4. Phase curves of the ISDNN (33) with nonlinear external
disturbances and generated impulsive switching at t =
0.1k, k ∈ N , under different initial values.
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Fig. 5. State x1(t) of the ISDNN (33) generates impulsive
switching at t = 0.1k, k ∈ N .

0 0.5 1 1.5 2 2.5 3
t

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

x 1
(t)

Fig. 6. State x2(t) of the ISDNN (33) generates impulsive
switching at t = 0.1k, k ∈ N .
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Now we consider the quantized hybrid input
feedback qμ(ui(xi(t))) and qν(Jik(xi(t))). Choose the
quantizer qμ(z)

qμ(z)

=

⎧
⎪⎨

⎪⎩

μMΔ, z
μ > (M + 0.5)Δ,

−μMΔ, z
μ < −(M + 0.5)Δ,

μΔ[ z
μΔ ], −(M + 0.5)Δ ≤ z

μ ≤ (M + 0.5)Δ,

where M,Δ > 0, [·] is the rounding operation. It can
be seen that M is the quantization range and Δ is te
quantization error of the quantizer according to definition
in Section 2.

Set P = C = I, α = β = 1, ϑ(s) = s2, ρik =
0.9, Li = σi = 1, λ = 0.1, r = 0, i = 1, 2, k ∈ N . After
calculation we get Λ = Ξ = I, c = −1.944, wk = 0.81.
We obtain

(t− s)(�−1 lnwk + λ− c)

= 1×
( ln(0.81)

0.1
+ 0.1 + 1.944

)
= −0.0630 ≤ 0.

We can verify that (14) holds in Theorem 1; then the
ISDNN with quantized input is ISS. This shows that
we can still prove that the system (9) with quantized
measurements is ISS.

Taking M = 2,Δ = 0.1, μ = ν = 1, we can
calculate the parameters a = 1.1050, b = 2, which were
used in Theorem 2. Then from Propositions 1 and 2,
{R(z∗),R(z∗)} is a quasi-invariant set pair of (33) for
any z∗ ∈ (1.1051, 2] and all the trajectories starting in
R(1.1050) approach R (2).

We take the hybrid quantized control policy by
making discrete on-line adjustments of the quantizer
parameters in Theorem 2. We set ūi(s) = s, J̄ik(s) =
s, which implies that (8) holds and η(s) = s. In the
zooming-out stage, the system is open-loop and the zoom
variable follows the formulation (29). When t0 = 0.2375
and μ(t0) = 1.5, x(t0, 0, x0) ∈ R (3) and the system
state enters the quantized control domain. Then the first
control stage is over at t0 = 0.2375. In the zooming-in
stage, the flexible quantizer qμ(ui(x)) and qν(Jik(x))
with adjustable parameters gives

μ(t) = ν(t) = μk = Π(μk)

=
1

M
(a(μk−1) + ε(μk−1))

=
1

M
(ε0b(μk−1) + (1− ε0)a(μk−1)

= 0.95μk−1 + 0.0276μ2
k−1,

t ∈ [t0 + T0 + · · ·+ Tk−1, t0 + T0 + · · ·+ Tk],

where a(μk) = 1.1050μ2
k, b(μk) = 2μk, ε(μk) =
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Fig. 7. State x1(t) of the system ISDNN (33) quantized by ex-
ternal disturbances and impulses.
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Fig. 8. State x2(t) of the system ISDNN (33) quantized by ex-
ternal disturbances and impulses.
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Fig. 9. Phase curves of the system ISDNN (33) quantized by ex-
ternal disturbances and impulses at different initial val-
ues.
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0.95
(
b(μk)−a(μk)

)
with ε0 = 0.95, ε0 = 0.95, a(μk) =

1.1078μk−1 + 0.00076μ2
k−1, b(μk) = 1.9μk−1 +

0.5525μ2
k−1, which implies a(μk) < e−rb(μk), Tk >

− ln(ε0)/λ = 0.5129, satisfying the condition (26).
Figures 7–9 show the asymptotical stability behavior of
quantized impulsive system.

5. Conclusion

By using the concepts of a quasi-invariant set and
attraction, we considered the stability of ISDNNs in the
case of quantization of nonlinear external inputs. Based
on the ISS-Lyapunov function, differential inclusion
theories and some inequality techniques, we obtain the
ISS stability theorem and the global asymptotic stability
theorem for ISDNNs with nonlinear impulsive controllers.

This paper does not discuss the impact of time delay
on the ISDNNs. The time delay will make the system
unstable. Therefore, we can consider the stability and
synchronization of ISDNNs under the time-varying delay
using quantized feedback.
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