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A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one-
dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of
mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the
harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite
volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the
two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal
is the stress critical point determination for an intramedullary nail.
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1. Introduction

The finite volume method is a popular technique usually
employed to carry out numerical approximations for
conservation laws (see, for example, Kroner, 1997;
Leveque, 2002; Audusse and Bristeau, 2007; Dumbser
and Munz, 2007; Trangenstein, 2009).

In the 1990s, the finite volume method faced
important developments to approximate elliptic and
parabolic problems (see the work of Eymard et al. (2000)
and the references therein), where second-order methods
were designed for a large range of applications.

Recently, a new sixth-order finite volume method
has been proposed for convection diffusion problems
by Clain et al. (2013). The technique is based on
specific polynomial reconstructions used for the fluxes
(Hernández, 2002; Ollivier-Gooch and Altena, 2002; Toro
and Hidalgo, 2009; Toro, 2009; Clain et al., 2011; Diot
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et al., 2011). We extend here the method to the biharmonic
(or bi-Laplace) operator which is, up to our knowledge,
the first attempt to design a finite volume scheme for a
fourth-order differential operator. We restrict ourselves to
the one-dimensional case to provide a simple but relevant
context. We apply the proposed method to an example
motivated by medical equipment modeling which couples
the harmonic and biharmonic operators.

The organization of the paper is the following.
Section 2 is devoted to the harmonic operator, where we
introduce the mesh, the generic finite volume formulation,
and the polynomial reconstruction operator to design the
high-order finite volume scheme. In Section 3, we present
the biharmonic operator case and the corresponding
schemes we designed. Numerical tests are carried out
in Section 4 to assess the scheme’s ability to provide
high-order accuracy both for the harmonic and biharmonic
operators. A practical application of the method in
a simulation of an intramedullary nail is presented in
Section 5.
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Fig. 1. Mesh and notation.

2. Harmonic operator

The harmonic operator is an essential building
block for modeling phenomena such as elasticity,
electromagnetism, and steady-state heat transfer, among
others. In the one dimensional context, the harmonic (or
Poisson) operator equation is

(−λφ′ (x))′ = f(x), x ∈ Ω, (1)

in a domain Ω = (0, L) with L ∈ R
+, where λ > 0

is assumed to be constant and f stands for the source
term. The harmonic equation is equipped with appropriate
conditions on the boundary of the domain. In the present
study we consider the following boundary conditions:

φ(0) = φ� ∈ R, (2a)

φ(L) = φr ∈ R, (2b)

−λφ′(L) = F ∈ R, (2c)

and we will examine two different situations: we prescribe
(i) (2a) and (2b), or (ii) (2a) and (2c).

2.1. Mesh and discretization. To design the finite
volume scheme, we introduce meshes Th of Ω, with h
as the mesh parameter, constituting of I cells Ki =
[xi− 1

2
, xi+ 1

2
], i = 1, . . . , I , of centroid ci, where x 1

2
=

0, xI+ 1
2

= L, xi+ 1
2

= xi− 1
2
+ hi are the interfaces

(cf. Fig. 1) and h is the maximum of the cell lengths.
Integration of Eqn. (1) over cell Ki yields

1

hi

(
Fi+ 1

2
− Fi− 1

2

)
= f̄i, i = 1, . . . , I,

where the fluxes are given by

Fi± 1
2
= −λφ′(xi± 1

2
)

and the mean source term by

f̄i =
1

hi

∫

Ki

f(ξ) dξ.

Let φi be an approximation of the mean value of
φ over Ki and let us gather all the approximations in a

vector Φ = (φi)i=1,...,I . To design a numerical scheme,
we replace the exact fluxes Fi± 1

2
with numerical fluxes

up to a sixth-order accuracy Fi± 1
2
(Φ) depending on the

vector Φ. In the same way, we also approximate the exact
mean source term f̄i by fi using a sixth-order Gaussian
quadrature. The finite volume scheme cast in the residual
form is

Fi(Φ) =
1

hi

(
Fi+ 1

2
(Φ)−Fi− 1

2
(Φ)

)
− fi.

2.2. Polynomial reconstruction operator. We now
turn to the critical point of the design of very high-order
numerical fluxes. The technique proposed by Clain
et al. (2013) for the two-dimensional elliptic problem
is here adapted to the one-dimensional case where local
polynomial approximations of the underlying solution are
evaluated.

In the first stage, we define the stencils associated
with the cells and the interfaces. For any cell Ki, i =
1, . . . , I , we denote by Ŝi the associated stencil composed
of the n closest neighbor cells (excluding cell Ki). In
the same way, we denote by Ŝ 1

2
and ŜI+ 1

2
the stencils

constituted of the n neighbor cells for outer interfaces
x 1

2
= 0 and xI+ 1

2
= L, respectively. The second

stage consists in defining the polynomial reconstructions
based on the entries of the vector Φ associated with
the appropriate stencils. We detail this in the following
subsections.

2.2.1. Polynomial reconstruction on cells. Let i ∈
{1, . . . , I} and φi be an approximation of the mean value
of φ over cell Ki. We define the polynomial conservative
reconstruction of degree d as (see Clain et al., 2013)

φi(x; d) = φi +
d∑

α=1

Ri,α [(x− ci)
α −Mi,α] ,

where we have set Mi,α = 1
hi

∫
Ki

(x − xi)
α dx and

the vector Ri gathers the polynomial coefficients Ri,α,
α = 1, . . . , d. For a given stencil Ŝi and positive weights
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(ωi,j)j=1,...,#̂Si
, we consider the quadratic functional

Êi(Ri) =
∑

j∈̂Si

ωi,j

[
1

hj

∫

Kj

φi(x; d) dx− φj

]2

.

We denote by R̂i the unique vector that minimizes the
quadratic functional and set φ̂i(x; d) as the associated
polynomial function that corresponds to the best
approximation in the least squares sense of the data of the
stencil.

2.2.2. Polynomial reconstruction at the outer inter-
faces. For the left boundary interface x 1

2
, we adapt the

previous polynomial reconstruction in order to obtain the
polynomial φ 1

2
(x; d) as

φ 1
2
(x; d) = φ� +

d∑
α=1

R̂ 1
2 ,α

(x− x 1
2
)α,

where vector R 1
2

gathers the polynomial coefficients

R 1
2 ,α

, α = 1, . . . , d. For a given stencil Ŝ 1
2

and positive
weights (ω 1

2 ,j
)j=1,...,#̂S 1

2

, we consider the quadratic

functional

Ê 1
2
(R 1

2
) =

∑

j∈̂S 1
2

ω 1
2 ,j

[
1

hj

∫

Kj

φ 1
2
(x; d)dx− φj

]2

.

We denote by R̂ 1
2

the unique vector which minimizes

the quadratic functional and set φ̂ 1
2
(x; d) as the

associated polynomial function that corresponds to the
best approximation in the least squares sense of the data
of the stencil.

We proceed in the same way for the polynomial
φ̂I+ 1

2
(x; d) associated with the interface xI+ 1

2
.

2.3. High-order fluxes. Having all the polynomial
reconstructions in hand, we detail the numerical fluxes for
the harmonic operator with respect to the interfaces:

• for an inner interface the flux is given by

Fi+ 1
2
= −λ

φ̂
′
i(xi+ 1

2
) + φ̂

′
i+1(xi+ 1

2
)

2
,

i = 1, . . . , I − 1;

• the flux on the left boundary interface is given by

F 1
2
= −λφ̂

′
1
2
(0);

• the flux on the right boundary interface is given by

FI+ 1
2
= −λφ̂

′
I+ 1

2
(L)

for the condition (2b) or by

FI+ 1
2
= F

for the case (2c).

Since Fi+ 1
2

linearly depends on the vector Φ, the
residual operator Φ → Fi(Φ) is an affine operator.
Gathering all the components of the residual in vector
F(Φ), we obtain an affine operator from R

I in R
I such

that the vector Φ�, a solution of the problem F(Φ) =
0I , provides a constant piecewise approximation. The
solution is very accurate since the reconstruction process
based on the value of the vector Φ� gives polynomial
approximations up to the sixth order. Notice that the
method is matrix-free and the linear problem is solved by
applying a GMRES procedure as explained by Clain et al.
(2013).

3. Biharmonic operator

The biharmonic operator (also called the bi-Laplacian
operator) equation is

(−μψ′′ (x))′′ = g(x), x ∈ Ω, (3)

in a domain Ω = (0, L) with L ∈ R
+, where μ >

0 is assumed to be constant and g is the source term.
The biharmonic equation is equipped with appropriate
conditions on the boundary of the domain. In the present
study we consider the following boundary conditions:

ψ(0) = ψ� ∈ R, (4a)

ψ(L) = ψr ∈ R, (4b)

ψ′(0) = ψ�� ∈ R, (4c)

ψ′(L) = ψrr ∈ R, (4d)

−μψ′′(0) =M� ∈ R, (4e)

−μψ′′(L) =Mr ∈ R, (4f)

−μψ′′′(L) = G ∈ R, (4g)

and will examine three different situations: we prescribe
(i) (4a), (4b), (4c), and (4d), or (ii) (4a), (4b), (4e), and
(4f), or (iii) (4a), (4c), (4f), and (4g).

3.1. Discretization. The mesh and the finite volume
discretization follow as in Section 2.1 and integration of
Eqn. (3) over cell Ki yields

1

hi

(
Gi+ 1

2
−Gi− 1

2

)
= ḡi, i = 1, . . . , I,

where the fluxes are given by Gi± 1
2

= −μψ′′′(xi± 1
2
)

and the mean source term by ḡi = 1
hi

∫
Ki
g(ξ) dξ. We
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replace the exact fluxes on interfacesGi± 1
2

by a numerical
flux Gi± 1

2
(Ψ) up to the sixth-order accuracy based on the

vector Ψ = (ψi)i=1,...,I gathering approximations of the
mean values of ψ. As in the previous section, the exact
mean source term ḡi is approximated by a sixth-order
Gaussian quadrature denoted by gi and the finite volume
scheme cast in the residual form is

Gi(Ψ) =
1

hi

(
Gi+ 1

2
(Ψ)− Gi− 1

2
(Ψ)

)
− gi.

3.2. Polynomial reconstruction operator. A delicate
point is the introduction of the boundary conditions in the
reconstructions. Indeed, one has to handle two conditions
at each outer interfaces, but it is not possible to support the
two conditions on the same function, namely, on functions
ψ̂ 1

2
(x; d) and ψ̂I+ 1

2
(x; d). As a consequence, functions

ψ̂1(x; d) or ψ̂I(x; d) will also support some boundary
conditions to provide an invertible linear system.

3.2.1. Polynomial reconstruction on inner cells.
For cells Ki, i = 2, . . . , I − 1, the reconstructions
are performed exactly as in Section 2.2.1 and provide
polynomial functions ψ̂i(x; d).

3.2.2. Polynomial reconstruction at the outer inter-
faces. To take into account the boundary conditions (4a)
and (4b), we reconstruct the polynomials ψ̂ 1

2
(x; d) and

ψ̂I+ 1
2
(x; d), respectively, as described in Section 2.2.2.

3.2.3. Polynomial reconstruction on the first and
the last cell. We reach the important point where we
shall construct the polynomial functions ψ̂1(x; d) and
ψ̂I(x; d) in order to take into account the boundary
conditions (4c)–(4e) and (4d)–(4f), respectively.

Let ψ1 be an approximation of the mean value of ψ
over cell K1. The conservative polynomial reconstruction
associated with the first cell K1 is

ψ1(x; d) = ψ1 +

d∑
α=1

R̂i,α [(x− c1)
α −M1,α] ,

where the vector R1 gathers the polynomial coefficients
R1,α, α = 1, . . . , d. For a given stencil Ŝ1 and positive
weights (ω1,j)j=1,...,#̂S1

, we shall consider two kinds
of functionals depending of the boundary condition we
shall apply. To introduce the condition (4c), the quadratic
functional becomes

Ê1(R1) =
∑

j∈̂S1

ω1,j

[
1

hj

∫

Kj

ψ1(x; d) dx− ψj

]2

+
[
ψ′

1(0)− ψ��

]2
,

(5)

and in order to consider the condition (4e) we set

Ê1(R1) =
∑

j∈̂S1

ω1,j

[
1

hj

∫

Kj

ψ1(x; d) dx− ψj

]2

+

[
ψ′′

1(0) +
M�

μ

]2
.

(6)

We denote by R̂1 the unique vector which minimizes
the quadratic functional (5) for the boundary condition
(4c) and the quadratic functional (6) for the boundary
condition (4e), and set ψ̂1(x; d) as the associated
polynomial function.

We proceed in the same way for the polynomial
ψ̂I(x; d) associated to the last cell KI .

3.3. High-order finite volumes scheme. Having in
hand all the polynomial reconstructions, we compute the
fluxes for the biharmonic operator:

• for an inner interface, the flux is

Gi+ 1
2
= −μ

ψ̂
′′′
i (xi+ 1

2
) + ψ̂

′′′
i+1(xi+ 1

2
)

2
,

i = 1, . . . , I − 1,

• on the left boundary, one has

G 1
2
= −μψ̂

′′′
1
2
(0),

• for the right boundary, we prescribe

GI+ 1
2
= −μψ̂

′′′
I+ 1

2
(L)

for the condition (4b) or

GI+ 1
2
= G

for the condition (4g).

4. Numerical results

Quantitative and qualitative assessments of the scheme’s
robustness and accuracy both for the harmonic and the
biharmonic operator are addressed in this section. To
evaluate the error between the exact solution and the
numerical solution, we introduce the L∞ norms

E∞(I) =
I

max
i=1

|φi − φ̄i|,

E∞(I) =
I

max
i=1

|ψi − ψ̄i|,

where φ̄i and ψ̄i are the exact mean values of φ and ψ,
respectively, over cell Ki. The orders of convergence
based on the L∞-norms, given by

O∞(I1, I2) =
| log(E∞(I1)/(E∞(I2))|

| log(I1/I2)|
,
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are also provided. The notation Pd(n) means that we
employ d-degree polynomial reconstructions involving
n cells stencils. The weights we will consider are
summarized with the notation ωi,j = q|r, q, r ∈ R

+,
with the following meaning: if i and j are contiguous
cells, then ωi,j = q; otherwise, ωi,j = r (this notation
extends in a natural way for the cases ω 1

2 ,j
andωI+ 1

2 ,j
). In

the present study, all the computations have been carried
out with weights 3|1 for stability reasons. Moreover, to
reduce the computational effort, a preconditioning matrix
is used as proposed by Clain et al. (2013) for steady-state
problems as well as when dealing with time-dependent
implicit schemes.

Example 1. We first assess the numerical scheme’s
accuracy for the harmonic operator equipped with the
boundary conditions (2a) and (2b). Taking f(x) = ex and
λ = 1, the exact solution is φ(x) = −ex + (e− 1)x+ 1.
In Table 1 we report the errors and convergence rates
between the numerical solution and the exact one. The
effective second-, fourth-, and sixth orders of convergence
are achieved when dealing with the P1(2), P3(4),
and P5(6) reconstructions, respectively. Notice that
the sixth-order scheme exceeds the IEEE-754 standard
capacity of double for the 160 cells mesh due to the very
high accuracy of the reconstruction technique. �

Example 2. Another example for the harmonic
operator concerns the Dirichlet–Neumann boundary
conditions (2a) and (2c). Taking f(x) = ex and λ = 1,
we get F = 1 and the exact solution becomes φ(x) =
−ex + (e − 1)x+ 1.

As in the previous case, Table 2 shows that
the scheme achieved effective second-, fourth-, and
sixth-orders of convergence for the P1(2), P3(4), and
P5(6) polynomial reconstructions, respectively. Notice
that Tables 1 and 2 provide similar errors and that the
IEEE-754 standard limitation is reached for too finer
meshes. �

Example 3. We now turn to the biharmonic operator.
Taking μ = 1 and g(x) = ex, the exact solution becomes
ψ(x) = −ex−(e−3)x3−(5−2e)x2+x+1. Thanks to the
exact solution, we prescribe the boundary conditions (4a),
(4b), (4c), and (4d).

Table 3 reports the convergence orders and the
scheme’s accuracy for the P3(4), P5(6), and P7(8)
polynomial reconstructions. We observe some differences
with respect to the harmonic operator. For example,
the scheme hardly achieved an effective sixth-order
convergence rate with the fifth-degree polynomial
reconstruction (slightly larger than 5) in contrast to the
harmonic case, which delivers the optimal order. Using a
seventh-degree polynomial reconstruction, the IEEE-754
standard limitation is, one more time, patent. �

Example 4. We deal with a similar situation taking
μ = 1 and g(x) = ex, but Neumann conditions are
now prescribed. The exact solution is ψ(x) = −ex +(
e−1
6

)
x3 + x2 +

(
5e−11

6

)
x + 1, and we consider the

approximation of the biharmonic operator equipped with
the boundary conditions (4a), (4b), (4e), and (4f).

In Table 4 we display the errors and convergence
orders. Clear differences appears with respect to the
former case. The scheme only reached sixth-order
accuracy with the P7(8) reconstruction. Unlike the
harmonic operator, the convergence orders for the
biharmonic operator differ with the choice of the boundary
conditions. Comparisons between Tables 3 and 4
emphasize such differences. As an example, the P3(4)
reconstruction achieves an effective third-order accuracy
for Example 3, whereas the same reconstruction only
provides a second-order accuracy for Example 4. �

Example 5. The last test we address concerns
the biharmonic operator equipped with the boundary
conditions (4a), (4c), (4f), and (4g). The exact solution
is ψ(x) = −ex +

(
e−1
6

)
x3 + x2 + x+1 with g(x) = ex,

μ = 1, and G = 1.
Errors and convergence rates are shown in Table 5,

where we observe effective second-, fourth-, and sixth
orders of convergence for the P3(4), P5(6), and P7(8)
reconstructions, respectively. The high preconditioning
number (no preconditioning matrix has been employed in
the numerical simulations) associated with the IEEE-754
limitation is responsible for the low threshold of the error
saturation (around 10−10). �

5. Study case

Numerical simulation of the intramedullary nail stress (a
metal rod used to treat fractures of long bones of the body
such as the femur or the tibia) is an interesting example,
where one has to couple the harmonic and biharmonic
operators. The device attempts to stabilize and align the
fracture until full consolidation of the bone submitted to
internal stresses deriving from the traction or pressure
applied on the bone.

5.1. Model. In Fig. 2 (Ramos and Simoes, 2009), four
different types of femoral fractures and the application of
an intramedullary nail are shown. As a test case, we shall
consider the first two configurations displayed in Fig. 2.

We aim to numerically determine the stress critical
point (or the maximum stress point) of an intramedullary
nail since rupture occurs when the stress exceeds the
ultimate tensile strength of the material. Such a prediction
is of great importance to design robust and resistant
medical devices to avoid rupture under normal situations.
For the sake of simplicity, we represent the body of
the intramedullary nail by a rectangle, as displayed in
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Table 1. Results for Example 1.

I
P1(2) P3(4) P5(6)

E∞ O∞ E∞ O∞ E∞ O∞

20 6.92E−03 — 2.14E−06 — 5.18E−09 —

40 1.82E−03 1.93 1.44E−07 3.89 8.88E−11 5.86

80 4.66E−04 1.96 9.39E−09 3.94 1.46E−12 5.93

160 1.18E−04 1.98 5.99E−10 3.97 7.83E−14 4.22

Table 2. Results for Example 2.

I
P1(2) P3(4) P5(6)

E∞ O∞ E∞ O∞ E∞ O∞

20 5.70E−03 — 1.66E−06 — 2.85E−09 —

40 1.50E−03 1.93 1.07E−07 3.96 4.18E−11 6.09

80 3.83E−04 1.97 6.77E−09 3.98 6.80E−13 5.94

160 9.69E−05 1.98 4.26E−10 3.99 1.89E−13 1.85

Table 3. Results for Example 3.

I
P3(4) P5(6) P7(8)

E∞ O∞ E∞ O∞ E∞ O∞

20 9.75e−05 — 7.32e−08 — 5.23e−10 —

40 1.21e−05 3.01 2.11e−09 5.11 4.50e−12 6.86

80 1.42e−06 3.10 6.79e−11 4.96 5.65e−14 6.31

160 1.49e−07 3.25 1.78e−12 5.25 6.08e−13 —

Table 4. Results for Example 4.

I
P3(4) P5(6) P7(8)

E∞ O∞ E∞ O∞ E∞ O∞

20 8.02E−04 — 3.04E−06 — 1.88E−08 —

40 1.94E−04 2.05 1.94E−07 3.97 3.04E−10 5.95

80 4.75E−05 2.03 1.23E−08 3.98 1.92E−11 3.98

160 1.17E−05 2.02 7.71E−10 4.00 4.17E−11 —

Table 5. Results for Example 5.

I
P3(4) P5(6) P7(8)

E∞ O∞ E∞ O∞ E∞ O∞

20 3.49e−03 — 1.54e−05 — 8.98e−08 —

40 9.11e−04 1.94 1.07e−06 3.84 1.60e−09 5.81

80 2.32e−04 1.97 7.05e−08 3.93 3.60e−10 2.16

160 5.85e−05 1.99 8.15e−09 3.11 1.29e−10 1.48
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Fig. 2. Femoral fractures and the use of intramedullary nails.

Fig. 3. Usually, intramedullary nails have a ring-shaped
cross-section and are made of stainless steel or titanium.
The body has a small curvature, which we shall assume
null in the present study, leading to a straight beam as the
domain. We also state that there is a single resultant force
F0 in the upper screw and there is no rotational loads (cf.
Fig. 3). We assume that the left edge of the intramedullary
nail is fixed with two screws while two forces, F1 and
F2, resulting from the decomposition of the force F0

following the two axes are applied on the opposite edge.
A bending momentM is also prescribed on the right edge
(cf. Fig. 3). In Fig. 4, the simplified unidimensional
geometry we shall deal with is sketched out, where the
employed forces and moment are represented.

Fig. 3. Body of the intramedullary nail (bounded by a rectangle)
and forces.

We briefly present the model where the two operators
are coupled. Since there is no load in the z-direction and,
therefore, the z-component of the stress vector vanishes,
we only compute the stresses in the xOy plane and the
two-dimensional Cauchy stress tensor [T ] is given by

[T ] =

[
σx τxy

τyx σy

]
,

where σ for the normal stress while τ for the shear
stress. We neglect τxy and τyx due to their small influence

Fig. 4. Schematic representation of the intramedullary nail and
forces.

(Branco, 2011), whereas σx and σy derive from Hooke’s
law for an isotropic material and are given by

σx =
E

(1 + υ)(1− 2υ)
[(1− υ)εx + υ(εy + εz)] (7)

and

σy =
E

(1 + υ)(1− 2υ)
[(1− υ)εy + υ(εx + εz)] , (8)

with E being Young’s modulus and υ Poisson’s ratio,
while εx, εy, and εz stand for the strain components in
the x-, y-, and z-direction, respectively. Provided that
εy = εz = −υεx, we deduce that σy = 0.

Let u = u(x) and v = v(x) denote the horizontal
and vertical displacements of the neutral axis of the
beam. We assume that each cross-section of the beam
remains orthogonal to the neutral axis (Euler–Bernoulli
beam theory for small strains) such that the angular
displacement of the cross-section is given by dv/dx.
Therefore, the strain εx in the xOy plane writes

εx(x, y) =
∂u(x)

∂x
− ∂2v(x)

∂x2
y. (9)

Let us consider a ring-shaped section beam of length L,
where Di and Do are the inner and the outer diameter,
respectively, i.e., x ∈ [0, L] and y ∈ [−Do/2,−Di/2] ∪
[Di/2, Do/2]. One has to determine u and v to compute
the strain component εx, and then to compute the stress
component σx with Eqn. (7).

5.2. Elastic beam theory. We now introduce
mathematical models to compute the unknowns u and v.
The bending phenomenon occurs when an external load is
applied perpendicularly to the longitudinal axis, whereas
the tensile occurs when an external load is applied in the
same direction as the longitudinal axis. It results that the
bending to a vertical displacement of the beam while the
tensile to a horizontal one. Since the total displacement
is the sum of the displacements caused by each body
force apart (mechanical superposition principle), we split
the intramedullary nail problem into two subproblems:
the tensile problem and the bending one. The first one
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deals with the load F1 associated with the horizontal
displacement u and the second one with the loads F2

and Mr associated with the vertical displacement v.
According elasticity theory, the tensile problem becomes

(−EAu′(x))′ = 0,

where A is the cross-sectional area of the beam. The
equation is equipped with the boundary conditions

u(0) = 0,

−EAu′(L) = F1.

This problems is a specific case of the harmonic operator,
where λ = EA, φ = u, f = 0, F = F1, and φ� = 0.

On the other hand, according to the Euler–Bernoulli
theory, the bending problem is

(−EIv′′(x))′′ = g,

where I stands for the second moment of area relatively
to its longitudinal axis and perpendicular to the bending
plane (in the case of a ring-shaped cross-section, the
second moment of area is given by I = π

16 (D
2
o − D2

i )).
The function g is the vertical gravity applied along the
x-axis, which we shall neglect in this practical application.
The equation is equipped with the boundary conditions

v(0) = 0,

v′(0) = 0,

−EIv′′(L) =M,

−EIv′′′(L) = F2.

This problems is a specific case of the biharmonic
operator, where μ = EI , ψ = v, g = 0, G = F2, ψ� = 0,
and ψ�� = 0.

To perform the numerical simulation, we consider a
stainless steel intramedullary nail with 20 cm of length,
5 mm of inner diameter, 11 mm of outer diameter, and
the upper screw length of 5 cm. Young’s modulus and
Poisson’s ratio for stainless steel are 200 GPa and 0.3,
respectively. According to Barreira et al. (2008), for a
daily physical activity such as walking down stairs and for
a person weighing 70 kg, the maximum force applied in
the femur head is about 1784 N with a direction shifted
13◦ from the cortical plane. Assuming that 50 % of
this force is supported by the intramedullary nail, we
evaluate F1 = 869.15 N, F2 = 200.65 N and M =
26.85 N m. We considered a mesh of 80 cells and a
fifth-degree polynomial reconstruction both for the tensile
and the bending. Figure 5 shows the stress field of the
longitudinal section of the intramedullary nail body. The
stress critical point is located in the upper-right corner of
the longitudinal section with a stress of −436.8 MPa. The
negative value means a compressive stress.

6. Conclusions

We presented an adaptation of the very high-order finite
volume scheme introduced by Clain et al. (2013) for
one-dimensional harmonic and biharmonic operators,
where a specific discretization for each of these operators
should be considered in order to obtain a sixth order of
convergence. Numerical simulations have been carried
out to assess the method’s efficiency to provide a scheme
with sixth order convergence. An application in the
elasticity context has also been proposed to show that
the presented method may be a future alternative to the
classical finite element method.
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