
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 2, 117–127
DOI: 10.2478/v10006-008-0011-1

ANALYSIS OF THE RESUME LEARNING PROCESS
FOR SPIKING NEURAL NETWORKS

FILIP PONULAK

Institute of Control and Information Engineering
Poznań University of Technology,

ul. Piotrowo 3a, 60–965 Poznań, Poland
e-mail:Filip.Ponulak@put.poznan.pl

In this paper we perform an analysis of the learning process with the ReSuMe method and spiking neural networks (Ponulak,
2005; Ponulak, 2006b). We investigate how the particular parameters of the learning algorithm affect the process of learning.
We consider the issue of speeding up the adaptation process, while maintaining the stability of the optimal solution. This is
an important issue in many real-life tasks where the neural networks are applied and where the fast learning convergence is
highly desirable.

Keywords: supervised learning, spiking neural networks, parametric analysis, learning window.

1. Introduction

A rapidly growing interest in applications of Artificial
Neural Networks (ANNs) in real-life systems has been
observed in the last decades (Freeman and Skapura, 1991;
Korbicz, Obuchowicz and Uciński, 1994; Kangas and Ko-
honen, 1996; Papik, Molnar, Schaefer, Dombovari, Tu-
lassay and Feher, 1998; ?). The fundamental property
of ANNs spurring this interest is their learning ability.
ANNs can adapt to changes in their environment. From
the engineering point of view, it is desirable to reduce
the time required for the adaptation process, while main-
taining the stability of the optimal state of the network
(Hertz, Krogh and Palmer, 1991). Here we consider this
issue in the context of Spiking Neural Networks (SNNs)
(Gerstner and Kistler, 2002b; Maass and Bishop, 1999)
and a ReSuMe learning method (Ponulak, 2005; Kasiński
and Ponulak, 2005; Ponulak, 2006b).

ReSuMe (or Remote Supervised Method) is a learn-
ing algorithm dedicated for spiking neurons. The method
corresponds to the Widrow-Hoff rule, but also takes ad-
vantage of spike-based plasticity mechanisms such as
Spike-Timing Dependent Plasticity (STDP) (Gerstner and
Kistler, 2002a; Gerstner and Kistler, 2002b). It was
shown that ReSuMe enables effective learning of com-
plex temporal and spatio-temporal spike patterns with a
given accuracy and that the method allows imposing on
the networks the desired input/output behaviour (Kasiński

and Ponulak, 2005). Generalization properties of spik-
ing neurons trained with ReSuMe were demonstrated in
(Ponulak and Kasiński, 2006a). Several applications of
the ReSuMe method were discussed in (Ponulak and
Kasiński, 2005; Ponulak and Kasiński, 2006b; Ponulak,
Belter and Kasiński, 2006).

The goal of this study is to perform a thorough analy-
sis of the ReSuMe learning process and to determine how
the particular adjustable parameters of the ReSuMe algo-
rithm influence the learning convergence. The obtained
results will be evaluated in order to ascertain the optimal
parameter values leading to the fastest learning conver-
gence.

2. Learning algorithm and the investigation
procedure

We consider the ReSuMe learning rule given by the fol-
lowing equation (Ponulak, 2006b):

d
dt

wki(t)=
[
Sd(t) − So(t)

][
a +

∫ ∞

0

W (s)Sin(t−s)ds

]
,

(1)
where Sd(t), Sin(t) and So(t) are the desired, pre- and
postsynaptic spike trains (Gerstner and Kistler, 2002b),
respectively. The constant a represents the so-called
non-Hebbian contribution to the weight changes. The
function W (s) of a time delay s between the correlated

Filip.Ponulak@put.poznan.pl

118 F. Ponulak

spikes is known as a learning window (Gerstner and
Kistler, 2002b). The shapes of W (s) applied in ReSuMe
are similar to the ones used in STDP models and can be
mathematically described in the following form:

W (s) =

{
+A+ · exp (−s/τ+) if s ≥ 0,

−A− · exp (s/τ−) if s < 0,
(2)

with amplitudes A+, A− ≥ 0 and time constants
τ+, τ− > 0 of the positive and negative parts of the
learning window, respectively, see left-hand side pan-
els in Fig. 2. In our analysis we consider the ReSuMe
learning algorithm implemented in the LSM (Liquid State
Machine) network architecture (Maass, Natschlaeger and
Markram, 2002; Natschlaeger, Maass and Markram,
2002). The network consists of a large, recurrent neural
structure NMC (Neural Microcircuit) and a set of read-
out neurons (the output layer). In our study the NMC,
containing 1600 LIF (Leaky-Integrate and Fire, (Gerstner
and Kistler, 2002b)) neurons, is driven with a single input
signal. The outputs of individual NMC neurons are pro-
jected onto a single readout LIF-neuron, considered as the
network’s output and trained to reconstruct the predefined
target spike train (for details on the methods and simula-
tion parameters, see the Appendix).

Now, we investigate how the particular parameters
v = {a,A+, A−, τ+, τ−} of the ReSuMe rule, Eqns. (1)
and (2), influence the learning process.

The experimental procedure is summarized in Ta-
ble 1. According to this procedure, in each experiment we
modify a single, given parameter vi. The range of the pos-
sible values [vmin

i , vmax
i] of vi is chosen to be wide enough

to observe the various qualitative phenomena attributed to
the learning process.

In order to obtain statistically reliable results, the
implemented network is tested on 10 pairs (denoted by
T = {T1, . . . , T10}) of the input and desired output sig-
nals applied to the network for every selected vector of the
ReSuMe parameter values v. The particular signals T are
generated randomly according to the uniform distribution
over a time period of 100 ms.

For each set v and Tj , j = 1, . . . , 10, the learning
process is repeated for 20 epochs. After every learning
epoch m the performance index P (m) is evaluated as a
measure of the error between the desired Sd(t) at the ac-
tual So(t) network output (see Appendix for details). Fi-
nally, a sum Pj =

∑20
m=3 P (m) is calculated over the

last 18 epochs. The sum Pj can be considered as an ap-
proximation of the integral of P (m) over m. Pj provides
quantitative information on the quality of learning and the
speed of convergence. Smaller values of Pj correspond
to the better performance of the learning process. We ob-
served that at the beginning of learning the value of the
performance index P (m) is much more influenced by the
initial distance between the desired and actual output sig-

nals than by the learning process itself. For this reason
we do not consider the first two epochs while computing
Pj . The values of Pj calculated for each training pair Tj

are collected in a set P = {P1, . . . , P10}, and the median
med(P) and standard deviation std(P) of P are found.

The procedure described above is repeated for each
value of vi. Finally, med(P) and std(P) are plotted
against the corresponding values of vi.

The motivation for choosing the described investiga-
tion procedure is twofold. First, we observed that the in-
fluence of the particular parameters on the learning pro-
cess is independent of the other parameters and so we are
allowed to analyse each parameter separately. Second, the
chosen procedure allows us to observe the new phenom-
ena arising in the system under study whenever they occur.
Since not all of these phenomena could be a-priori antici-
pated, some of them could be probably not accounted for
by the optimization criteria if standard optimization tech-
niques were used.

Based on the results of our previous experiments,
we observed that satisfactory results of learning are ob-
tained for the following set of parameter values: a =
1× 10−2, A+ = 4× 10−10, A− = 1× 10−10, τ+ =
2×10−3, τ− =2×10−3. These values are considered as
our initial parameter settings and will be used in all exper-
iments as default values.

3. Results

3.1. Non-Hebbian parameter (a). We begin with
studying the influence of the non-Hebbian parameter a on
the learning process. Suppose for a while that a is the
main factor determining the weight change in (1). In such
a case we can reduce the ReSuMe learning rule (1) to

d
dt

wki(t) ∼=
[
Sd(t) − So(t)

] · a. (3)

According to this equation we note that for the case
of excitatory synapses, where a > 0, the total weight
change induced by the signals So(t) and Sd(t) is positive
as long as the number of spikes in Sd(t) is greater than
in So(t). This weight increase results in a stronger exci-
tation of the postsynaptic neuron and, eventually, leads to
its higher activity. On the other hand, the weight is de-
creased whenever the number of spikes in So(t) is greater
than desired. Opposite effects are observed for the case of
inhibitory synapses and a < 0. There is no weight change
if and only if the numbers of spikes in So(t) and Sd(t) are
equal.

This analysis suggests that the role of a in the Re-
SuMe learning is to set the activity (the instantaneous fir-
ing rate) of the postsynaptic neuron to the level deter-
mined by the desired signal, but without taking into ac-
count a precise timing of particular spikes.

Analysis of the ReSuMe learning process. . . 119

Table 1. Parametric analysis of the ReSuMe learning process. Algorithm of the experimental procedure.

Algorithm of the experimental procedure

Define a set of pairs of training signals: T = {T1, . . . , T10}
Define a set of ReSuMe parameters: v = {v1, . . . , v5}
For all predefined values of vi∈ [vmin

i , vmax
i], with i=1, . . . , 5

For every Tj ∈ T

Train the network with v and Tj for 20 learning epochs m

Compute Pj =
20∑

m=3
P (m) for the performance indices P (m)

Collect a set P = {P1, . . . , P10}
Find median med(P) and standard deviation std(P)

Plot med(P) and std(P) versus vi

In the experiment considered the network is trained
according to the ReSuMe learning rule given by (1), with
a taking evenly spaced values from the range [0, 0.1]. The
results demonstrate (Fig. 1(a)) that the median of the in-
dex P takes the lowest values, corresponding to the best
performance of learning, for a ∈ [0.01, 0.07]. This sug-
gests that too small or too high values of a are not optimal
for learning. Indeed, if we analyse the performance in-
dex P (m) calculated during the training with a taking the
representative values a = {0, 0.025, 0.1, 0.2}, we observe
the following (Fig. 1(b)):

• In the case of training with a = 0, i.e., with a below
the optimal range, P (m) decreases very slowly and
reaches its minimal value, corresponding to obtain-
ing a solution close to the desired one, not before the
20-th learning epoch.

• For a = 0.1, 0.2, a significant jump down of P (m)
occurs already after the first learning epoch. How-
ever, in the consecutive learning epochs P (m) fluctu-
ates around its minimal value, without settling there.
This is a consequence of the too high weight changes
forced by the high values of a.

• In the case of a taken from its optimal range (here
a = 0.025), P (m) decreases quickly enough and
reaches its minimal level already after a few learn-
ing epochs. There exists an epoch ms (here ms=15),
after which no fluctuations occur, and P (m) remains
close to zero, which confirms the stability of the ob-
tained convergent process.

3.2. Amplitudes of the learning window (A+, A−).
In the next experiment we consider the influence of the
amplitudes of the learning window (Eqn. (2)) on the learn-
ing process. We analyse three cases with the amplitude
A− = {0.1A+, 0.5A+, A+} (Figs. 2 (a), (b) and (c),

respectively). We tested the learning performance for A+

taking values from the range [10−11, 10−8]. In all three
cases we observe (right-hand side panels in Fig. 2) that
the index P has the minimum for the values of A+ around
(1 − 3) × 10−10, which suggests that for a given set of
simulation parameters this range of values of A+ is opti-
mal. This demonstrates that too low or too high values of
the learning rate (A+,A−) are not favourable for the good
performance of the learning process.

By comparing the diagrams of P (A+) obtained for
the three cases considered, we note that, generally, the
best learning performance is observed for the case where
A− = 0.1A+ and the worst one is recorded for A− = A+.
This suggests that the influence of the negative part of the
learning windows on the learning process is disadvanta-
geous and that A− should be significantly reduced or even
rejected in order to improve the learning performance.

3.3. Time-constants of the learning window (τ+, τ−).
The influence of the time-constants of the learning win-
dows (τ+, τ−) on the learning performance is considered
under several scenarios.

First, we assume that τ− = τ+ and that both time
constants vary in a range of [0.1, 10]×10−3 s. Under
these conditions the best learning performance is obtained
for τ−, τ+ = [0.6, 1.5]×10−3 s (Fig. 3(b)).

From the definition of exponential learning windows
(Eqn. (2)) it turns out that the effective time range of the
learning window can be considered as [−4τ−, 4τ+]1. Ac-
cording to this remark, we note that the optimal values
of the time constants τ−, τ+ = (0.6 − 1.5) × 10−3s im-
ply the effective range of the learning window equal to
±(2.4 − 6) × 10−3 s.

1 For all arguments s≥ 4τ+ (s≤−4τ−) the value of the learning
window W (s)≤ 0.05·A+ (|W (s)| ≤ |0.05·A−|). In such a case the
influence of the Hebbian factor on the weight changes is negligible.

120 F. Ponulak

Fig. 1. Median and standard deviation of the index P vs. the parameter a (a) and an illustration of the learning process for various
values of a, i.e., the performance index P (m) in the consecutive learning epochs m (b).

If we consider these results and take into account
that the refractory period of the presynaptic neurons is
tref = 3×10−3 s, then we conclude that the best learn-
ing performance was observed in a situation where each
single spike in Sd(t) or So(t) was correlated with at most
one or two spikes at the particular presynaptic inputs.

Next, we search for the optimal ratio between τ+ and
τ−. For this reason we keep τ+ fixed and modify only τ−
in the range [0.1τ+, 8τ+]. We perform three series of sim-
ulations for A−= 0.1A+, A−= 0.5A+ and A− = A+,
respectively (Fig. 4). In all the three cases we observe that
the learning performance deteriorates as the contribution
of the negative part to the learning window increases.

This is particularly evident for A− = 0.5A+ and
A− = A+, where the relationship between P and τ−/τ+

is almost linear. However, even for the case of A− =
0.1A+, where the contribution of the negative part of the
learning window is already insignificant due to the small
value of A−, we still observe the same tendency, i.e.,
the learning performance decreasing with an increase in
τ−/τ+.

These results confirm our previous observation that,
in order to improve the learning performance, it is reason-
able to reduce the contribution of the negative part of the
learning window in the ReSuMe learning algorithm.

3.4. Shape of the learning window. So far our anal-
ysis has been restricted to experiments with the expo-
nential learning window. This choice was motivated
mainly by experimental findings indicating that the expo-
nential function can serve as a good mathematical model
of the synaptic plasticity and of the relationship between
the pre-/postsynaptic firing delays and the synaptic ef-
ficacy changes (Markram, Luebke, Frotscher and Sak-
mann, 1997; Bi, 2002).

On the other hand, it is intriguing to determine to
what extent the shape of the learning window could in-
fluence the convergence of the ReSuMe learning process.

To answer this question here we examine six learning

windows: a rectangular window, two versions of the lin-
ear windows, the original (exponential) window and two
variants of double-exponential windows.

The rectangular and linear windows are examined
mainly to find out whether the mathematical description
of the learning window can be simplified without affect-
ing the convergence of learning. This is an important
issue in the context of possible hardware implementa-
tions of the ReSuMe learning algorithm (Kasiński and
Kraft, 2006; Kraft, Kasiński and Ponulak, 2006).

The double-exponential shape is sometimes sug-
gested as another approximation of learning windows ob-
served in biological synapses. A thorough analysis of
such a shape of the learning window was performed in
the context of STDP processes, e.g., in (Kempter, Gerst-
ner and van Hemmen, 1999; van Hemmen, 2001). Here,
we investigate in particular the applicability of the double-
exponential window to the ReSuMe learning method.

We performed a series of experiments in which we
examined the learning process by implementing the par-
ticular learning windows in the ReSuMe learning rule.

For all learning windows considered the experimen-
tal procedure was identical, i.e., we trained a single neuron
having 1600 inputs. Each synaptic input was assumed to
deliver a single input spike at a randomly chosen time. For
each learning window we used the same target spike pat-
tern to be reconstructed. The training was performed for
40 epochs.

In order to be able to compare the results observed for
the particular learning windows, the parameters were set
in a way to ensure that the integrals of the particular win-
dows over time were in all cases similar. This approach
was motivated by the assumption that the statistical influ-
ence (i.e., for the very large number of spikes) of the two
different learning windows on the given synaptic weight
should be similar if the areas under the particular learn-
ing windows are the same. Thus, if the compared learning
windows can ensure the learning convergence, then we ex-
pect the learning process to have a similar evolution. The

Analysis of the ReSuMe learning process. . . 121

Fig. 2. Median and standard deviation of the P index vs. the
amplitude of the learning window. Three cases are con-
sidered, with the amplitude of the negative part of the
learning window (a) A− = 0.1A+, (b) A− = 0.5A+

and (c) A− = A+. The left-hand panels illustrate the
shapes of the learning windows for the particular cases.

details of the experimental procedure are presented in Ap-
pendix.

In the following we discuss and compare the results
obtained for the particular learning windows.

3.4.1. Rectangular learning window. In the case of
the rectangular learning window it is assumed that the am-
plitude of the weight change is constant as long as the time
delay s between the presynaptic and postsynaptic firings
(or the presynaptic and target firings) falls within some
given time range. The rectangular learning window is de-
scribed by a simple mathematical formula:

W (s) =

⎧⎪⎨
⎪⎩

+A+ if s ∈ [0, τ+],
−A− if s ∈ [τ−, 0),

0 otherwise.
(4)

The learning window is illustrated in Fig. 7(a) (left-
hand side panel). In the diagram of the performance index
P (m) (left-hand side panel of Fig. 7(c)) one can observe
a significant learning improvement at the initial stage of

Fig. 3. Median and standard deviation of the index P as a func-
tion of time constants of the learning window, with
τ− = τ+ (b). The left panel (a) illustrates the shapes
of the learning windows for various values of τ+.

Fig. 4. Median and standard deviation of the index P plotted vs.
particular ratios of the time constants τ−/τ+. Simula-
tions performed with the amplitudes (a) A− = 0.1A+,
(b) A− = 0.5A+, (c) A− = A+. The left-hand side
panels illustrate the shapes of the learning windows for
various values of τ−/τ+.

training (during the first four epochs). However, in the
following epochs, P (m) settles around a certain positive
value and does not converge to zero even if the learning
continues. Indeed, if we compare the resulting spike train
Ŝo(t) at the postsynaptic neuron to the target pattern Sd(t)
(Fig. 7(b), left-hand side panel), we see that all spikes of
Sd(t) are reproduced at the neurons output, yet the preci-
sion of approximation is limited to the width of the learn-
ing window (i.e., to the range [−τ−, τ+]). In order to ex-

122 F. Ponulak

plain this phenomenon, consider a scenario with the single
input, output and target firings at tin, tout and td, respec-
tively (Fig. 5). In this case the synaptic weight is modi-
fied if and only if exactly one of the postsynaptic or target
spikes falls within a time range [(tin−τ−), (tin+τ+)] of
the learning window (see Figs. 5(a) and (b)). The learn-
ing stops as soon as both spikes at tout and td occur in
[(tin−τ−), 0] or [0, (tin +τ+)], since in such cases the
amplitudes of the positive and negative weight changes are
the same and they balance each other (cf. Fig. 5(c)). Al-
ternatively, there is no learning at all if both spikes at tout

and td are outside the learning window. This explains why
the learning process does not fully converge and the pre-
cision of learning is bounded to the width of the learning
window.

3.4.2. Linear learning window, Version 1. We con-
sider two options of the linear learning window. First, we
concentrate on the window defined by the following for-
mula:

W (s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A+ · s

τ+
if s ∈ [0, τ+],

A− · s

τ−
if s ∈ [−τ−, 0),

0 otherwise.

(5)

The shape of the learning window and the results
of training with the use of this window are illustrated in
Figs. 7(a)–(c) (central panels). As could be expected, this
shape of the learning window does not lead to the conver-
gence of learning. Although the performance index ini-
tially decreases, it stays at a reasonably high level as the
learning process continues, indicating poor approximation
of the target pattern (Fig. 7(c), centre). Indeed, the result-
ing spike sequence at the output Ŝo(t) differs evidently
from Sd(t) (Fig. 7(b), centre).

The effect of the analysed learning window on the
weight changes is opposite to what is expected in order to
move the output spike towards to ≈ td (for illustration see
Figs. 6(a) and (b)). This is the reason why this learning
window does not guarantee the convergence of the learn-
ing process.

3.4.3. Linear learning window, Version 2. Here, we
consider another version of the linear window. This time
the maximal or minimal values of W (s) are reached for
s close to zero and the slope of the window’s linear parts
is negative (Fig. 7(a), right). The learning window is de-
scribed by the following formula:

W (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+ ·
(
1 − s

τ+

)
if s ∈ [0, τ+],

A− ·
(
1 − s

τ−

)
if s ∈ [−τ−, 0),

0 otherwise.

(6)

In contrast to the previous example, the learning win-
dow described by (6) implies weight changes that lead
to the convergence of the learning process (Figs.6(c) and
(d)). The analysis of the typical learning result with the
window given by (6) confirms good learning performance
and the stability of the optimal solution (Figs. 7(b) and
(c), right). However, unlike in the case of the exponen-
tial learning window, the convergence cannot be formally
proved (for details, we refer to (Ponulak, 2006a)).

3.4.4. Exponential learning window. We rewrite here
the formula describing the exponential learning window:

W (s) =

⎧⎨
⎩

+A+ · exp
(−s

τ+

)
if s ≥ 0,

−A− · exp
(

s
τ−

)
if s < 0.

(7)

The shape of this window is illustrated in Fig. 7(d)
(left panel). The quality of the learning process and
the learning results are comparable to the ones observed
for the linear learning window given by (6) (compare
Figs.7(e) and (f) (left) and Figs.7(b) and (c) (right)).

Note, that the influence of the linear window in (6) on
the synaptic weights is sharply restricted to the time range
s ∈ (−τ−, τ+) and for any s outside this range there is no
learning effect. By contrast, the exponential window in
(7) covers, in principle, the whole time domain and may
affect the synaptic weights, gradually leading to the con-
vergence even for long delays between the presynaptic-
and postsynaptic- or target spikes.

3.4.5. Double-exponential learning window. Finally,
we consider the double-exponential learning windows

W (s) =

⎧⎪⎨
⎪⎩

+A+ ·
[
exp

(−s
τr+

)
−exp

(−s
τd+

)]
if s ≥ 0,

−A− ·
[
exp

(
s

τr−

)
−exp

(
s

τd−

)]
if s < 0,

(8)
with τr+, τr− and τd+, τd− being the time constants of
the rising and decaying slopes of W (s), respectively. As
usually, the subscript ‘+′ (′−′) is used to describe the pa-
rameters of the positive (negative) part of the window.

In our experiments we consider two cases: the one
with a very short rising slope of the double-exponential
window (Fig. 7(d), centre) and yet another one with a rel-
atively longer rising part of the window (Fig. 7(d), right).

In the first case the following time constants are as-
sumed: τr+ = τr− = 0.14 × 10−3 s and τd+ = τd− =
2 × 10−3 s. From the learning performance diagram we
see that during learning the index P (m) decreases quickly
to zero with only slight fluctuations (Fig. 7(f), centre). The
target spiking pattern Sd(t) is correctly reconstructed at
the output neuron (Ŝo) with a high precision (Fig. 7(e),
middle).

Analysis of the ReSuMe learning process. . . 123

Fig. 5. Learning with the rectangular learning window. The synaptic weights are modified if either td or to falls within the learning
window (a), (b). In other cases, the total weight change equals zero (c), (d).

Fig. 6. Learning with the linear learning windows defined by (5) ((a) and (b)) and by (6) ((c) and (d)). Whenever the target spike at td

precedes the postsynaptic spike at to (as illustrated by the upper panels), a positive total weight change is required to force the
postsynaptic neuron to fire earlier. Contrary (bottom panels), in order to force the neuron to fire later, the weight change should
be negative. By comparing (a)–(d) we observe that the expected weight changes are performed only by the learning window
defined by (6) ((b) and (d)).

124 F. Ponulak

The time constants of the second learning window
are τr+ = τr− =0.3×10−3 s and τd+ = τd− =2×10−3 s.
In this case we observe that the approximation quality is
improved during the first few learning epochs. However,
as the training continues, the performance index P (m) in-
creases, indicating a decline in the approximation quality
(Fig. 7(f), right). We observe that the learning process
does not finally converge and the resulting output signal
Ŝo differs from the target signal Sd(t) (Fig. 7(e), right).

The difference between the learning results observed
in both cases can be explained on the basis of our theo-
retical deliberations presented in (Ponulak, 2006a). Ac-
cording to that analysis we note that the learning conver-
gence relies only on the decaying part of the learning win-
dow. However, if the contribution of the rising part of
the learning window is sufficiently small, then its diverg-
ing effect on the learning process is suppressed by the de-
sired action of the decaying part. This is the case, e.g., for
the first double-exponential learning window presented in
Fig. 7(d) (middle). A thorough analysis of this case re-
vealed that only about 5% of all 1600 presynaptic spikes
fall in the rising part of the learning window, to correlate
with the spikes in So(t) or Sd(t). However, in the case
of the double-exponential window illustrated in Fig. 7(d)
(right), where the rising slope amounts to about 15% of
the total width of the learning window, the contribution of
the rising part in the learning processes increased to 25%.
This affected the learning results substantially, leading to
the lack of convergence.

In this context we see that the double-exponential
learning windows, which are sometimes considered as a
good approximation of the biologically realistic learning
windows observed for STDP, can be successfully applied
to the ReSuMe training only if some conditions on the
window time constants are satisfied.

4. Conclusions

In this paper we presented results of a parametric analysis
of the ReSuMe learning process. The goal of this study
was to determine the influence of individual parameters
on the learning convergence. Our analysis leads to the
following conclusions:

• The role of the non-Hebbian contribution (parameter
a in Eqn. (1) to the ReSuMe learning is to set the
activity (the instantaneous firing rate) of the postsy-
naptic neuron to the level determined by the desired
signal, but without taking into account a precise tim-
ing of the particular spikes (cf. Section 3.1).

• The influence of the negative part of the learning win-
dow W (s) (cf. Eqn. (1)) on the learning process is
disadvantageous. A reduction or even a rejection of

this part of the learning window leads to a signifi-
cant improvement of the learning performance in Re-
SuMe (cf. Sections 3.2 and 3.3).

• The best learning performance was observed when
the time constants of the learning window were set
such that each single spike in Sd(t) or So(t) was cor-
related with at most one or two spikes at the particu-
lar presynaptic inputs. This is the case if the effective
range of the learning window is of the order of the
absolute refractory period of the trained neuron (cf.
Section 3.3).

• The learning convergence is observed only for the
learning windows which are described or can be ap-
proximated well by monotonically decreasing func-
tions of a time distance between the presynaptic and
the postsynaptic or target spikes (cf. Section 3.4).
This observation confirms our previous theoretical
results discussed in (Ponulak, 2006a), where we ap-
plied a formal mathematical approach to investigate
the convergence of learning with ReSuMe.

Acknowledgements

The work was partially supported by the Polish
Ministry of Science and Higher Education, project
no. 1445/T11/2004/27.

References
Bi G.-Q. (2002). Spatiotemporal specificity of synaptic plastic-

ity: Cellular rules and mechanisms, Biological Cybernetics
87: 319–332.

CSIM (2002). CSIM: A neural circuit SIMulator.
The IGI LSM Group, Technical University, Graz,
http://www.lsm.tugraz.at.

Freeman J. A. and Skapura D. M. (1991). Neural Networks
Algorithms, Applications, and Programming Techniques,
Addison-Wesley, Redwood City, CA.

Gerstner W. and Kistler W. (2002a). Mathematical formulations
of Hebbian learning, Biological Cybernetics 87(5–6): 404–
415.

Gerstner W. and Kistler W. (2002b). Spiking Neuron Models.
Single Neurons, Populations, Plasticity, Cambridge Uni-
versity Press, Cambridge.

Hertz J., Krogh A. and Palmer R. (1991). Introduction to the
Theory of Neural Networks, Addison-Wesley, Redwood
City, CA.

Kangas J. and Kohonen T. (1996). Developments and applica-
tions of the self-organizing map and related algorithms,
Mathematics and Computers in Simulation 41(1): 3–
12(10).

Kasiński A. and Kraft M. (2006). The design of a compact LIF-
neuron circuit in FPGA to enable implementation of large-
scale spiking neuron networks with learning capabilities,

http://www.lsm.tugraz.at

Analysis of the ReSuMe learning process. . . 125

(a)

(b)

Sd(t)

Ŝo(t)

0 30 60

t

| | || | |
| | || | |

0 30 60

t

| | || | |
|| | || || || || |

0 30 60

t

| | || | |
| | || | |

(c)

P
(m

)
∈

[0
,8

0
0
]

0 20 40

m

�
�

�

� � � � �
�

� � � � � � �
�
�
�
�
�
� � � �

� �
� � � � � �

�
�
� � � �

�
�

0 20 40

m

�

�

�

�
�
� � � � �

�
�
�

�

�

�

�

�
� �

�

� �
�

�

�

�
� � �

� �

�

� �
�
� �

�

�

0 20 40

m

�
�

�

�

�

�
�
�
�
� � � � � �

�
� �

(d)

(e)

Sd(t)

Ŝo(t)

0 30 60

t

| | || | |
| | || | |

0 30 60

t

| | || | |
| | || | |

0 30 60

t

| | || | |
|| || || | |

(f)

P
(m

)
∈

[0
,8

0
0
]

0 20 40

m

� �

�

�

�
�

�

� � � � � � � � � �
�
� � � � � � �

�
� � � � � � � � � � � � � � �

0 20 40

m

� �
�

�

�

�
�

� � � � � � �
�
� � �

�
� � � � � � �

�
� �
�
� � � � � � � � � � �

0 20 40

m

� �

�

�

�
�
�
� � �

� �
� �
�
� � �

�
� � �

�

�

�

� �
� � �

�
�

�

�
� �
� � �

�
�

Fig. 7. Illustration of the different shapes of the learning windows ((a) and (d)) and their influence on the performance of the learning
process ((b), (c), (e), (f)). Rectangular window ((a), (b), (c), left). Linear window defined by (5) ((a), (b), (c), centre). Linear
window defined by (6) ((a), (b), (c), right). Exponential window ((d), (e), (f), left). Double-exponential windows ((d), (e), (f),
centre and right).

126 F. Ponulak

Proceesings of the International Conference on Artificial
Intelligence and Soft Computing, ICAISC’2006, Warsaw,
Poland, pp. 57–64.

Kasiński A. and Ponulak F. (2005). Experimental demonstration
of learning properties of a new supervised learning method
for the spiking neural networks, Lecture Notes in Computer
Science, Vol. 3696, pp. 145–153.

Kempter R., Gerstner W. and van Hemmen J. L. (1999). Heb-
bian learning and spiking neurons, Physical Review E
59(4): 4498–4514.

Korbicz J., Obuchowicz A. and Uciński D. (1994). Artificial
Neural Networks: Foundations and Applications, Aka-
demicka Oficyna Wydawnicza PLJ, Warsaw. (in Polish).

Kraft M., Kasiński A. and Ponulak F. (2006). Design of the spik-
ing neuron having learning capabilities based on FPGA
circuits, Proceedings of the 3rd International IFAC Work-
shop on Discrete-Event System Design, Rydzyna, Poland,
pp. 301–306.

Maass W. and Bishop C. (Eds.) (1999). Pulsed Neural Networks,
The MIT Press, Cambridge, M.A.

Maass W., Natschlaeger T. and Markram H. (2002). Real-time
computing without stable states: A new framework for
neural computation based on perturbations, Neural Com-
putation 14(11): 2531–2560.

Markram H., Luebke J., Frotscher M. and Sakmann B. (1997).
Regulation of synaptic efficacy by coincidence of postsy-
naptic APs and EPSPs, Science 275(5297): 213–215.

Natschlaeger T., Maass W. and Markram H. (2002). The “liq-
uid computer”, a novel strategy for real-time computing
on time series, Foundations of Information Processing of
TELEMATIK 8(1): 32–36.

Papik K., Molnar B., Schaefer R., Dombovari Z., Tulassay
Z. and Feher J. (1998). Application of neural net-
works in medicine—A review, Medical Science Monitor
4(3): 538–546.

Ponulak F. (2005). ReSuMe—New supervised learning
method for Spiking Neural Networks, Technical Re-
port, Institute of Control and Information Engineer-
ing, Poznań University of Technology. Available at
http://d1.cie.put.poznan.pl/~fp/.

Ponulak F. (2006a). ReSuMe—Proof of convergence, Tech-
nical Report, Institute of Control and Information Engi-
neering, Poznan University of Technology. Available at
http://d1.cie.put.poznan.pl/~fp/.

Ponulak F. (2006b). Supervised Learning in Spiking
Neural Networks with ReSuMe Method, Ph.D. the-
sis, Institute of Control and Information Engineer-
ing, Poznań University of Technology. Available at:
http://d1.cie.put.poznan.pl/~fp/.

Ponulak F., Belter D. and Kasiński A. (2006). Adaptive cen-
tral pattern generator based on spiking neural networks,
Proceedings of EPFL LATSIS Symposium 2006, Dynami-
cal Principles for Neuroscience and Intelligent Biomimetic
Devices, Lausanne, Switzerland, pp. 121–122.

Ponulak F. and Kasiński A. (2005). A novel approach towards
movement control with spiking neural networks, Proceed-
ings of the 3rd International Symposium on Adaptive Mo-
tion in Animals and Machines, Ilmenau, Germany. (Ab-
stract).

Ponulak F. and Kasiński A. (2006a). Generalization Prop-
erties of SNN Trained with ReSuMe, Proceedings of
the European Symposium on Artificial Neural Networks,
ESANN’2006, Bruges, Belgium, pp. 623–629.

Ponulak F. and Kasiński A. (2006b). ReSuMe learning method
for spiking neural networks dedicated to neuroprostheses
control, Proceedings of EPFL LATSIS Symposium 2006,
Dynamical Principles for Neuroscience and Intelligent
Biomimetic Devices, Lausanne, Switzerland, pp. 119–120.

van Hemmen J. (2001). Theory of synaptic plasticity, in F.Moss
and S.Gielen (Eds.), Handbook of Biological Physics,
Neuro-informatics, Neural Modelling, Elsevier, Amster-
dam, Vol. 4, pp. 771–823.

Appendix

Spike train. Let tfm denote the firing time of neuron
m (where f = 1, 2, . . . is a label of each individual
spike emitted by this neuron). Similarly to (Gerstner and
Kistler, 2002b), we define a spike train of a neuron m as a
sequence of the impulses triggered at the firing times:

Sm(t) =
∑

f

δ(t − tfm),

where δ(x) is the Dirac function with δ(x) = 0 for x �= 0
and

∫ ∞
−∞ δ(x) dx = 1.

Neuron model: All neurons considered in the described
simulations were modelled as Leaky-Integrate-and-Fire
(LIF) units (Gerstner and Kistler, 2002b). The membrane
potential um of a neuron is given by

τm
dum

dt
= −(um−Em)+Rm ·

(∑
isyn(t)+ins

)
, (9)

where τm = Cm · Rm is the membrane time constant,
Cm and Rm are the membrane conductance and resis-
tance, respectively, Em is a membrane potential at rest,∑

isyn(t) is the sum of the currents supplied by the par-
ticular synapses entering a given neuron, ins is the sum of
a non-specific background current and a Gaassion random
variable with zero mean and given variance noise. At time
t = 0 the membrane potential is set to uinit. If um exceeds
the threshold voltage ϑ, it is reset to ures and held there for
the length tref of the absolute refractory period.

Model of the synaptic response: We implement a synaptic
response as isyn(t) = w·exp(−τd/t) for each spike which
hits the synapse at time t with an amplitude of w and a

http://d1.cie.put.poznan.pl/~fp/
http://d1.cie.put.poznan.pl/~fp/
http://d1.cie.put.poznan.pl/~fp/

Analysis of the ReSuMe learning process. . . 127

decay time constant of τd. It is assumed that the responses
of all the spikes are added up linearly.

Performance index: In order to quantitatively estimate
the error between the desired and the output spike trains
(Sd(t) and So(t), respectively), we define the perfor-
mance index P (m) as

P (m) =
∫ ∣∣L(

Sd(t)
) − L(So(t))

∣∣ dt, (10)

where, for any spike train S(t), L(S(t)) denotes a lowpass
filtering:

L(S(t)) =
∑

f

exp
(−t + tf

τ

)
·H(

t − tf
)
. (11)

Here H(x) = 0 for x < 0, and H(x) = 1 otherwise; τ is
a filter time constant.

According to (10), the performance index takes on
high values if So(t) and Sd(t) differ significantly, while
it decreases to zero for So(t) = Sd(t).

NMC neurons parameters: C = 0.2 μF, R = 1 MΩ,
tref = 0.003 s, ϑ = −0.057 V, uinit = −0.058 ±1% V,
Em = −0.060 V, ures = −0.062 ±1% V, ins = [0, 5 ·
10−13] A.

Readout neurons parameters C = 1 nF, R = 1 MΩ,
tref = 0.0025 s, ϑ = −0.055 V, uinit = −0.058
±1% V, Em=−0.060 V, ures = −0.062 ±1% V, ins =
[0, 5 × 10−13] A.

Network structure: number of inputs = 1, total number
of neurons in NMC = 1600, number of microcolumns in
NMC = 2, number of outputs (learning neurons) = 1.

Connections from the inputs to the NMC: fraction of the
excitatory connections fexc = 100%, strength of the
synaptic connections w = [0, 2]×10−8, probability of
a connection2: λ = +∞ and Cscale = 10, synaptic delay
d = [0, 0.004] s, synaptic time constant τd = 0.003 s.

Connections within the particular microcolumns: size of
a column: 8×5×20, fexc =75%, w = [−2, 2]×10−8,
probability of a connection: λ = 2.4 and Cscale = 10,
d = [0, 0.004] s, τd = 0.003 s.

Connections from the NMC to the readouts: fexc = 80%,
w = [−2, 2]×10−8, probability of a connection: λ = +∞
and Cscale = +∞, d = 0 s, τd = 0.001 s.

Learning rules (default parameters): non-Hebbian rate of
the weight change a = 0.01, amplitude of the positive part
of the learning windows A+ = 4×10−10, amplitude of the
negative part of the learning windows A− = 1 ×10−10,
time constant of the positive part of the learning windows
τ+ = 0.002 s, time constant of the negative part of the
learning windows τ− = 0.002 s.

Rectangular learning window (cf. Eqn.(4)): a = 0.001,
A+ = 10 ×10−11, A− = 1 ×10−11, τ+ = τ− = 0.006 s.

Linear learning windows (cf. Eqn. 5 and 6): a = 0.001,
A+ = 20 ×10−11, A− = 2 ×10−11, τ+ = τ− = 0.006 s.

Exponential learning window (cf. Eqn. 7): a = 0.001,
A+ = 40 ×10−11, A− = 4 ×10−11, τ+ = τ− = 0.002 s.

Double-exponential learning windows (cf. Eqn. 8): a =
0.001, A+ = 40 × 10−11, A− = 4 × 10−11, rise time
constant τr+ = {14, 30} × 10−5 s, rise time constant
τr− = {14, 30}×10−5 s, decay time constant τd+ = 0.002
s, decay time constant τd− = 0.002 s.

Received: 10 July 2007
Revised: 22 November 2007

2The probability of a synaptic connection from neuron a to neuron
b, and from b to a, is defined as c · exp(−D(a, b)2/λ), where c and λ
are positive constants and D(a, b) is the Euclidean distance between the
neurons a and b. Depending on whether the neurons a and b are excita-
tory (E) or inhibitory (I), the value of c is 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1
(II). The parameter Cscale specifies how to scale the overall connection
probability (see (Maass et al., 2002; CSIM, 2002) for details).

	Introduction
	Learning algorithm and the investigation procedure
	Results
	Non-Hebbian parameter (a)
	Amplitudes of the learning window (A+, A-)
	Time-constants of the learning window (+, -)
	Shape of the learning window
	Rectangular learning window
	Linear learning window, Version 1
	Linear learning window, Version 2
	Exponential learning window
	Double-exponential learning window

	Conclusions

