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This paper considers parameter estimation of superimposed exponential signals in multiplicative and additive noise which
are all independent and identically distributed. A modified Newton–Raphson algorithm is used to estimate the frequencies
of the considered model, which is further used to estimate other linear parameters. It is proved that the modified Newton–
Raphson algorithm is robust and the corresponding estimators of frequencies attain the same convergence rate with Least
Squares Estimators (LSEs) under the same noise conditions, but it outperforms LSEs in terms of the mean squared errors.
Finally, the effectiveness of the algorithm is verified by some numerical experiments.
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1. Introduction

We consider the following model of superimposed
exponential signals in multiplicative and additive noise:

y(t) =
p∑

k=1

ξk(t)ei(ωkt+ϕk) + ε(t),

t = 1, 2, . . . , N, (1)

where i =
√−1, ωk

,s and ϕk
,s are unknown frequencies

lying strictly between 0 and 2π, and ωk
,s are distinct.

Multiplicative noise {ξk(t)} is a sequence of independent
and identically distributed (i.i.d.) real random variables
with mean μk �= 0 and finite variance. Additive
noise {ε(t)} is a sequence of i .i .d . complex random
variables with mean zero and finite variance σ2

0/2 for
both the real and imaginary parts that are assumed to be
independent. The multiplicative and additive noise are
mutually independent. The number of components p is
assumed to be known in advance. Since the frequencies
are the nonlinear parameter harder to be estimated
compared with the linear parameters, in this paper we
mainly consider the estimation of frequencies ωj , given

a sample of size N , namely, y(1), y(2), . . . , y(N). The
linear parameters are estimated thereafter.

This is an important problem in time series analysis
and statistical signal processing. It has been studied
intensively in the last twenty years, when the signals
are only contaminated by the additive noise or signals
with constant amplitude. Many iterative and non-iterative
procedures were developed to estimate the frequencies of
the complex model or its corresponding real model very
efficiently. It is known that the Least Squares Estimators
(LSEs) are statistically efficient for the estimation of
linear and nonlinear parameters (Jennrich, 1969) and have
the best convergence rate for the frequencies and other
linear parameters, which are Op(N−3/2) and Op(N−1/2),
respectively (Kundu, 1997; Kundu and Miltra, 1999).
Some of the iterative methods aimed at finding LSEs
are the approaches of Bressler and MaCovski (1986),
Hwang and Chen (1993), Kannan and Kundu (1994),
as well as Li and Stoica (1996). Some non-iterative
methods, including those of Tufts and Kumaresan (1982),
Roy and Kailath (1989), Quinn (1994), as well as
Kundu and Mitra (1995), are robust and efficient for the
estimation of the small sample size condition. There
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are also some high-resolution methods, for example, the
correlation based hybrid method (Zhang et al., 1994),
the cumulant based method (Sadler et al., 1995; Zhang
and Wang, 2000), or the linear prediction method (Chan
and So, 2004), for estimating the frequencies. However,
the convergence rate of the frequency estimator for these
methods is usually lower than Op(N−3/2).

It is observed that multiplicative noise may also
occur in a variety of applications (see the works of
Van Trees (1971, Chapter 1), Dwyer (1991), Besson
and Castanie (1993), Swami (1994), Giannakis and
Zhou (1995), Ghogho et al. (1999) or Prasath (2011)
and the references therein) or, in other words, the
received signals may be subjected to random amplitude
modulation, which can be attributed, but is not limited
to, the fading of communication channels, illuminance
and reflectance modeling in image processing, reflection
from scintillating targets, and Doppler spreading caused
by changing orientations of nonpoint targets. Several
methods have been suggested to estimate the parameters
of superimposed exponential signals in the presence of
multiplication and additive noise, such as cyclic statistics
methods (e.g., Giannakis and Zhou, 1995; Zhou and
Giannakis, 1995; Ghogho et al., 1999) and higher order
spectra methods (e.g., Dwyer, 1991; Besson and Castanie,
1993; Swami, 1994; Zhou and Giannakis, 1994).

It is known that the noise has much influence
on the performance of the algorithm (Gawron et al.,
2012). Cyclic statistics based estimators are asymptotic
equivalent to LSEs (Zhou and Giannakis, 1995); however,
the higher the order of the cyclic statistics, the larger the
sample size required to obtain a given level of precision
for parameter estimation while the low order cyclic
statistics based estimator is less accurate. It is necessary
to find a computationally efficient algorithm which is also
equivalent to LSEs in terms of statistical performance.
It was observed that general purpose iterative algorithms
such as Gauss–Newton (Hartley, 1961; Koko, 2004) and
Newton–Raphson (Bloomfield, 1976; Ypma, 1995) take
a long time to converge to the true parameter value or
converge to the local maxima or minima (Osborne and
Smyth, 1995).

Recently, Bai et al. (2003) as well as Nandi and
Kundu (2006) proposed a seven-step iterative algorithm
and a three-step iterative algorithm to estimate the
frequencies of superimposed signals in additive noise,
respectively. It is shown that the two estimators both attain
the convergence rate of LSEs and are both consistent
and computationally efficient. The greatest advantage of
these two algorithms lies in that they make full use of
the inner relationship between the statistics for iteration
and the parameters to raise the accuracy of the estimators
iteratively, thus only finite and fixed steps are needed to
converge.

Kundu et al. (2011) proposed a modified

Newton–Raphson algorithm to estimate the frequencies of
superimposed exponential signals (real model) in additive
noise, which was proved to be also LSE equivalent and
computationally efficient. It is interesting to observe that
the algorithm can be guaranteed to converge in finite
iterative steps by proper step factor modification.

It is known that Asymptotic Least Squares
Estimators (ALSEs) are equivalent to LSEs in the
estimation of frequencies in the aspect of asymptotic
distribution, under the additive noise condition. However,
ALSEs are simpler and easier to be implemented in
practice (Bai et al., 2003; Nandi and Kundu, 2006).
But to the best of the authors’ knowledge nowhere, has
the Newton–Raphson based iterative procedure for the
ALSEs of the frequencies for a superimposed exponential
model with both multiplicative and additive noise been
considered. It is known that LSEs for the frequencies of
superimposed signals in multiplicative and additive noise
have the same convergence rate with that in only additive
noise (Ghogho et al., 1999; Peng et al., 2009). However, it
is more difficult to obtain an LSE or an ALSE equivalent
estimator in multiplicative noise than in only additive
noise. Stimulated by the works of Bai et al. (2003),
Nandi and Kundu (2006) as well as Kundu et al. (2011),
in this paper we employ a modified Newton–Raphson
iterative procedure similar to that of Kundu et al. (2011)
to estimate the frequencies of superimposed exponential
signals in the presence of both multiplicative and additive
noise. Our algorithm is different from that of Kundu et al.
(2011) in the following aspects: firstly, we use an ALSE
based criterion function while Kundu et al. (2011) used
an LSE based criterion function; secondly, we consider
the estimation in the presence of both multiplicative noise
and additive noise while Kundu et al. (2011) considered
the problem in the presence of only additive noise.
Moreover, the algorithm proposed in this paper estimates
the frequencies simultaneously while Kundu et al. (2011)
estimated the frequencies one by one.

We use a modified step factor and an ALSE based
criterion function which will be defined in Section 3
to estimate the frequencies of the model considered.
It is observed that, if the initial estimator is accurate
up to the order Op(N−1) (here Op(N−δ) means
Op(N−δ)N δ is bounded in probability), then the modified
Newton–Raphson iterative procedure produces a fully
efficient frequency estimator with the convergence rate
of Op(N−3/2). We use periodogram maximizers over
Fourier frequencies as the initial estimator. It is known
that periodogram maximizers over Fourier frequencies do
not generally provide estimators up to the order Op(N−1)
(Rice and Rosenblatt, 1988), whereas an initial estimator
of the convergence rate of Op(N (−1−δ))(δ > 0) is needed
for most iterative techniques to work. To overcome this
problem, we use a varying sample size technique (Nandi
and Kundu, 2006; Bian et al., 2009), i.e., we do not use the
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fixed sample size available for estimation at each step. At
the first step we use a fraction of it and at the last step we
use the whole data set by gradually increasing the effective
sample size.

The rest of the paper is organized as follows.
In Section 2, we discuss the LSEs and ALSEs for
the parameters of the model (1). The modified
Newton–Raphson iterative procedure is presented in
Section 3. In Section 4, we present numerical experiments
and finally we conclude the paper in Section 5. All proofs
are provided in Appendix.

2. Estimation principle

In this section, we shall review the two estimation
principles of LSEs and ALSEs for the estimation of
frequencies of the model (1) as follows.

2.1. Least squares estimators. The LSEs of the
unknown parameters can be obtained by minimizing the
residual sum of squares, namely,

RN (μ, ω) =
N∑

t=1

∣∣∣y(t) −
p∑

k=1

μkei(ωkt+ϕk)
∣∣∣
2

. (2)

Note that RN (μ, ω) can also be written as follows:

RN (μ, ω) = [Y − X(ω)μ]H [Y − X(ω)μ], (3)

where
Y = (y(1), y(2), . . . , y(N))T ,

μ = (μ1e
iϕ1 , μ2e

iϕ2 , . . . , μpe
iϕp)T ,

ω = (ω1, ω2, . . . , ωp)T

and X(ω) is an N×p matrix, the k-th row and l-th column
element of X being eikωl . From (3), it is clear that μ can
be separated from ω. Observe that, for a fixed ω, the LSEs
of μ can be obtained as

μ̂(ω) = [X(ω)HX(ω)]−1X(ω)HY. (4)

Now, if we substitute μ in (3) for its estimator in (4),
we obtain

QN(ω) = RN (μ̂(ω), ω) = Y HY − Y HPXY, (5)

where PX = X(ω)[X(ω)HX(ω)]−1X(ω)H is the
projection matrix on the space spanned by the columns
of X(ω). Therefore, the LSEs of (μ, ω) obtained by
minimizing RN (μ, ω) with respect to (μ, ω) are the same
as the LSEs of ω obtained first by minimizing QN (ω)
with respect to ω and then using the estimator of ω
in (5) to obtain the LSEs of μ. It is known (Peng
et al., 2009) that the LSEs of the frequencies have the
following limiting distribution:

N3/2(ω̂ − ω) L−→ Np(0,Σ), (6)

where

Σ = diag{6(σ2 − σ2
1)/μ2

1, 6(σ2 − σ2
2)/μ2

2,

· · · , 6(σ2 − σ2
p)/μ2

p},

and σ2 =
∑p

k=1 σ2
k + σ2

0 , where
L−→ means convergence

in distribution and Np(0,Σ) denotes the p-variate normal
distribution with zero mean and dispersion matrix Σ.

2.2. Approximate least squares estimators. An
alternative way to estimate the frequencies is to maximize
the periodogram function fN (ω), which can be defined as
follows (Bian et al., 2009; Kundu et al., 2011):

fN(ω) =
1
N

∣∣∣
N∑

t=1

y(t)e−iωt
∣∣∣. (7)

The estimators obtained by finding p local maxima
of fN (ω) achieve the best possible rate and are
asymptotically equivalent to LSEs in the additive noise
condition. This is known as ALSEs in the literature
(Nandi and Kundu, 2006). Actually, it can be seen from
(5) that minimizing QN (ω) with respect to ω is equivalent
to maximizing Y HX(ω)[X(ω)HX(ω)]−1X(ω)HY . If
we note X(ω) as (X(ω1), X(ω2), . . . , X(ωp)), where
X(ωl) = (eiωl , e2iωl , . . . , eNiωl)T , then, for large N ,
maximizing Y HX(ω)[X(ω)HX(ω)]−1 X(ω)HY for ω
can be divided into maximizing the following terms for
l = 1, 2, . . . , p, respectively:

IN (ωl) � Y HX(ωl)[X(ωl)HX(ωl)]−1X(ωl)HY

=
1
N

Y HX(ωl)X(ωl)HY. (8)

It can be seen that maximizing (7) with respect to ω and
maximizing (8) with respect to ωl are equivalent, so the
p local maxima of IN (ω) can be seen as the ALSEs of
frequencies for the model considered.

It is known that the optimal estimators can be
obtained by maximizing (7) with infinitely dividing and
searching the parameter space. However, it is so time
consuming that it is hard to be implemented in practice
(Nandi and Kundu, 2006). However, the periodogram
based frequency estimators obtained under the condition
that frequencies are Fourier frequencies can be easily
obtained, although they provide estimators with the
convergence rate of only Op(N−1) (Rice and Rosenblatt,
1988). So we shall use periodogram maximizers over
Fourier frequencies as the initial estimators of the
modified Newton–Raphson algorithm in the next section.
Here a frequency is a Fourier frequency if it is of the form
λ = 2πk/N , for some integer 1 ≤ k ≤ N .

3. Modified Newton–Raphson algorithm

In this section, we shall discuss the modified
Newton–Raphson algorithm based on the function IN (ωl)



120 J. Bian et al.

in (8), aiming to find a consistent estimator of ωl in the
model (1). Unlike in the traditional Newton–Raphson
algorithm, we use a modified step factor 1/4 as in (9).
Given a consistent estimator ω̃l of ωl in the model (1), we
compute ω̂l for l = 1, 2, . . . , p as follows:

ω̂l = ω̃l − 1
4

I ′N (ω̃l)
I ′′N (ω̃l)

, (9)

where IN (ω̃l) is defined as in (8) by substituting ωl with
ω̃l. I ′N (ω̃l) and I ′′N (ω̃l) are the first and second derivatives
of IN (ω̃l) with respect to ω̃l, respectively. We expect to
improve the estimator of ωl step by step using (9) from
any consistent initial estimator ω̃l. The motivation of the
algorithm is based on the following theorem.

Theorem 1. If, for l = 1, 2, . . . , p, ω̃l − ωl =
Op(N−1−δ), where δ ∈ (0, 1/2], then

(a) ω̂l − ωl = Op(N−1−3δ) if δ ≤ 1
6 ,

(b) N
3
2 (ω̂l − ωl)

L−→ Np(0,Σ) if δ > 1
6 ,

where

Σ = diag

{
3(σ2 − σ2

1)
2μ2

1

,
3(σ2 − σ2

2)
2μ2

2

, . . . ,
3(σ2 − σ2

p)
2μ2

p

}
,

σ2 =
p∑

j=1

σ2
j + σ2

0 .

Np(0,Σ) denotes the p-dimensional normal distribution
with zero mean and covariance matrix Σ.

Proof. See Appendix. �

Remark 1. It is noted that the consistent estimator ω̃l

in (9), which is the estimator of ωl before the iteration,
should have a convergence rate of Op(N−1−δ)(δ > 0) so
that ω̂l can be more accurate than ω̃l after the iteration. It
is observed from Theorem 1 that if the initial estimator of
ωl has a convergence rate of Op(N−1−δ)(δ > 0), then the
iteration of (9) is completely feasible. Moreover, the small
step factor 1/4 can prevent the algorithm from diverging or
converging to a local minima according to Theorem 1.

The maximizers of the periodogram over Fourier
frequencies can provide estimators for the frequencies
in the model (1) with the convergence rate of Op(N−1)
(Bian et al., 2009). However, the convergence rate of
Op(N−1−δ)(δ > 0) is needed for a general purpose
iterative algorithm to work, so we choose it as the initial
estimator and use the technique of varying sample size
as proposed by Nandi and Kundu (2006) at the same
time. A detailed implementation of (9) is listed in the
following. The m-th step estimator ω̂

(m)
l is computed

from the (m−1)-th step estimator ω̂
(m−1)
l by the formula

ω̂
(m)
l = ω̂

(m−1)
l − 1

4
I ′Nm

(ω̃(m−1)
l )

I ′′Nm
(ω̃(m−1)

l )
, (10)

where I ′Nm
(ω̃l) and I ′′Nm

(ω̃l) can be obtained from (9) by

replacing N and ω̃l with Nm and ω̂
(m−1)
l , respectively,

and a detailed expression can be found in the Appendix.
We repeatedly choose suitable Nm at each step as follows:

(i) Find the l-th argument maximum of IN (ω) over
Fourier frequencies, i.e., ω

(0)
l as the initial estimator

of ωl.

(ii) Choose N1 = N6/7 and compute ω̂
(1)
l from ω̂

(0)
l .

Since ω̂
(0)
l − ωl = Op(N−1) = Op(N

−1− 1
6

1 ), using
part (a) of Theorem 1, we have

ω̂
(1)
l − ωl = Op(N

− 3
2

1 ) = Op(N−1− 2
7 ).

(iii) Since 2/7 > 1/6, choose Nm = N (m ≥ 2)
and repeatedly use (10) until an optimal solution is
obtained. Applying part (b) of Theorem 1, we have

N
3
2 (ω̂(L) − ω) L−→ Np(0,Σ),

where L is the iteration number.

Therefore, it is observed that, if at any step the
estimator is of the order Op(N−1−δ), the method provides
an estimator which improves the order to Op(N−1−3δ)
for 0 < δ ≤ 1

6 and, if 1
6 < δ ≤ 1

2 , then it provides the
efficient estimator with convergence rate of Op(N−3/2)
which is the same with LSEs (Ghogho et al., 1999; Peng
et al., 2009). Hence this method provides an efficient
frequency estimator from the relatively poor initial
estimator of the periodogram maximizer. Theoretically,
only two steps are needed to attain the “optimal”estimator.
However, more than two steps are needed to obtain a
more accurate and robust estimator in practice. It can be
seen from Theorem 1 that the asymptotic variance for the
frequencies of the proposed estimators is just one fourth
of the LSEs (Ghogho et al., 1999; Peng et al., 2009).

The linear parameters of μl and ϕl (l = 1, 2, . . . , p)
can be estimated based on the estimation of ωl by (4) as
follows:

μ̂l =

∣∣∣∣∣
1
N

N∑

t=1

y(t)e−iωt

∣∣∣∣∣, (11)

ϕ̂l = arg
{

1
N

N∑

t=1

y(t)e−iωt

}
, (12)

where arg(a) denotes the angle of a.

Remark 2. Note that we use a subset of N1 = N6/7

to begin the iterative process. Actually, the subset number
is not unique. There are several other ways they can be
chosen so that the iterative process will converge. For
example, another set of choices can be N1 = N4/5 or
N1 = N7/8. Basically, they are the same in the aspect
of guaranteeing the application of Theorem 1 and the
convergence of the algorithm.
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Remark 3. If we denote by μ̂(ω) and ϕ̂(ω), the final
estimators of μ and ϕ respectively, then according to (11)
we have

μ̂(ω) − μ(ω) = μ′(ω�) � (ω̂ − ω) + Op(N−2),

where ϕ = (ϕ1, ϕ2, · · · , ϕp)T and μ′(ω�) is the first
derivative of μ(ω�) with respect to ω� which is a point
between ω̂ and ω. Thus

Var(μ̂(ω)) ≈ Var(ω̂) � [μ′(ω�)]2

=
1
4

Var(ω̂LSE) � [μ′(ω�)]2

=
1
4

Var(μ̂LSE), (13)

where ω̂LSE and μ̂LSE are the LSEs of ω and μ,
respectively, and � is the Hadamard product. The above
equation shows that the variance of μ is one fourth of the
variance of its LSEs and it is the same for ϕ.

4. Numerical experiment

In this section we present some numerical results to
observe how the proposed method works for finite sample
size. We consider the following two models:

Model 1:

y1(t) = ξ1(t)ei(0.5t+ π
4 ) + ξ2(t)ei(1.5t+ π

3 ) + ε(t).

Model 2:

y2(t) = ξ1(t)ei(0.5t+ π
4 ) + ξ2(t)ei(0.57t+ π

3 ) + ε(t).

In both cases, {ε(t)} is taken as a sequence of i.i.d.
Gaussian complex random variables with zero means, and
both the real and the imaginary parts having finite variance
σ2

0/2. {ξ1(t)} and {ξ2(t)} are both sequences of Gaussian
random variables with means 2, 2 and deviations 0.4,
0.6, respectively. To assess the sensitivity of the model
for different noise levels, we consider three different
σ0’s, namely, σ0 = 0.5, 1.0 and 1.5. To examine the
consistency of the estimator, we take the sample sizes as
N = 100, 200, 300, 400, 500 and 1000 for Model 1, and
take the sample sizes as N = 200, 300, 400, 500, 600 and
1000 for Model 2.

It is observed that the starting sample in Model 2
is larger than that in Model 1 for the two frequencies in
Model 2 are closer than that in Model 1, so a larger sample
is needed for the periodogram based initial estimator in
Model 2 than in Model 1. We take the first frequency
in Model 2 the same as that in Model 1, and take
the second frequency in Model 2 closer to the first
frequency in Model 2 so as to observe the resolution and
statistical performance for the proposed algorithm when
two frequencies are very close. In both cases, we generate
the signal using the corresponding Models 1 and 2.

The initial estimators of the frequency parameters are
obtained using the maximizers of the periodogram in (7),
and are then improved by the iterative process in (9). The
iterative process is terminated if the absolute difference
between two consecutive iterations is less than σ2/N−3.
In most cases, the iteration converges in about 30 times.
The process is replicated 100 times. We report the average
estimates (AEs) and the corresponding Mean Squared
Errors (MSEs) of ω1, ω2 for Models 1 and 2, as well as the
corresponding asymptotic variance of LSEs (ASVLs) and
the corresponding asymptotic variances (AVs) as in part
(b) of Theorem 1, in Tables 1–2 and 4–5, respectively.
According to Remark 3, we expect that the MSEs of μ
and ϕ may also be smaller than the corresponding MSEs
of LSEs. To study this effect, we report the results of μ1

in case of Model 1 in Table 3. A similar trend has been
observed in the case of μ2, ϕ and is not reported here.
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Fig. 1. Plot of the periodogram function of Model 1 with N =
200 and σ0 = 1.5.
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Fig. 2. Plot of the observed signal y1(t) (dashed line) and the
noiseless signal s1(t) (solid line) using Model 1 with
N = 200 and σ0 = 1.5.

The following observations are very clear from the
numerical results of Tables 1–5. It is observed that the
AEs are very close to the true parameter values for most
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Table 1. Average estimates (AE), mean squared errors (MSE), asymptotic variances of the modified Newton–Raphson algorithm (ASV)
and asymptotic variances of the LSEs (ASVL) of the frequency ω1 in Model 1.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ0 = 0.5
AE 0.498908 0.499731 0.499893 0.499962 0.500015 0.500000

MSE 7.91543e−7 1.02935e−7 2.66455e−8 1.23431e−8 5.54595e−9 5.06825e−10
ASV 2.28750e−7 2.85936e−8 8.47222e−9 3.57422e−9 1.83000e−9 2.28750e−10

ASVL 9.15000e−7 1.14375e−7 3.38889e−8 1.42969e−8 7.32000e−9 9.15000e−10
σ0 = 1

AE 0.498794 0.499721 0.499897 0.499989 0.499988 0.500006
MSE 1.56290e−6 2.11714e−7 6.99356e−8 2.51921e−8 1.44951e−8 1.17149e−9
ASV 5.10003e−7 6.37500e−8 1.88889e−8 7.96875e−9 4.08000e−9 5.10000e−10

ASVL 2.04000e−6 2.55000e−7 7.55556e−8 3.18750e−8 1.632000e−8 2.04000e−9
σ0 = 1.5

AE 0.498966 0.499772 0.499865 0.499973 0.500012 0.499992
MSE 3.41193e−6 4.59768e−7 1.26025e−7 5.06914e−8 2.64905e−8 2.49135e−9
ASV 9.78750e−7 1.22344e−7 3.62450e−8 1.52930e−8 7.83000e−9 9.78750e−10

ASVL 3.91500e−6 4.89375e−7 1.44500e−7 6.11719e−8 3.13200e−8 3.91500e−9

Table 2. Average estimates (AE), mean squared errors (MSE), asymptotic variances of the modified Newton–Raphson algorithm (ASV)
and asymptotic variances of the LSEs (ASVL) of the frequency ω2 in Model 1.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ0 = 0.5
AE 1.501048 1.500245 1.500088 1.500050 1.500016 1.500000

MSE 5.80705e−7 7.01068e−8 1.88964e−8 9.01031e−9 3.68061e−9 3.68990e−10
ASV 1.53750e−7 1.92188e−8 5.69444e−9 2.40234e−9 1.23000e−9 1.53750e−10

ASVL 6.15000e−7 7.68750e−8 2.27778e−8 9.60938e−9 4.92000e−9 6.15000e−10
σ0 = 1

AE 1.501014 1.500229 1.500144 1.500053 1.500023 1.500003
MSE 1.53017e−6 1.72904e−7 6.14974e−8 2.15401e−8 1.26851e−8 1.15089e−9
ASV 4.35000e−7 5.437501e−8 1.61111e−8 6.79688e−9 3.48000e−9 4.35000e−10

ASVL 1.74000e−6 2.17500e−7 6.44444e−8 2.71875e−8 1.39200e−8 1.74000e−9
σ0 = 1.5

AE 1.500659 1.500233 1.500092 1.500011 1.500008 1.500004
MSE 3.51063e−6 4.21503e−7 1.21324e−7 4.71154e−8 2.59425e−8 1.87135e−9
ASV 9.03750e−7 1.12969e−7 3.34722e−8 1.41211e−8 7.23000e−9 9.03750e−10

ASVL 3.61500e−6 4.51875e−7 1.33889e−7 5.64844e−8 2.89200e−8 3.61500e−9

of the cases. The biases and the MSEs decrease as the
noise variance decreases or as the sample size increases.
Therefore, the consistency of the proposed estimators is
verified. Meanwhile, the MSEs of the proposed estimators
are usually smaller than the asymptotic variances of the
LSEs, which is observed in the case of the frequencies as
well as other linear parameters. This verifies Remark 3
and the effectiveness of the proposed algorithm.

Comparing Table 1 with Table 4, it is observed
that the performance of AEs and MSEs is similar for
the estimation of the first frequency parameter while
the estimation of the first frequency in Model 2 is less
accurate and with little higher MSEs. It is not surprising
that the two frequencies in Model 2 are closer than those
in Model 1, and it is known that the estimation for dense
frequencies is a more complex problem than that of the
sparse frequencies condition.

For illustration purposes, we plot the periodogram
function of the observed signals in Fig. 1 using Model 1
and in Fig. 5 using Model 2, respectively, when the
additive noise deviation is 1.5 and the sample size is 200.
It is known that the number of peaks in the periodogram
function plot roughly gives an estimate of the number
of frequencies. But it depends on the magnitude of the
amplitude associated with each effective frequency and
the noise variance. From Fig. 1, it is quite clear that there
are two peaks while the two peaks in Fig. 5 are not very
obvious as the two frequencies in Model 2 are very close.
So the parameter estimation for Model 2 seems to be more
difficult than that for Model 1.

We also plot the observed signal y1(t) of Model 1
along with the corresponding noiseless signal s1(t)
(without multiplicative and additive noise) in Fig. 2 to
see the influence of the noise on the exhibition of the
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Table 3. Average estimates (AE), mean squared errors (MSE), asymptotic variances of the modified Newton–Raphson algorithm (ASV)
and asymptotic variances of the LSEs (ASVL) of the mean of the first amplitude μ1 in Model 1.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ0 = 0.5
AE 2.001248 1.999835 1.999092 2.002730 2.002699 2.000524

MSE 2.56489e−3 1.20031e−3 8.88457e−4 6.89340e−4 5.66325e−2 1.67834e−4
ASV 7.12500e−4 3.56250e−4 2.37500e−4 1.78125e−4 1.42500e−4 7.12500e−5

ASVL 2.85000e−3 1.42500e−3 9.50000e−4 7.12500e−4 5.70000e−4 2.85000e−4
σ0 = 1

AE 2.004960 2.008402 1.997179 2.001021 1.997989 2.000600
MSE 5.54634e−3 2.72138e−3 2.09832e−2 1.49263e−3 1.18801e−3 5.52628e−4
ASV 1.65000e−3 8.25000e−4 5.50000e−4 4.12500e−4 1.32000e−3 1.65000e−4

ASVL 6.60000e−3 3.30000e−3 2.20000e−3 1.65000e−3 3.30000e−4 6.60000e−4
σ0 = 1.5

AE 2.015056 2.006714 2.000242 1.997307 2.007195 2.007386
MSE 1.06417e−2 6.25935e−3 4.02462e−3 3.17906e−3 1.88648e−3 1.18345e−3
ASV 3.21250e−3 1.60625e−3 1.07083e−3 8.03125e−4 6.42500e−4 3.21250e−4

ASVL 1.28500e−2 6.42500e−3 4.28333e−3 3.21250e−3 2.57000e−3 1.28500e−3
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Fig. 3. Observed signals y1(t) (solid line) and the estimated sig-
nals z1(t) (dashed line) of Model 1 with N = 200 and
σ0 = 1.5.

signal. The noiseless signals are plotted by the true
value of the parameters, i.e., ω, μ and ϕ, which are
estimated by the modified Newton–Raphson algorithm,
(11) and (12), respectively. It can be seen from Fig. 2 that
the multiplicative and additive noise has much influence
on the shape of the signal. To assess the performance
of the proposed algorithm, we plot the estimated signal
z1(t) for Model 1 along with the corresponding observed
signal y1(t) as well as the estimated signal z1(t) along
with the noiseless signal s1(t) when the additive noise
variance is 1.5 and the sample size is 200, in Figs. 3
and 4, respectively. It can be seen from Figs. 3 and
4 that the estimated signal fits quite well the noiseless
signal and not as well as with the observed signal, which
verifies the effectiveness of the proposed algorithm and
also further shows the influence of the multiplicative and
additive noise on the signal. To illustrate the effectiveness
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Fig. 4. Noiseless signals s1(t) (solid line) and the estimated sig-
nals z1(t) (dashed line) of Model 1 with N = 200 and
σ0 = 1.5.

of estimation for Model 2, we plot the estimated signal
z2(t) along with the corresponding noiseless signal s2(t)
of Model 2 in Fig. 6. It is observed that the estimated
signal fits quite well the noiseless signal, which further
verifies the effectiveness of the proposed algorithm when
two frequencies are very close to each other.

Finally, we must point out that the resolution
of the algorithm is limited as the resolution of the
algorithm is restricted to the periodogram based initial
estimator, so this algorithm will fail when the distance
of two frequencies is less than the frequency resolution.
However, it is observed from Model 2 that the proposed
algorithm works quite well when the distance of two
frequencies is large and approaches the frequency
resolution of the model considered. A better estimation
can be expected to be achieved with a higher-resolution
initial estimator or with a larger sample size when the
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Fig. 5. Plot of the periodogram function of Model 2 with N =
200 and σ0 = 1.5.
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Fig. 6. Noiseless signals s2(t) (solid line) and the estimated sig-
nals z2(t) (dashed line) of Model 2 with N = 200 and
σ0 = 1.5.

frequencies are too close.

Remark 4. Comparing the experimental results with
those of Kundu et al. (2011), more iterations are needed
for the algorithm to work. However, lower computation
cost is required since the computation of the inverse
matrix as in the work of Kundu et al. (2011) is avoided.
Moreover, the statistical performance for ALSE based
parameter estimation in this paper does not seem to
decrease compared with LSE based parameter estimation
of Kundu et al. (2011).

5. Conclusions

In this paper, we mainly considered the estimation of the
frequencies of a superimposed exponential signal model.
We generalized the modified Newton–Raphson algorithm
(Kundu et al., 2011) from the additive noise condition to
the multiplicative and additive noise condition. Unlike in
the work of Kundu et al. (2011), our algorithm is based on
the ALSE criterion which is computationally simpler than

the LSE criterion based algorithm of Kundu et al. (2011),
since the computation of an inverse matrix as in the work
of Kundu et al. (2011) is avoided. Moreover, the proposed
algorithm can be used to estimate the frequencies of
the model considered simultaneously while Kundu et al.
(2011) estimated the frequencies one by one.

The asymptotic distribution of the proposed
estimators is obtained. It is observed from the asymptotic
distribution matrix that the proposed estimators attain the
same convergence rate with the LSEs and outperform
them in terms of asymptotic variance. Simulation
experiments are performed to verify the effectiveness of
the algorithm, especially for the estimation of the model
with close space frequencies, which is expected to be
improved with a higher-resolution initial estimator or
larger sample size. Finally, it can also be seen that the
modified Newton–Raphson algorithm converges quickly
from the initial estimator of periodogram maximizers
over Fourier frequencies, it naturally saves computational
time and can be used for online implementation.
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Appendix

Proof of Theorem 1

We need the following two lemmas for the proof of
Theorem 1.

Lemma A1. For all k ∈ N and ω ∈ R, we have

N∑

t=1

tkeiωt =
N∑

t=1

tkeiωt =

{
O(Nk) if ω �= 0,

O(Nk+1) if ω = 0.

Proof. See the work of Mangulis (1965). �

Lemma A2. If {e(t)} is a sequence of i.i.d. random
variables with zero mean and finite variance, then

N∑

t=1

e(t)tkeiθt = Op(Nk+ 1
2 ), ∀ θ ∈ R. a.s.,
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Table 5. Average estimates (AE), mean squared errors (MSE), asymptotic variances of the modified Newton–Raphson algorithm (ASV)
and asymptotic variances of the LSEs (ASVL) of the mean of the first amplitude ω2 in Model 2.

N = 200 N = 300 N = 400 N = 500 N = 600 N = 1000

σ0 = 0.5
AE 0.571359 0.570112 0.569981 0.570083 0.570008 0.570006

MSE 7.20544e−8 1.85488e−8 1.08902e−8 4.13682e−9 3.10130e−9 5.64307e−10
ASV 1.92188e−8 5.69444e−9 2.40234e−9 1.23000e−9 7.11806e−10 1.53750e−10

ASVL 7.68750e−8 2.27778e−8 9.60938e−9 4.92000e−9 2.84722e−9 6.15000e−10
σ0 = 1

AE 0.571430 0.570204 0.569986 0.570092 0.570016 0.570013
MSE 1.55689e−7 6.06032e−8 3.76675e−8 1.60800e−8 9.20212e−9 1.39253e−9
ASV 5.43750e−8 1.61111e−8 6.79688e−9 3.48000e−9 2.01389e−9 4.35000e−10

ASVL 2.17500e−7 6.44444e−8 2.71875e−8 1.39200e−8 8.05556e−9 1.74000e−9
σ0 = 1.5

AE 0.571463 0.570213 0.570772 0.570099 0.570030 0.570022
MSE 2.26359e−7 1.60292e−7 6.46088e−8 4.08008e−8 2.214789e−8 3.13654e−9
ASV 1.12969e−7 3.34722e−8 1.41211e−8 7.23000e−9 4.184028e−9 9.03750e−10

ASVL 4.51875e−7 1.45000e−7 5.64844e−8 3.13200e−8 1.673611e−8 3.61500e−9

where a.s. denotes ‘almost surely’.

Proof. See the work of Bai et al. (2003). �

Since {ξk(t)} is a sequence of i.i.d. random
variables with mean uk and variance σ2

k, if we write
ξk(t) − μk as ηk(t), then {ηk(t)} is a sequence of i.i.d.
random variables with zero mean and variance σ2

k, so we
have ξk(t) = uk + ηk(t). If we write

X � X(ω̃l) = (eiω̃l , e2iω̃l , · · · , eNiω̃l)T ,

Y � (y(1), y(2), · · · , y(N))T ,

D � diag{1, 2, · · · , N},

then

Ẋ � dX

dω̃l
= iDX, Ẍ � d2X

dω̃2
l

= −D2X, (A1)

where ‘T’ denotes the transpose, I ′N (ω̃l) and I ′′N (ω̃l)
denote the first and second derivatives of IN (ω̃l),
respectively. Here ω̃l is the estimator of ωl satisfying
ω̃l−ωl = Op(N−1−δ)(δ > 0). Now, we compute I ′N (ω̃l)
and I ′′N (ω̃l), respectively, as follows.

Since IN (ω̃l) = 1
N Y HXXHY and due to (A1), we

have

I ′N (ω̃l) =
1
N

(Y HẊXHY + Y HXẊHY ) (A2)

=
i

N
(Y HDXXHY − Y HXXHDY )

(A3)

and

I ′′N (ω̃l) =
1
N

(Y HẌXHY + 2Y HẊẊHY

+ Y HXẌHY )

=
1
N

(−Y HD2XXHY + 2Y HDXXHDY

− Y HXXHD2Y ), (A4)

where ‘H’ denotes the operation of transpose and
conjugation. By Lemmas 1 and 2, we have

1
N

Y HX = μle
−iϕl + Op

( 1
N1/2

)
,

1
N2

Y HDX =
1
2
μle

−iϕl + Op

( 1
N1/2

)
,

1
N3

Y HD2X =
1
3
μle

−iϕl + Op

( 1
N1/2

)
. (A5)

Using (A4) and (A5), we get

1
N3

I ′′N (ω̃l) = −1
3
μ2

l +
1
2
μ2

l −
1
3
μ2

l + Op

( 1
N1/2

)

= −1
6
μ2

l + Op

( 1
N1/2

)
. (A6)

From (A2), we have

1
N3

I ′N (ω̃l) =
i

N4
(Y HDXXHY − Y HXXHDY )

= − 2
N4

Im(Y HDXXHY ), (A7)

where Im(a) denotes the image part of a. Now we
compute Y HDXXHY as follows:

Y HDXXHY =

[
N∑

t=1

ȳ(t)teiω̃lt

][
N∑

t=1

y(t)e−iω̃lt

]
,

(A8)
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where ȳ(t) denotes the conjugation of y(t) and

N∑

t=1

ȳ(t)teiω̃lt =
p∑

k=1

N∑

t=1

μke−iϕktei(ω̃l−ωk)t

+
p∑

k=1

N∑

t=1

ηk(t)e−iϕk tei(ω̃l−ωk)t

+
N∑

t=1

ε̄(t)teiω̃lt

� A1 + A2 + A3. (A9)

We compute A1, A2 and A3 as follows:

A1 =
p∑

k=1

μke−iϕk

N∑

t=1

tei(ω̃l−ωk)t �
p∑

k=1

A1k(N).

(A10)
If k = l, using the Taylor series of ei(ω̃l−ωl)t up to the
fourth order, we have

A1l(N) = μle
−iϕl

N∑

t=1

tei(ω̃l−ωl)t

= μle
−iϕl

[
N∑

t=1

t + i(ω̃l − ωl)
N∑

t=1

t2

− 1
2
(ω̃l − ωl)2

N∑

t=1

t3

− 1
6
i(ω̃l − ωl)3

N∑

t=1

t4

+
1
24

(ω̃l − ωl)4
N∑

t=1

t5eiθ1(ω̃l−ωl)t

]
,

(A11)

where 0 < θ1 < 1. If k �= l, using Lemma 1, we have

A1k(N) = μke−iϕk

N∑

t=1

tei(ω̃l−ωk)t = Op(N). (A12)

Using the Taylor series of ei(ω̃l−ωl)t up to the first
order and Lemma 2, we have

A2 =
p∑

k=1

N∑

t=1

ηk(t)e−iϕktei(ωl−ωk)tei(ω̃l−ωl)t

=
p∑

k=1

N∑

t=1

ηk(t)e−iϕktei(ωl−ωk)t

+ i(ω̃l − ωl)
p∑

k=1

N∑

t=1

ηk(t)e−iϕkt2

× ei(ωl−ωk)teiθ2(ω̃l−ωl)t

=
p∑

k=1

N∑

t=1

ηk(t)e−iϕk tei(ωl−ωk)t + Op(N3/2−δ),

(A13)

where 0 < θ2 < 1. Similarly, we have

A3 =
N∑

t=1

ε(t)teiω̃lt + Op(N3/2−δ), (A14)

and

N∑

t=1

y(t)e−iω̃lt =
p∑

k=1

N∑

t=1

μkeiϕkei(ωk−ω̃l)t

+
p∑

k=1

N∑

t=1

η(k)eiϕkei(ωk−ω̃l)t

+
N∑

t=1

ε(t)e−iω̃lt

= μlNeiϕl + Op(N1−δ). (A15)

Combining (A7)–(A15), we have

1
N3

I ′N (ω̃l) = − 2
N4

Im(Y HDXXHY )

= −2μ2
l

N3

[
(ω̃l − ωl)

N∑

t=1

t2

− 1
6
(ω̃l − ωl)3

N∑

t=1

t4

]
+ Op(N−2)

+ Op(N−1−4δ) + Op(N−3/2−δ)

− 2μl

N3

{
p∑

k=1

N∑

t=1

ηk(t)t sin
[
(ωl − ωk)t − ϕk

]

+
N∑

t=1

[
Re(ε(t))t sin(ωlt)

+ Im(ε(t))t cos(ωlt)
]
}

, (A16)

where Re(a) denotes the real part of a. Finally, combing
(A6) and (A16), we have

ω̂l

= ω̃l − 1
4

I ′N (ω̃l)
I ′′N (ω̃l)

= ω̃l − 1
4

1
N3 I ′N (ω̃l)
1

N3 I ′′N (ω̃l)
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= ω̃l − 1
4

− 2μ2
l

N3

[
(ω̃l − ωl)

N∑
t=1

t2 − 1
6 (ω̃l − ωl)3

N∑
t=1

t4
]

− 1
6μ2

l + Op

(
1

N1/2

)

− 3
μlN3

{
p∑

k=1

N∑

t=1

ηk(t)t sin[(ωl − ωk)t − ϕk]

+
N∑

t=1

[
Re(ε(t))t sin(ωlt) + Im(ε(t))t cos(ωlt)

]
}

+ Op(N−1−4δ) + Op(N−3/2−δ)

= ωl + (ω̃l − ωl)Op(N−2δ)

− 3
μlN3

{
p∑

k=1

N∑

t=1

ηk(t)t sin
[
(ωl − ωk)t − ϕk

]

+
N∑

t=1

[
Re(ε(t))t sin(ωlt) + Im(ε(t))t cos(ωlt)

]
}

+ Op(N−1−4δ) + Op(N−3/2−δ). (A17)

If δ ≤ 1
6 , then ω̂l − ωl = Op(N−1−3δ). If δ > 1

6 ,
then using the central limit theorem (Fuller, 1996) we have

ω̂l − ωl

� − 3
μlN3/2

{
p∑

k=1

N∑

t=1

ηk(t)t sin
[
(ωl − ωk)t − ϕk

]

+
N∑

t=1

[
Re(ε(t))t sin(ωlt) + Im(ε(t))t cos(ωlt)

]
}

+ Op(N−1−4δ) + Op(N−3/2−δ)
L−→ Np(0,Σ),

where Np(0,Σ) is defined as in Theorem 1.
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