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A combined conjugate gradient algorithm is introduced for solving unconstrained optimization problems. In the suggested
approach, the conjugate gradient parameter is defined as a combination of PRP (Polak-Ribiére-Polyak) and BRB (Rahali-
Belloufi-Benzine) conjugate gradient parameters. To improve the convergence properties, we have adopted a new inexact
line search technique that fits in with the suggested approach. The proposed line search technique can be useful for other
gradient descent methods. We have established the existence of a step length that meets the new line search conditions. The
generated descent direction and the convergence properties of the suggested approach are studied under the new line search
conditions and the proposed method converges globally under mild assumptions. Our approach is evaluated on various test
functions, and a comparison with similar recent algorithms is carried out. Furthermore, the proposed algorithm is applied
for restoring images with different noise levels.
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1. Introduction
In this study, we are interested in the following
unconstrained optimization problem:

f∗ = min
x∈Rn

f(x), (P)

where f : R
n → R is continuously differentiable.

Numerous practical problems in real-life applications
can be expressed as unconstrained optimization problems
that involve differentiable cost functions (see, Ziadi
and Bencherif-Madami, 2024; 2025; Yousif and Saleh,
2024). The solution of these problems becomes
difficult when their dimensions are high. Scientists
have explored various techniques, such as Newton’s
method, quasi-Newton methods, and conjugate gradient
(CG) methods, to find the most efficient way to solve
a particular problem. The conjugate gradient methods

*Corresponding author

(CG) have become one of the favorite approaches
thanks to their straightforward iterative process and
low memory requirements (see, Chen et al., 2024;
Sulaiman et al., 2024); they are also widely employed in
numerous applications, in particular in image processing
(Khudhur and Halil, 2024; Souli et al., 2025), neural
networks (Saleh, 2023), grid computing (Collignon and
Van Gijzen, 2010), molecular physics (Ziadi et al., 2017)
and statistical modeling (Mehamdia et al., 2025). Starting
from a point x0 ∈ R

n, a sequence of points {xk}k∈N ⊂
R

n is generated by the following recursive scheme:

xk+1 = xk + αkdk, k ∈ N, (1)

where dk is the descent direction and αk is the step length
that ensures that f(xk+1) ≤ f(xk).

The determination of the step length αk is crucial for
ensuring global convergence. Usually, it is determined
using inexact line searches, which are guaranteed to take
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steps that should be neither too long nor too short, such as
the weak Wolfe line search

f(xk + αkdk)− f(xk) ≤ αkδd
t
kgk,

g(xk + αkdk)
tdk ≥ σdtkgk,

or the strong Wolfe line search

f(xk + αkdk)− f(xk) ≤ αkδd
t
kgk,

∣
∣g(xk + αkdk)

tdk
∣
∣ ≤ −σdtkgk,

where 0 < δ < σ < 1. The descent search direction dk is
typically computed by the following iterative formula:

d0 = −g0, dk+1 = −gk+1 + βkdk, k ∈ N
∗,

where βk ∈ R is the conjugate parameter that
characterizes the various conjugate gradient variants.

The most famous classical conjugate gradient
methods include HS (Hestenes and Stiefel, 1952),
FR (Fletcher and Reeves) (Fletcher, 1997), PRP
(Polak-Ribière-Polyak) (Polyak, 1969; Polak and Ribière,
1969), CD (conjugate descent) (Fletcher, 1997), LS (Liu
and Storey, 1991), and DY (Dai and Yuan) (Dai and Yuan,
2001), where their parameter βk is given respectively as
follows:

βHS
k =

gtk+1yk

dtkyk
, βPRP

k =
gtk+1yk

‖gk‖2 ,

βLS
k = −g

t
k+1yk

gtkdk
, βFR

k =
‖gk+1‖2
‖gk‖2 ,

βCD
k = −‖gk+1‖2

gtkdk
, βDY

k =
‖gk+1‖2
dtkyk

,

where yk = gk+1 − gk and ‖ · ‖ denotes the Euclidean
norm in R

n. The DY, CD and FR versions have better
theoretical convergence properties, but practically, they
are less effective. Conversely, the LS, HS and PRP
methods are more efficient in practice, but they may not
always be convergent.

Apart from the six classical methods mentioned
above, other methods have proved their efficiency and
obtained good theoretical convergence properties. Wei
et al. (2006) proposed a competitive CG method that
converges globally under weak Wolfe conditions and for
which βk is

βWYL
k =

gtk+1(gk+1 − ‖gk+1‖
‖gk‖ gk)

‖gk‖2 .

Inspired by the WYL formula, Zhang (2009) suggested a
modification of the βWY L

k as follows

βNHS
k =

‖gk+1‖2 − ‖gk+1‖
‖gk‖ |gtk+1gk|

dtkyk
.

Table 1. Hybrid conjugate gradient methods with convex com-
binations.

Formula References

βhLSDY = λβDY + (1− λ)βLS Liu and Li (2014)

βhHSDY = λβDY + (1− λ)βHS Andrei (2009)

βhHSCD = λβCD + (1− λ)βHS Zheng et al. (2020)

βhLSCD = λβCD + (1− λ)βLS Djordjevic (2017)

This modification is efficient and the algorithm converges
globally under the strong Wolfe conditions. Also,
Hamoda et al. (2016) proposed a CG variant, which has
superior convergence characteristics and whose parameter
βk is defined as

βHRM
k =

gtk+1

(

gk+1 − ‖gk+1‖
‖gk‖ gk

)

θ‖gk‖2 + (1− θ)‖dk‖2

with 0 ≤ θ ≤ 1.
Recently, there have been suggestions for new,

effective conjugate gradient formulas. Rahali et al. (2021)
have introduced a quite efficient CG method where the
conjugate coefficient βk is defined as

βBRB
k =

‖gk+1‖2
‖dk‖2 , (2)

In order to achieve effective performance and
good convergence properties, numerous combinations of
CG methods have been proposed. We gather some
famous hybrid conjugate coefficients based on a convex
combination in Table 1.

Building on the above discussion, in order to
combine a good practical performance and powerful
global convergence properties of both of BRB and PRP
methods, we propose to combine them into a new hybrid
method named hPB (hybrid PRP-BRB). To achieve good
convergence properties, we adopt a new inexact line
search technique where the step length αk meets the
following conditions:

f(xk + αkdk)− f(xk) ≤ αkδd
t
kgk

‖gk‖2
‖dk‖2 , (3)

∣
∣g(xk + αkdk)

tdk
∣
∣ ≤ −σdtkgk

‖gk‖2
‖dk‖2 , (4)

where

σ ∈
(

0,
μ− 1

μ2(μ2 + 1.2)

]

,

with μ > 1 and 0 < δ < σ. Since μ > 1, it follows that
0 < δ < σ < 1.
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The new step length matches the combined
algorithm and the approach converges globally under
mild assumptions. The proposed method inherits the
good practical performance characteristics of BRB and
PRP methods and the algorithm is successfully applied
to a broad set of test functions (with varied analytical
expressions and structures) that range from the simplest
to the hardest, as well as to image processing.

The new hybrid conjugate parameter βhPB
k and the

pseudocode of the hPB algorithm are described in the
next section. Then, in Section 3 we study the descent
direction properties. The convergence analysis and the
global convergence are established in Section 5. The
performance of the suggested approach is presented in the
last section with some conclusions.

2. Proposed hPB (hybrid PRP-BRB)
method

The new hybrid conjugate gradient parameter, βhPB, is
computed as follows:

βhPB
k

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βPRP
k if βPRP

k > 0,

λk β
BRB
k + (1− λk)β

PRP
k if λkβBRB

k

+(1− λk)β
PRP
k > 0

andβPRP
k ≤ 0,

βBRB
k otherwise.

(5)

It is chosen positive, where the hybridization parameter
λk is defined in such a way that the descent direction
dk+1 fulfills the conjugacy condition, that is, dtk+1yk = 0.
Indeed, in the case where

βhPB
k = λk β

BRB
k + (1− λk)β

PRP
k ,

it follows that

dk+1 = −gk+1 + βhPB
k dk, (6)

= −gk+1 + (λk β
PRP
k + (1 − λk)β

BRB
k )dk,

= −gk+1 +

(

λk
gtk+1yk

‖gk‖2

+(1− λk)
‖gk+1‖2
‖dk‖2

)

dk. (7)

By pre-multiplying both the sides of (7) by ytk, it follows
that

ytkdk+1 = −ytkgk+1 +

(

λk
gtk+1yk

‖gk‖2

+(1− λk)
‖gk+1‖2
‖dk‖2

)

ytkdk.

Using the conjugacy condition, it follows that

λk =
ϑk − ψk

φk
, (8)

where

ψk = ‖gk+1‖2‖gk‖2ytkdk,
ϑk = ytkgk+1‖gk‖2‖dk‖2,
φk = ytkgk+1y

t
kdk‖dk‖2 − ψk.

For each iteration k, we set

λk = max

{

0,min

{
ϑk − ψk

φk
, 1

}}

,

and as the search progresses, if for an iteration k ∈ N we
have φk = 0, we set βhPB

k = βBRB
k . The main steps of the

hPB method are sketched in Algorithm 1.

3. Sufficient descent property of hPB
algorithm

Before proving the intended property, we first prove the
following auxiliary result.

Theorem 1. The sequences {gk}k∈N and {dk}k∈N, gener-
ated by the hPB algorithm under the new line search con-
ditions (3) and (4) with σ ∈

(

0, μ−1
μ2(μ2+1.2)

]

and μ > 1,
satisfy

‖gk‖
‖dk‖ ≤ μ, ∀k ∈ N. (9)

Proof. It is clear that in the case where Powell’s restart
criterion holds (i.e., |gtkgk+1| ≥ 0.2 ‖gk+1‖2), the descent
direction dk is defined as dk = −gk and the relation (9)
holds.

Now, if the Powell condition does not hold, we prove
the above relation by induction. For k = 0, the condition
(9) holds since d0 = −g0. Assume that the relation (9)
holds for k ≥ 1, and let us prove it for k + 1. Since

dk+1 = −gk+1 + βhPB
k dk, (10)

by multiplying both the sides of (10) by gtk+1, we obtain

dtk+1gk+1 = −‖gk+1‖2 + βhPB
k dtkgk+1. (11)

On the other hand, we have

∣
∣βhPB

k

∣
∣ ≤ ‖gk+1‖2

‖dk‖2 + 1.2
‖gk+1‖2
‖gk‖2

. (12)

Indeed,
∣
∣βhPB

k

∣
∣ ≤ ∣∣βBRB

k

∣
∣+
∣
∣βPRP

k

∣
∣

≤ ‖gk+1‖2
‖dk‖2 +

‖gk+1‖2 +
∣
∣gtk+1gk

∣
∣

‖gk‖2

≤ ‖gk+1‖2
‖dk‖2 + 1.2

‖gk+1‖2
‖gk‖2

.
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Algorithm 1. The hPB algorithm.
Require: Choose a scalar μ > 1 and the parameters δ

and σ such that 0 < δ < σ < μ−1
μ2(μ2+1.2) . Choose a

scalar ε > 0 sufficiently small to stop the algorithm.
Initialization
Set k = 0 and select a starting point x0 ∈ R

n.
Set g0 = ∇f(x0) and d0 = −g0.

1: while ‖gk‖ ≥ ε do
2: Compute the step legth αk using the new inexact

line search technique (3) and (4).
3: Compute xk+1 = xk + αkdk, gk+1 = ∇f(xk+1).
4: if |gtkgk+1| ≥ 0.2 ‖gk+1‖2 then
5: Set dk+1 = −gk+1 (The restart criterion of

Powell holds).
6: else
7: Set yk = gk+1 − gk.
8: if βPRP

k > 0 then
9: Set βhPB

k = βPRP
k .

10: else
11: Compute φk = ytkgk+1y

t
kdk‖dk‖2 −

‖gk+1‖2‖gk‖2ytkdk.
12: if φk = 0 then
13: Set βhPB

k = βBRB
k .

14: else
15: Compute the hybridization parameter λk

following (8).

16: Set λk = max

{

0,min

{
ϑk − ψk

φk
, 1

}}

.

17: if λkβBRB
k + (1− λk)β

PRP
k > 0 then

18: Set βhPB
k = λβBRB

k + (1− λk)β
PRP
k .

19: else
20: Set βhPB

k = βBRB
k .

21: end if
22: end if
23: end if
24: Compute the descent direction dk+1 = −gk+1+

βkdk.
25: end if
26: Set k = k + 1.
27: end while

Hence, from (11) and condition (4) it follows that

‖gk+1‖2 ≤ ∣∣dtk+1gk+1

∣
∣+
∣
∣βhPB

k

∣
∣
∣
∣dtkgk+1

∣
∣

≤ ∣∣dtk+1gk+1

∣
∣− σ

∣
∣βhPB

k

∣
∣ dtkgk

‖gk‖2
‖dk‖2

≤ ∣∣dtk+1gk+1

∣
∣+ σ

∣
∣βhPB

k

∣
∣
∣
∣dtkgk

∣
∣
‖gk‖2
‖dk‖2

≤ ∣∣dtk+1gk+1

∣
∣+ σ

∣
∣βhPB

k

∣
∣ ‖dk‖‖gk‖ ‖gk‖

2

‖dk‖2

≤ ‖dk+1‖ ‖gk+1‖+ σ |βv
khPB| ‖gk‖

3

‖dk‖
≤ ‖dk+1‖ ‖gk+1‖

+ σ

(

1.2
‖gk‖
‖dk‖ +

‖gk‖3
‖dk‖3

)

‖gk+1‖2 . (13)

Furthermore, since

σ ≤ μ− 1

μ2(μ2 + 1.2)
,

we get

1− σ

(‖gk‖3
‖dk‖3 + 1.2

‖gk‖
‖dk‖

)

≥ 1− σ(μ3 + 1.2μ) ≥ 1− μ− 1

μ
=

1

μ
> 0.

(14)

Dividing both the sides of (13) by ‖gk+1‖ · ‖dk+1‖,
we get

‖gk+1‖
‖dk+1‖ ≤ 1 + σ

(‖gk‖3
‖dk‖3 + 1.2

‖gk‖
‖dk‖

) ‖gk+1‖
‖dk+1‖ ,

which yields

‖gk+1‖
‖dk+1‖

(

1− σ

(‖gk‖3
‖dk‖3 + 1.2

‖gk‖
‖dk‖

))

≤ 1.

Then from (14) it results that

‖gk+1‖
‖dk+1‖ ≤

(

1− σ

(‖gk‖3
‖dk‖3 + 1.2

‖gk‖
‖dk‖

))−1

≤ μ.

The proof is complete. �

Now, we are in a position to prove the sufficient
descent property.

Theorem 2. The sequences {gk}k∈N and {dk}k∈N, gener-
ated by the hPB algorithm under the new line search con-
ditions (3) and (4) with σ ∈

(

0, μ−1
μ2(μ2+1.2)

]

and μ > 1

satisfy

gtkdk ≤ −ξ ‖gk‖2 , ∀k ∈ N. (15)

where ξ > 0.

Proof. In the case where the Powell restart criterion holds
(i.e., |gtkgk+1| ≥ 0.2‖gk+1‖2), it is evident the descent
direction dk is given by dk = −gk and the relation (15)
holds.

In the case where the Powell condition does not hold,
we prove the above relation by induction. Indeed, for k =
0, the search direction is d0 = −g0 . This implies dt0g0 =
−‖g0‖2, and relation (15) holds.

Suppose that (15) is true for k ≥ 1. For k + 1, by
multiplying the two sides of (10) by gtk+1, we get
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dtk+1gk+1 = −‖gk+1‖2 + βhPB
k dtkgk+1

≤ −‖gk+1‖2 +
∣
∣βP owellhPB

∣
∣
∣
∣dtkgk+1

∣
∣

≤ −‖gk+1‖2 + σ

(

1.2 ‖gk+1‖2
‖gk‖2

+
‖gk+1‖2
‖dk‖2

)

· ‖gk‖‖dk‖ ‖gk‖
2

‖dk‖2 ,

(using relations (4) and (12))

≤ −‖gk+1‖2 + σ

(

1.2
‖gk‖
‖dk‖ +

‖gk‖3
‖dk‖3

)

‖gk+1‖2

≤ −‖gk+1‖2
(

1− σ(μ3 + 1.2μ)
)

≤ − 1

μ
‖gk+1‖2 ,

(using relations (9) and (14)).

Then the proof is complete for ξ = 1/μ. �

4. Convergence analysis
Before analyzing the convergence of the proposed
approach, we first show that it is well defined. In the
next theorem, we prove the existence of a step length α
(0 < α <∞) that meets the conditions (3) and (4), where
0 < δ < σ, with σ ∈

(

0, μ−1
μ2(μ2+1.2)

]

and μ > 1.

Theorem 3. Let f be a twice continuously differentiable
function that is bounded below. If gtkdk < 0, then there
exists a strictly positive real value α that meets the condi-
tions (3) and (4).

Proof. Define the following function:

h(α) = f(xk + αdk)− f(xk)− δαgtkdk
‖gk‖2
‖dk‖2

.

Using a standard Taylor expansion, from (9) it results that

h(α) = f(xk + αdk)− f(xk)− δαgtkdk
‖gk‖2
‖dk‖2

=
(

f(xk) + αgtkdk + o(α)
)

− f(xk)− δαgtkdk
‖gk‖2
‖dk‖2

,

≤ α
(

1− δμ2
)

gtkdk + o(α)

≤ α

(

1− μ− 1

μ2 + 1.2

)

gtkdk + o(α) < 0

Furthermore, since f is bounded from below, we
get limα→+∞ h(α) = +∞ and h(0) = 0. Hence, the
function h(·) changes its sign and then there exists a real

value τ > 0 with h(τ) = 0. It is clear that h(α) has
a negative sign over the interval [0, τ ], and its global
minimum cannot occur at the endpoints, since h(0) =
h(τ) = 0. Therefore, there exists α∗ ∈ (0, τ), such that
h(α∗) < 0 and h′(α∗) = 0. Hence

h(α∗) = f(xk + α∗dk)− f(xk)

− δα∗gtkdk
‖gk‖2
‖dk‖2

< 0,

so that

f(xk + α∗dk) < f(x) + δα∗gtkdk
‖gk‖2
‖dk‖2

,

and the first condition (3) holds.
On the other hand, we have

h′(α) = gtk+1dk − δgtkdk
‖gk‖2
‖dk‖2

.

Since h′(α∗) = 0, we deduce that

σgtkdk
‖gk‖2
‖dk‖2

≤ δgtkdk
‖gk‖2
‖dk‖2

= gtk+1dk < 0.

Therefore,

∣
∣gtk+1dk

∣
∣ ≤ −σgtkdk

‖gk‖2
‖dk‖2

.

Thus, the second condition (4) also holds. �

The global convergence property is crucial for any
conjugate gradient method. To establish it, we make the
following assumptions:

Assumption 1. The level set Ω =
{x ∈ R

n| f (x) ≤ f (x0)} is bounded for any starting
point x0.

Assumption 2. The function f is continuously
differentiable and its gradient g satisfies the Lipschitz
condition in some closed neighborhood N of Ω, i.e.,
∃L > 0 such that

‖g(x) − g(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ N . (16)

The above assumptions imply the existence of a real
number Γ ≥ 0 such that

‖g(x)‖ ≤ Γ, ∀x ∈ Ω. (17)

To establish that the hPB algorithm converges
globally (see Theorem 4 below), we need to prove the
following results, which will be needed below.

Lemma 1. Consider the sequences {gk}k∈N, {αk}k∈N

and {dk}k∈N, generated by the hPB algorithm. For some
� > 0, we have

gtkdk ≥ −� ‖gk‖2 , ∀k ∈ N. (18)
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Proof. Multiplying (6) by gk+1, we get
∣
∣dtk+1gk+1

∣
∣ ≤ ‖gk+1‖2 +

∣
∣βhPB

k

∣
∣
∣
∣dtkgk+1

∣
∣ .

Then, from (9) it follows that

∣
∣dtk+1gk+1

∣
∣ ≤ ‖gk+1‖2 + σ

(

1.2
‖gk‖
‖dk‖

+
‖gk‖3
‖dk‖3

)

‖gk+1‖2 ,

≤ (1 + σ
(

1.2μ+ μ3
)) ‖gk+1‖2 ,

which means that

−� ‖gk+1‖2 ≤ dtk+1gk+1 ≤ � ‖gk+1‖2 ,

where� = 1+ σ
(

1.2μ+ μ3
)

. This completes the proof.
�

Next, we state the following important result:

Lemma 2. Under the above assumptions, the sequence
of steplengths {αk}k∈N generated by the hPB algorithm
under the new line search conditions (3) and (4) with σ ∈(

0, μ−1
μ2(μ2+1.2)

]

and μ > 1, satisfies

αk ≥
σ ‖gk‖2

‖dk‖2 − 1

L‖dk‖2 dtkgk > 0, ∀k ∈ N.

Proof. From Theorem 1, it results that

σ
‖gk‖2
‖dk‖2

<
μ− 1

μ2 + 1.2
< 1.

Hence, from condition (4) it follows that

0 <

(

σ
‖gk‖2
‖dk‖2 − 1

)

dtkgk

< dtk(gk+1 − gk) ≤ Lαk‖dk‖2,
which completes the proof. �

Lemma 3. Under Assumption 1, the sequences {gk}k∈N

and {dk}k∈N produced by the hPB algorithm satisfy

∑

k≥0

(gtkdk)
2

‖dk‖2
< +∞. (19)

Proof. Using the condition (3) and relation (18), we have

f(xk)− f(xk + αkdk) ≥ −δαkg
t
kdk

‖gk‖2
‖dk‖2

≥ δαk

�

(gtkdk)
2

‖dk‖2
.

Then we get

δαk

�

(gtkdk)
2

‖dk‖2
≤ f(xk)− f(xk+1).

Let m = min{αk : k ∈ N}. Under Assumption 1,
by summing these inequalities from k = 0 to +∞, we get

δm

�

∑

k≥0

(gtkdk)
2

‖dk‖2
≤
∑

k≥0

δαk

�

(gtkdk)
2

‖dk‖2
< +∞.

and thus (19) holds. �

Now, we are in a position to address the global
convergence of the hPB algorithm.

Theorem 4. Under the above assumptions, the hPB al-
gorithm converges globally in the sense that,

lim inf
k→+∞

‖gk‖ = 0. (20)

Proof. Assume that the assertion (20) does not hold. Then
there exists a positive value r > 0 such that

‖gk‖ > r, ∀k ∈ N. (21)

Letm = min{αk : k ∈ N} andD = max{‖x−y‖ :
x, y ∈ Ω}. From relation (1), it results that

‖dk‖2 =
‖xk+1 − xk‖2

α2
k

≤ D2

m2
.

On the other hand, from (12), (21), (17) and (9) we get

dk+1 ≤ ‖gk+1‖+
∣
∣βhPB

k

∣
∣ ‖dk‖

≤ Γ +
(1.2Γ2

r2
+
μ2Γ2

r2

)D

m
=M.

Hence
∑

k≥0

1

‖dk‖2
= +∞.

But, from (21), (15) and (19) it results that

C2r4
∑

k≥0

1

‖dk‖2
≤
∑

k≥0

C2 ‖gk‖4
‖dk‖2

≤
∑

k≥0

(gtkdk)
2

‖dk‖2
< +∞.

Therefore,
∑

k≥0

1

‖dk‖2
< +∞,

which contradicts the claim (21). Thus, the assertion (20)
is true. �
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5. Computational experiments
Here, we present a series of computational performances
concerning the hPB algorithm, applied to 40 test functions
with 270 test problems, as listed in Table 2 and taken
from (Andrei, 2008), with dimensions ranging from 2 to
100000, as well as on restoring four images with different
noise levels. All the codes are written and implemented
in Matlab version R2018a. In all experiments, the hPB
algorithm is implemented with the setting parameters μ =
1.6, δ = 10−4 and σ = 10−3.

In order to illustrate the fact that the hPB method
performs better by using the proposed inexact line search
(3) and (4), we compare it with hPB-SW (hPB method
using strong Wolfe conditions with δ = 10−4 and
σ = 10−3). Also, to demonstrate the effectiveness
of the suggested approach, we compared it with HRM
(Hamoda et al., 2016) with θ = 0.4, PRP+ (Gilbert
and Nocedal, 1992), PRP (Polyak, 1969), BRB (Rahali
et al., 2021) and NHS (Zhang, 2009). For this comparison,
the same starting point is assigned for each test problem,
and each implementation is considered successful if a
point xk where ‖g(xk)‖∞ ≤ 10−6 is reached within
2000 iterations, with CPU-time less than 500 seconds;
otherwise, the implementation is assigned as failure.

To examine and compare the performances of
the implemented algorithms, we will use a graphical
comparison. Figures 1–4 illustrate the performances of
the methods (according to their CPU times, numbers of
iterations, function and gradient evaluations needed to
reach the stopping criterion) using the performance profile
of Dolan and Moré (2002). The performance of each
method is plotted by a curve that refers to the percentage
of solved problems within a factor of τ . The curve that
is shaped on top corresponds to the code that solves a
majority of the test problems within the given factor τ ;
for more details, see (Dolan and Moré, 2002).

Figures 1–4 illustrate the fact that the hPB
outperforms the others. Specifically, it is faster for
approximately 48% of the test problems and successfully
solves around 96% of them, followed by hPB-sw and
BRB with 95% and 93%, respectively. These outcomes
prove the competitiveness and rapid convergence of the
hPB algorithm in the majority of testing problems.

5.1. Image restoration problems. In optimization
fields, image restoration problems are considered among
the most difficult ones. They aim to restore the original
image from one that has been corrupted by impulse
noise. For this comparison, four test images (Man.png,
Boat.png, Hill.jpg and Bridge.bmp) of size
512 × 512 are chosen to evaluate the effectiveness of
the hPB algorithm against the same variants used in the
previous comparisons. The image quality is assessed by

two factors: the peak signal-to-noise ratio (PSNR ) and its
relative error (Err),

PSNR = 10 log10
M ×N × 2552
∑

i,j(x
r
i,j − x∗i,j)2

,

Err =
‖xr − x∗‖

‖x∗‖ ,

whereM andN are the sizes of the image, xri,j represents
the pixel values of the restored image and x∗i,j denotes
the original pixel values. The setting parameters of the
proponent algorithms are set similarly to the previous test,
and each computation will stop if any of the following
criteria is fulfilled,

Iter > 300 or
|f(xk+1 − f(xk)|

|f(xk)| < 10−4.

Figures 5–7 show the images restored for 30 %, 50%
and 70 % of noise. The performance of each algorithm is
measured by the restored image quality, the elapsed time
and the number of iterations. The numerical outcomes are
reported in Tables 3–5. The algorithm with a high PSNR,
minimal error, with less CPU time, is considered best.

Upon examining the results in Tables 3–5 and
Figures 5–7, it becomes evident that the hPB algorithm
delivers good performance. In fact, as illustrated in
Table 3 and Fig. 5, we can observe that the NHS method
failed to restore images with 30% of noise, whereas the
other methods were successful with a PSNR greater than
25, and the hPB method has the highest PSNR value for
the Man and Boat images. On the other hand, the visual
outcomes of Fig. 6 with 50% of noise show that the NHS
method also failed to remove the noise with a PSNR less
than 25, whereas the PRP+ method failed to restore the
image of Man, while the HRM, hPB, BRB, PRP and
hPB-sw methods succeeded for restoring all the images
and the bold values in Table 4 indicate the superiority of
the hPB method for restoring the images of Man, Boat and
Hill. For 70% of noise, as shown in Fig. 7 and Table 5,
the NHS method failed to restore the original images; the
HRM, PRP+, BRB and hPB-sw methods succeeded to
remove the noise from two images, while the hPB and
PRP methods succeeded in restoring the images of Man,
Boat and Hill, where the highest PSNR value corresponds
to the hPB method.

On the whole, the numerical and visual outcomes
of removing 30%, 50%, and 70% of noise show a
satisfactory performance of the hPB algorithm. Notably,
the bold values in Tables 3–5 highlight the efficiency
of the proposed algorithm, as it produces higher PSNR
values and takes a short time to restore a majority of the
test images.
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Table 2. List of test problems.
Function Dimension n
Extended Maratos 500, 700, 1000, 1500, 2000,4000,9000, 9500, 60000, 10000, 15000
Arwhead 50, 60, 70, 80, 100, 150, 200, 800, 1000, 5000
ENGVAL1 100, 600, 700, 800, 1000, 1500, 1600,1800, 10000
Diagonal 1 2, 4, 10, 100, 1000, 10000, 100000
FLETCHCR 2, 4
Generalized Tridiagonal 1 2, 10, 20, 30, 40, 300, 500, 700, 10000
Diagonal 2 2, 4, 10, 800, 1000, 80000
Extended White and Holst 1000, 2000, 3000, 4000, 5000, 6000
Diagonal 7 500, 700, 1000, 1500, 2000, 7000, 8000
Extended Rosenbrock 10, 20, 30, 100 ,1200, 3000, 4000, 5000
Quadratic QF2 100, 200,1000,5000, 7000, 9000, 10000, 50000,
Diagonal 8 100, 200, 300, 400, 500, 1000, 1500, 2000
Extended Freudenstein and Roth 10, 100, 1000, 4000, 9000, 10000, 20000, 50000, 60000, 80000
Diagonal 3 2, 4, 6, 10, 50, 100, 200, 400, 700
Extended DENSCHNF 10, 100, 10000, 25000, 30000 50000, 70000, 80000, 90000
Perturbed Quadratic 2
POWER 2
QUARTC 2
Extended Himmelblau 4, 6, 8, 10, 9000, 10000
Raydan 1 2
Raydan 2 1000, 4000, 50000,80000
Perturbed quadratic diagonal 2
Extended DENSCHNB 10, 90, 100, 2000, 3000, 4000, 5000, 6000, 7000, 9000
HIMMELBG 2000, 2500, 2700, 3000, 6000, 30000, 50000, 80000
LIARWHD 10, 20, 40, 50, 4000,5000, 5500, 10000, 20000, 80000
Extended quadratic exponential EP1 40000, 50000, 60000, 70000
Diagonal 5 100, 200, 700, 1000, 1500, 2000, 2200, 2500
Generalized Rosenbrock 2, 50, 800, 1000
Extended BD1 4, 800, 900, 2000, 3000, 5000 20000, 40000, 60000, 70000, 80000
Hager 2, 4, 6, 10, 50, 80, 150, 300
NONSCOMP 2, 4, 1000, 5000, 70000
Extended quadratic penalty QP1 4, 6, 8, 10, 50, 100, 700, 1000, 1500
Quadratic QF1 5000, 6000, 8000, 9000, 20000, 50000, 70000, 80000
HIMMELLH 10, 50, 300, 500, 10000,50000, 60000, 80000, 10000
Extended quadratic penalty QP2 40, 60, 70, 200
DIXON3DQ 2, 4, 6, 600
Diagonal 4 20000, 30000, 40000, 50000, 60000, 70000
Extended PSC1 2, 4, 6, 8, 10, 100, 1000,10000
Almost Perturbed Quadratic 2, 4, 6
Extended Tridiagonal 1 6, 10, 20, 30, 80, 90, 100, 150, 300, 500, 700, 1000, 5000, 6000
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Fig. 1. Performance profiles based on CPU time.
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Fig. 2. Performance profiles based on the number of iterations.
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Fig. 3. Performance profiles based on the number of function eval-
uations.
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Fig. 4. Performance profiles based on the number of gradient eval-
uations.

6. Conclusions
In this work, a new hybrid conjugate gradient method,
named hPB (hybrid PRP-BRB), is introduced for
unconstrained nonconvex minimization. To achieve
good convergence properties, we adopt a new inexact
line search technique to determine the step length.
Mathematical results concerning the convergence of the
hPB method are established and the algorithm converges
globally under mild assumptions. The performance
of the algorithm is examined on various test functions
and applied for restoring images with different noise
levels. Moreover, a comparison with similar and
recent algorithms is carried out, and the preliminary
results indicate the robustness and competitiveness of the
suggested approach.
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Fig. 5. Images restored by HRM, NHS, hPB, PRP+, PRP, BRB and hPB-SW subject to 30% salt-and-pepper noise.
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Fig. 6. Images restored by HRM, NHS, hPB, PRP+, PRP, BRB and hPB-SW subject to 50% salt-and-pepper noise.
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Fig. 7. Images restored by HRM, NHS, hPB, PRP+, PRP, BRB and hPB-SW subject to 70% salt-and-pepper noise.
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Table 3. Results of restoring images with 30% salt-and-pepper
noise.

Methods
Images

Man Boat Hill Bridge

Iter 14 14 18 19
HRM CPU 14.4333 16.1088 19.6281 18.3902

PSNR 31.4316 33.5530 34.8439 28.5705
Err 0.055800 0.038858 0.0376 0.075280
Iter 26 26 24 23

NHS CPU 15.7869 14.9272 14.8145 14.4291
PSNR 15.7231 17.5183 17.0234 16.2491
Err 0.3405 0.2462 0.2931 0.3110
Iter 13 17 17 14

hPB CPU 16.5572 11.2373 16.3538 16.4848
PSNR 31.5644 33.7000 34.98430 28.4354
Err 0.054953 0.038206 0.0370 0.076460
Iter 9 14 17 13

PRP+ CPU 11.7255 17.2765 17.4224 12.5381
PSNR 29.8526 32.7850 34.9240 28.3708
Err 0.066923 0.042450 0.0373 0.077031
Iter 11 11 16 14

PRP CPU 16.0896 14.6281 16.4851 15.5467
PSNR 31.3374 33.1674 34.7344 28.5131
Err 0.0564 0.0406 0.0381 0.0757
Iter 13 15 15 14

BRB CPU 17.8876 19.6420 16.0520 17.0935
PSNR 31.4483 32.7617 34.8471 28.5141
Err 0.055693 0.042564 0.0376 0.075770
Iter 13 15 14 15

hPB-SW CPU 18.3206 17.9993 16.6398 19.4814
PSNR 28.5141 31.4483 34.8471 32.7617
Err 0.07577 0.055693 0.0376 0.042564

Table 4. Results of restoring images with 50% salt-and-pepper
noise.

Methods
Images Man Boat Hill Bridge

Iter 19 14 21 14
HRM CPU 31.6329 22.9351 29.2036 21.4267

PSNR 29.0482 30.0439 32.5694 26.2812
Err 0.073418 0.058202 0.0489 0.097982
Iter 31 34 30 30

NHS CPU 24.3502 24.8263 21.1211 23.0874
PSNR 13.4363 15.2070 14.7059 14.1568
Err 0.4430 0.3212 0.3828 0.3957
Iter 19 24 15 18

hPB CPU 26.5356 22.2738 22.325 23.2843
PSNR 29.1751 31.1843 32.6828 26.7130
Err 0.072353 0.051041 0.0483 0.093230
Iter 5 17 20 16

PRP+ CPU 16.5329 22.4427 29.8420 21.0229
PSNR 15.3421 30.9165 32.4165 26.5201
Err 0.355716 0.052639 0.0498 0.095324
Iter 20 17 21 24

PRP CPU 36.9955 24.7400 30.9204 38.2190
PSNR 28.9228 30.8359 32.5124 26.4954
Err 0.0744 0.0531 0.0492 0.0955
Iter 24 17 15 22

BRB CPU 29.8683 21.7964 22.5881 27.3311
PSNR 29.1394 31.1089 30.7900 26.6435
Err 0.072651 0.051485 0.0600 0.093978
Iter 19 24 15 22

hPB-sw CPU 24.5807 22.4704 22.6654 19.7673
PSNR 26.6435 29.1394 30.7900 31.1089
Err 0.093978 0.072651 0.0600 0.051485
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Table 5. Results of restoring images with 70% salt-and-pepper
noise.

Methods
Images

Man Boat Hill Bridge
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