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The Bass model is one of the most well-known and widely used first-purchase diffusion models in marketing research.
Estimation of its parameters has been approached in the literature by various techniques. In this paper, we consider the
parameter estimation approach for the Bass model based on nonlinear weighted least squares fitting of its derivative known
as the adoption curve. We show that it is possible that the least squares estimate does not exist. As a main result, two
theorems on the existence of the least squares estimate are obtained, as well as their generalization in the ls norm (1 ≤
s < ∞). One of them gives necessary and sufficient conditions which guarantee the existence of the least squares estimate.
Several illustrative numerical examples are given to support the theoretical work.
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1. Introduction

The most popular first-purchase (adoption) diffusion
model in marketing research is the Bass model. It is
similar in some respect to models of infectious diseases or
contagion models which describe the spread of a disease
through the population due to contact with infected
persons (see Bailey 1975; 1957). The Bass model is
distinguished from other growth models by explicitly
incorporating some key behavioural assumptions from
Rogers’ theory of diffusion of innovation (see Rogers,
1962). Namely, Bass divided adopters (first-time buyers)
into innovators and imitators. Imitators, unlike innovators,
are buyers who are influenced in their adoption by the
number of previous buyers. The Bass model has three
parameters: the coefficient of innovation or external
influence (p > 0), the coefficient of imitation or internal
influence (q ≥ 0), and the total market potential (m >
0). To capture the growth of a new durable product
(innovation) due to the diffusion effect, Bass (1969) used
the following Riccati differential equation with constant
coefficients:

dN(t)
dt

= p
[
m − N(t)

]
+

q

m
N(t)

[
m − N(t)

]
,

N(0) = 0, t ≥ 0, (1)

where N(t) and n(t) := dN(t)/dt are respectively the
cumulative and the noncumulative number of adopters
of a new product at time t. The adoption rate n(t) is
determined by two additive terms: the first term, p[m −
N(t)], represents adoptions due to innovators, whereas the
second term, (q/m)N(t)[m−N(t)], represents adoptions
due to imitators.

To stress the fact that functions N(t) and n(t) depend
on parameters m, p and q, we shall write N(t; m, p, q) and
n(t; m, p, q).

The solution of (1) and the corresponding adoption
rate function are given by

N(t; m, p, q) = m
1 − e−(p+q)t

1 + q
p

e−(p+q)t
, t ≥ 0, (2)

and

n(t; m, p, q) = m
(p + q)2

p

e−(p+q)t

(1 + q
p

e−(p+q)t)2
, t ≥ 0.

(3)
The graph of the function N is known as the Bass
cumulative adoption curve, and the graph of the function
n is known as the Bass (noncumulative) adoption curve.

The graph of the cumulative adoption curve N is an
“S-shaped” curve. If q > p, for this curve the point of
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Fig. 1. Typical S-shaped Bass cumulative adoption curve.

inflection occurs at

tI :=
1

p + q
ln(q/p)

with

N(tI ; m, p, q) = m
(q − p)

2q

(see Fig. 1). For q ≤ p, the graph is still S-shaped, but
the point of inflection occurs at a negative value of t.
Furthermore, if q > p, it can be easily shown that the
adoption rate function n has a maximum value at tI ,

n(tI ; m, p, q) = m
(p + q)2

4q
,

and that n is symmetric about the peak tI . In the case
when q ≤ p, the adoption rate function n is strictly
decreasing on [0,∞) (see Fig. 2).

There are many applications of the Bass model in
several areas like retail service, industrial technology,
agricultural, educational, pharmaceutical, and consumer
durable goods markets. For a review of the Bass model
and its applications, see the work of Mahajan et al. (2000).

In practice, the unknown parameters of the Bass
model are not known in advance and they must be
estimated on the basis of some experimentally or
empirically obtained data. This issue is known as a
parameter estimation problem. There is no unique way
to estimate the unknown parameters and many different
methods have been proposed in the literature. Mahajan et
al. (1986) used real diffusion data for seven products to
compare the performance of four estimation procedures:
Ordinary Least Squares (OLS) estimation proposed by

ttI−Δ tI tI +Δ

n(t)
q ≤ p

q > p

n(tI)

n(tI−Δ)=n(tI+Δ)

�

�

Fig. 2. Symmetry of the Bass adoption curve.

Bass, Maximum Likelihood Estimation (MLE) proposed
by Schmittlein and Mahajan (1982), Nonlinear Least
Squares (NLS) estimation suggested by Srinivasan and
Mason (1986), and Algebraic Estimation (AE) proposed
by Mahajan and Sharma (1986). They concluded that,
for the seven data sets considered in their study, the
NLS procedure provides better predictions as well as
more valid estimates of standard errors for the parameter
estimates than the other three estimation procedures.

The formulation of the NLS approach is as follows:
The observed number of adopters Xi in the time interval
(τi−1, τi] is modeled as

Xi = N(τi; m, p, q) − N(τi−1; m, p, q) + εi,

i = 1, . . . , K,

where εi is an additive error term. Here, by definition,
τ0 = 0. Based on these equations, Srinivasan and Mason
proposed to estimate the unknown parameters p, q and
m in the sense of Least Squares (LS) by minimizing
functional

S(m, p, q)

=
K∑

i=1

[
Xi −

(
N(τi; m, p, q) − N(τi−1; m, p, q)

)]2
(4)

on the set {(m, p, q) : m, p > 0, q ≥ 0}.
There are several other methods which can be used

to estimate the unknown parameters in new product
diffusion models (see, e.g., Scitovski and Meler, 2002).
A very popular technique for parameter estimation is the
least squares method. Numerical methods for solving
the nonlinear LS problem are described by Dennis and
Schnabel (1996) as well as Gill et al. (1981). Before
starting an iterative procedure one should ask whether
the LS estimate exists. For nonlinear LS problems this
question is difficult to answer. The problem of nonlinear
weighted LS and total least squares fitting of the Bass
curve (2) is considered by Jukić (2013; 2011). Results
on the existence of the LS estimate for some other special
classes of functions can be found in the works of Bates and
Watts (1988), Björck (1996), Demidenko (2008; 2006;
1996), Hadeler et al. (2007), Jukić (2013; 2009), Jukić
and Marković (2010), Jukić et al. (2008; 2004), Marković
and Jukić (2010), as well as Marković et al. (2009).

In this paper, we consider the parameter estimation
approach for the Bass model, based on nonlinear weighted
LS fitting of the Bass adoption curve (3). In Section 2,
we briefly describe this approach and summarize our main
results. We show that it is possible that the LS estimate for
the Bass adoption curve does not exist (Proposition 1). As
our main results, we present two theorems (Theorems 1
and 2) on the existence of the LS estimate, as well
as their generalizations (Theorems 3 and 4) in the ls
norm (1 ≤ s < ∞). Some numerical experiments
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to illustrate the efficiency of our approach are given in
Section 3. To compare our approach with the NLS one
proposed by Srinivasan and Mason, we used the same time
series data for the seven durables. To avoid unnecessary
technicalities at an early stage, all proofs are given in
Section 2.3. To the best of our knowledge, there is no
previous paper that has focused on the existence of the LS
estimate for the Bass adoption curve.

2. Main results: LS regression existence
theorems for the Bass adoption curve

In this section, we first formulate the LS fitting problem
for the Bass adoption curve and then present two theorems
(Theorems 1 and 2) on the existence of the least squares
estimate, as well as their generalizations (Theorems 3
and 4) in the ls norm (1 ≤ s < ∞). Their proofs are
given in Section 2.3.

2.1. LS fitting problem for the Bass adoption curve.
Suppose we are given the data (wi, ti, yi), i = 1, . . . , K ,
K > 3, where

0 < t1 < t2 < . . . < tK (5)

denote the values of the independent variable,

y1, . . . , yK > 0 (6)

are in some way obtained respective estimates of the Bass
adoption curve (3), i.e., yi ≈ n(ti; m, p, q), i = 1, . . . , K ,
and wi > 0 are the data weights which describe the
assumed relative accuracy of the data. The unknown
parameters m, p and q of the function (3) have to be
estimated by minimizing the functional

F (m, p, q)

=
K∑

i=1

wi[n(ti; m, p, q) − yi]2

=
K∑

i=1

wi

[m(p + q)2

p

e−(p+q)ti

(1 + q
p

e−(p+q)ti)2
− yi

]2

(7)

on the set

P := {(m, p, q) : m, p > 0, q ≥ 0}.
A point (m�, p�, q�) ∈ P such that F (m�, p�, q�) =
inf(m,p,q)∈P F (m, p, q) is called the least squares esti-
mate, if it exists (see Björck, 1996; Gill et al., 1981; Ross,
1990; Seber and Wild, 1989).

Data for LS estimation can be obtained in various
ways. For instance, Eqn. (1) can be discretized in different
ways. The most straightforward and most commonly used
way is to use the finite difference method, in which case
the first derivative is approximated by formulas involving

only several neighboring points. To be a bit concrete, let
us concentrate only on the three commonly used finite
difference approximations, known as forward, backward
and centered finite difference approximation. For this
purpose, suppose that the observed cumulative number
of adopters at times 0 < τ1 < τ2 < . . . < τK is
N1, N2, . . . , NK , respectively. Then the observed number
of adopters in the interval (τi−1, τi] is given by

Xi = Ni − Ni−1, i = 1, . . . , K,

where τ0 = 0 and N0 = 0 by definition. The forward,
backward and centered finite difference discretizations of
differential equation (1) and points (ti, yi) required for LS
estimation are as follows:

• the forward finite difference discretization,

Xi

τi − τi−1
= n(τi−1; m, p, q) + εi, i = 1, . . . , K,

(ti, yi) =
(
τi−1,

Xi

τi − τi−1

)
, i = 1, . . . , K;

• the backward finite difference discretization

Xi

τi − τi−1
= n(τi; m, p, q) + εi, i = 1, . . . , K,

(ti, yi) =
(
τi,

Xi

τi − τi−1

)
, i = 1, . . . , K;

• the centered finite difference discretization

Xi

τi − τi−1
= n

(τi−1 + τi

2
; m, p, q

)
+ εi,

i = 1, . . . , K,

(ti, yi) =
(τi−1 + τi

2
,

Xi

τi − τi−1

)
,

i = 1, . . . , K.

The following proposition shows that there exist data
such that the LS estimate for the Bass adoption curve (3)
does not exist.

Proposition 1. Let (wi, ti, yi), i = 1, . . . , K, K > 3, be
the data such that the points (ti, yi), i = 1, . . . , K , all lie
on some exponential curve y(t) = bect, b, c > 0. Then the
LS estimate for the Bass adoption curve (3) does not exist.

Proof. Since F (m, p, q) ≥ 0 for all (m, p, q) ∈ P , and

lim
x→∞F

(
bx

c
,

c

x + 1
,

cx

x + 1

)

= lim
x→∞

K∑
i=1

wi

[
bx

(1 + x) e−cti

(1 + x e−cti)2
− yi

]2

=
K∑

i=1

wi

(
becti − yi

)2 = 0 ,



148 D. Marković and D. Jukić

this means that

inf
(m,p,q)∈P

F (m, p, q) = 0.

Furthermore, since the graph of any function of type (3)
intersects the graph of exponential function y(t) = bect

at no more than three points, and K > 3, it follows that
F (m, p, q) > 0 for all (m, p, q) ∈ P , and hence the LS
estimate does not exist. �

2.2. Existence theorems. The following theorem,
whose proof is given in Section 2.3, gives a necessary
and sufficient condition on the data which guarantee
the existence of the LS estimate for the function (3).
First, let us introduce the following notation: Let E�

be an infimum of the weighted sum of squares for the
exponential function y(t) = b ect (b, c > 0), i.e.,

E� := inf
b,c>0

K∑
i=1

wi(b ecti −yi)2.

Theorem 1. Suppose that the data (wi, ti, yi), i =
1, . . . , K , K > 3, satisfy the conditions (5) and (6). Then
the LS estimate for the Bass adoption curve (3) exists if
and only if there is a point (m0, p0, q0) ∈ P such that
F (m0, p0, q0) ≤ E�.

In other words, under the assumptions of the
theorem, the LS estimate exists if and only if there is at
least one regression curve defined by (3) which is in an
LS sense as good as ‘or better than’ the best exponential
curve of type t �→ b ect, where b, c > 0.

It is clear that, regardless of how much effort is put
into marketing, there is a certain upper bound, say M ,
for the market potential m (i.e., the maximum number of
adopters). In most cases management has a judgement,
a strong intuitive feel, about the upper bound M , but
if not, the upper bound M can be the size of the
relevant population. The following theorem tells us that
if parameter m is bounded above, then the LS estimate
will exist. First, let us introduce the following notation:
Given any real number M > 0, let

PM := {(m, p, q) : 0 < m ≤ M, p > 0, q ≥ 0}.

Theorem 2. Suppose that the data (wi, ti, yi), i =
1, . . . , K , K > 3, satisfy the conditions (5) and (6). Then
functional F defined by (7) attains its infimum on PM ,
i.e., there exists a point (m�, p�, q�) ∈ PM such that
F (m�, p�, q�) = inf(m,p,q)∈PM

F (m, p, q).

The proof of this theorem is the same for respective
parts of the proof of Theorem 1, with the exception that we
do not have to prove that m� < ∞. Hence, it is omitted.

The LS problem is a nonlinear l2-norm one. During
the last few decades an increased interest in alternative

ls-norm has become apparent (see, e.g., Atieg and Watson,
2004; Gonin and Money, 1989). For example, l1-norm
criteria are more suitable if there are wild points (outliers)
in the data. Thus, instead of minimizing functional F ,
sometimes a more adequate criterion for estimation of
unknown parameters m, p and q of the function (3) is to
minimize the following functional:

Fs(m, p, q) =
K∑

i=1

wi

∣∣n(ti; m, p, q) − yi

∣∣s, (8)

where s (1 ≤ s < ∞) is an arbitrary fixed number.
To state the corresponding ls-norm (1 ≤ s < ∞)
generalizations of Theorems 1 and 2, we need an
additional notation. Let

E�
s := inf

(b,c)∈R
2
+

Es(b, c),

where

Es(b, c) =
K∑

i=1

wi|b ecti −yi|s.

Obviously, E� = E�
2 and F = F2.

Theorem 3. If the data (wi, ti, yi), i = 1, . . . , K , K >
3, satisfy the conditions (5) and (6), then functional Fs

defined by (8) attains its infimum on P if and only if there
is a point (m0, p0, q0) ∈ P such that Fs(m0, p0, q0) ≤
E�

s .
The proof of the following theorem is

also omitted; it is the same for the respective
parts of the proof of Theorem 3, with the
exception that we do not have to prove that
m� < ∞.

Theorem 4. If the data (wi, ti, yi), i = 1, . . . , K , K > 3,
satisfy the conditions (5) and (6), then there exists a point
(m�, p�, q�) ∈ PM such that

Fs(m�, p�, q�) = inf
(m,p,q)∈PM

Fs(m, p, q).

2.3. Proofs of Theorems 1 and 3. The following
lemma will be used in proofs of both Theorems 1 and 3.

Lemma 1. Suppose that the data (wi, ti, yi), i =
1, . . . , K , K > 3, satisfy the conditions (5) and (6). Then
given any i0 ∈ {1, . . . , K − 1} there exists a point in P
at which functional Fs defined by (8) attains a value less
than

K∑
i=1

i�=i0,i0+1

wi|yi|s.
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Proof. Let us first write

x0 :=
1

ti0+1 − ti0
max

{
ln(

yi0+1

yi0

), ln
( yi0

yi0+1

)}
,

and then define functions α, m, p, q : (x0,∞) → (0,∞)
as follows:

α(x) :=
1 −

√
yi0

yi0+1
e− x

2 (ti0+1−ti0 )

√
yi0

yi0+1
− e− x

2 (ti0+1−ti0)
,

m(x) :=
yi0+1[1 + α(x) e− x

2 (ti0+1−ti0 )]2 exti0+1

x[1 + α(x) e x
2 (ti0+ti0+1)]

,

p(x) :=
x

1 + α(x) e x
2 (ti0+ti0+1)

,

q(x) :=
xα(x) e x

2 (ti0+ti0+1)

1 + α(x) e x
2 (ti0+ti0+1)

.

By using the definition of x0, it is easy to show
that function α is well defined and strictly positive on
(x0,∞). Thus for all x ∈ (x0,∞) we have that
(m(x), p(x), q(x)) ∈ P . Furthermore, it is easy to verify
that

n(t; m(x), p(x), q(x))

= yi0+1

[
1 + α(x) e−

x
2 (ti0+1−ti0 )

]2

× e−x(t−ti0+1)

[
1 + α(x) e−x(t− ti0+ti0+1

2 )
]2 .

Now, by a straightforward but tedious calculation,
one can verify that, for all x ∈ (x0,∞),

n(ti0 ; m(x), p(x), q(x)) = yi0 ,

n(ti0+1; m(x), p(x), q(x)) = yi0+1,

and

lim
x→∞n(t; m(x), p(x), q(x))

=
{

0 if t ∈ (−∞, ti0) ∪ (ti0+1,∞),
∞ if t ∈ (ti0 , ti0+1).

In Fig. 3 we plot the graph of the function t �→
n(t; m(x), p(x), q(x)).

Let x > x0 be sufficiently large, so that

0 < n(ti; m(x), p(x), q(x)) ≤ yi, i = 1, . . . , K,

whereby the equality holds only if i = i0 or i = i0 + 1.
Due to the above mentioned facts, such x exists. Then

Fs(m(x), p(x), q(x))

=
K∑

i=1

wi|n(ti; m(x), p(x), q(x)) − yi|s

<
K∑

i=1
i�=i0,i0+1

wi|yi|s.

�

tti0 ti0+1

n(t)

yi0

yi0+1

�

�

x=1�

x=2�

x=3�

Fig. 3. Plots of the Bass adoption curve n(t; m(x), p(x), q(x))
for some values of x.

Proof. (Theorem 1) Assume first that (m�, p�, q�) ∈ P is
the LS estimate, and then show that F (m�, p�, q�) ≤ E�.
In order to do this, first note that, for all b, c, x > 0,

F (m�, p�, q�) ≤ F
(bx

c
,

c

x + 1
,

cx

x + 1

)

=
K∑

i=1

wi

[
xb

(1 + x) e−cti

(1 + x e−cti)2
− yi

]2

,

from where taking the limit as x → ∞ it follows that (see
the proof of Proposition 1)

F (m�, p�, q�) ≤
K∑

i=1

wi(b ecti −yi)2.

From the last inequality and the definition of E� we obtain
that F (m�, p�, q�) ≤ E�.

Let us show the converse of the theorem. Suppose
that there is a point (m0, p0, q0) ∈ P such that
F (m0, p0, q0) ≤ E�. Since the functional F is
nonnegative, there exists F � := inf(m,p,q)∈P F (m, p, q).
It should be shown that the LS estimate exists, i.e.,
that there exists a point (m�, p�, q�) ∈ P such that
F (m�, p�, q�) = F �. To do this, first note that

F � ≤ F (m0, p0, q0) ≤ E�.

If F � = F (m0, p0, q0), to complete the proof it is enough
to set (m�, p�, q�) = (m0, p0, q0). Hence, we can further
assume that

F � < F (m0, p0, q0) ≤ E�. (9)

Let (mk, pk, qk) be a sequence in P , such that

F � = lim
k→∞

F (mk, pk, qk)

= lim
k→∞

K∑
i=1

wi[n(ti; mk, pk, qk) − yi]2. (10)

Without loss of generality, in further deliberations we may
assume that sequences (mk), (pk) and (qk) are monotone.
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This is possible because the sequence (mk, pk, qk) has a
subsequence (mlk , plk , qlk), such that all its component
sequences (mlk), (plk) and (qlk) are monotone, and since
limk→∞ F (mlk , plk , qlk) = limk→∞ F (mk, pk, qk) =
F �.

Since each monotone sequence of real numbers
converges in the extended real number system R, define

m� := lim
k→∞

mk, p� := lim
k→∞

pk, q� := lim
k→∞

qk.

Note that 0 ≤ m�, p�, q� ≤ ∞, because (mk, pk, qk) ∈
P .

To complete the proof, it is enough to show that
(m�, p�, q�) ∈ P , i.e., that 0 < m� < ∞, 0 < p� < ∞
and 0 ≤ q� < ∞. The continuity of the functional
F will then imply that F � = limk→∞ F (mk, pk, qk) =
F (m�, p�, q�).

It remains to show that (m�, p�, q�) ∈ P . The proof
will be derived in three steps. In Step 1, we will show that
0 < m� < ∞. After that, in Step 2, we will show that
0 < p� + q� < ∞. The proof that p� > 0 will be given in
Step 3.

Step 1. Let us first show that 0 < m� < ∞. We prove this
by contradiction. Suppose on the contrary that m� = 0 or
m� = ∞. Then only one of the following three cases
can occur: (i) p� + q� = 0, (ii) 0 < p� + q� < ∞, or
(iii) p� + q� = ∞. Now, we are going to show that the
functional F cannot attain its infimum in either of these
three cases, which will prove that 0 < m� < ∞.

Case (i): p� + q� = 0. Let L := limk→∞ mkpk. First
note that 0 ≤ L ≤ ∞.

By using the inequality

1 <
1 + qk

pk

1 + qk

pk
e−(pk+qk)t

< e(pk+qk)t for all t ≥ 0,

it follows readily that

lim
k→∞

1 + qk

pk

1 + qk

pk
e−(pk+qk)t

= 1 for all t ≥ 0.

Hence,

lim
k→∞

n(ti; mk, pk, qk)

= lim
k→∞

[
mkpk

( 1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

)2
e−(pk+qk)ti

]

= L,

i = 1, . . . , K . If L = ∞, then it would follow that F � =
∞, which is impossible. If L < ∞, then we would obtain
that

F � =
K∑

i=1

wi(L − yi)2. (11)

Since, by the definition of E�,

K∑
i=1

wi(L ecti −yi)2 ≥ E� for all c > 0,

taking the limit as c → 0+ it follows that
∑K

i=1 wi(L −
yi)2 ≥ E�. From this and (11), we would have that F � ≥
E�, which contradicts the assumption (9). This means that
in this case the functional F cannot attain its infimum.

Case (ii): 0 < p� + q� < ∞. Note that

n(ti; mk, pk, qk)

= mkpk

(
1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

)2

e−(pk+qk)ti ,(12)

i = 1, . . . , K . It readily follows, regardless of whether
qk/pk converges to a finite number or diverges to infinity,
that there exist all limits

α�
i := lim

k→∞

(
1+

qk
pk

1+
qk
pk

e−(pk+qk)ti

)2

, i = 1, . . . , K, (13)

and that 0 < α�
i < ∞.

Let us first show that m� 
= 0. We prove this by
contradiction. Suppose on the contrary that m� = 0.
Then, by using (12) and (13), it is easy to show that
limk→∞ n(ti; mk, pk, qk) = 0 for all i = 1, . . . , K , and
therefore it would follow that F � =

∑K
i=1 wiy

2
i . Since,

according to Lemma 1, there exists a point in P at which
the functional F attains a value smaller than

∑
i�=i0

wiy
2
i ,

this means that in this way (m� = 0) the functional F
cannot attain its infimum.

It remains to show that m� 
= ∞. The proof will
be given also by contradiction. Assume that m� = ∞.
Then by using (12) and (13) one can easy to show that
there must be limk→∞ pk = p� = 0, because otherwise
we would have that limk→∞ n(ti; mk, pk, qk) = ∞ for
all i = 1, . . . , K , and consequently, F � = ∞, which is,
as we know, impossible. Therefore, because p� = 0 and
0 < p� + q� < ∞, there must be q� > 0, which would
imply limk→∞ qk/pk = ∞ and, consequently,

α�
i = e2q�ti , i = 1, . . . , K.

Now, by using (12) it is easy to show that

lim
k→∞

n(ti; mk, pk, qk) = L eq�ti , i = 1, . . . , K,

where, as in Case (i), L = limk→∞ mkpk. If L = ∞,
then it would follow that F � = ∞, which is impossible.
If L < ∞, then we would obtain that

F � = lim
k→∞

F (mk, pk, qk) =
K∑

i=1

wi(L eq�ti −yi)2 ≥ E�,
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which contradicts the assumption (9). This proves that
m� 
= ∞.

Case (iii): p� + q� = ∞. Note that

n(ti; mk, pk, qk)

=
mk(pk + qk)

1 + qk

pk
e−(pk+qk)ti

(
1 + qk

pk

)
e−(pk+qk)ti

1 + qk

pk
e−(pk+qk)ti

,

i = 1, . . . , K. (14)

Before continuing the proof, let us also note that

qk

pk
e−(pk+qk)t1 ≥ qk

pk
e−(pk+qk)t2

≥ · · · ≥ qk

pk
e−(pk+qk)tK .

Now, let us first show that
limk→∞ qk/pk e−(pk+qk)ti is either 0 or ∞, for all
i = 1, . . . , K . Assume on the contrary that there exists an
index i0 such that

0 < lim
k→∞

qk

pk
e−(pk+qk)ti0 := Li0 < ∞.

Then

lim
k→∞

(
1 + qk

pk

)
e−(pk+qk)ti0

1 + qk

pk
e−(pk+qk)ti0

=
Li0

1 + Li0

> 0,

and therefore from (14) it would follow that

lim
k→∞

n(ti0 ; mk, pk, qk)

= lim
k→∞

mk(pk + qk)
Li0

(1 + Li0)2
.

In order to have a bounded functional, the limit
limk→∞ mk(pk + qk) must be finite (regardless of the
value of m�). Due to this and the equality

qk

pk
e−(pk+qk)ti =

qk

pk
e−(pk+qk)ti0 e−(pk+qk)(ti−ti0 ),

it follows readily that

lim
k→∞

qk

pk
e−(pk+qk)ti =

{
∞, i < i0

0, i > i0.

Now, by using (14) it is easy to check that
limk→∞ n(ti; mk, pk, qk) = 0 for each i 
= i0. That
would imply that F � ≥ ∑

i�=i0
wiy

2
i . But since according

to Lemma 1 there exists a point in P at which the
functional F attains a value smaller than

∑
i�=i0

wiy
2
i , we

have proved that limk→∞(qk/pk) e−(pk+qk)ti is either 0
or ∞, for all i = 1, . . . , K .

Note that only one of the following three subcases
can occur: (a) limk→∞ qk

pk
e−(pk+qk)ti = ∞ for all

i = 1, . . . , K , (b) limk→∞ qk

pk
e−(pk+qk)ti = 0 for all

i = 1, . . . , K , or (c) there exists i0 
= K such that

lim
k→∞

qk

pk
e−(pk+qk)ti =

{
∞, i ≤ i0

0, i > i0.

Subcase (a): If limk→∞ qk

pk
e−(pk+qk)ti = ∞ for all i =

1, . . . , K , then

lim
k→∞

(1 + qk

pk
) e−(pk+qk)ti

1 + qk

pk
e−(pk+qk)ti

= 1, i = 1, . . . , K

and therefore

lim
k→∞

n(ti; mk, pk, qk)

= lim
k→∞

mkpk e(pk+qk)ti

[(1 + qk

pk
) e−(pk+qk)ti

1 + qk

pk
e−(pk+qk)ti

]2

= lim
k→∞

mkpk e(pk+qk)ti , i = 1, . . . , K.

To keep the functional F bounded, the limit
limk→∞ mkpk e(pk+qk)tK must be finite. Because of that,
by using the equality

mkpk e(pk+qk)ti = mkpk e(pk+qk)tK e(pk+qk)(ti−tK)

it follows directly that

lim
k→∞

mkpk e(pk+qk)ti = 0,

i.e.,
lim

k→∞
n(ti; mk, pk, qk) = 0

for all i = 1, . . . , K − 1. In this subcase we would have

F � = lim
k→∞

F (mk, pk, qk) ≥
K−1∑
i=1

wiy
2
i .

Subcase (b): Let us assume that

lim
k→∞

qk

pk
e−(pk+qk)ti = 0

for all i = 1, . . . , K . Then

lim
k→∞

pk

qk
e(pk+qk)ti

1 + pk

qk
e(pk+qk)ti

= 1, i = 1, . . . , K,

and thus

lim
k→∞

n(ti; mk, pk, qk)

= lim
k→∞

mk
(pk + qk)2

pk
e−(pk+qk)ti

[ pk

qk
e(pk+qk)ti

1 + pk

qk
e(pk+qk)ti

]2

= lim
k→∞

mk
(pk + qk)2

pk
e−(pk+qk)ti , i = 1, . . . , K.
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Proceeding similarly as in the previous subcase, it
can be shown that

lim
k→∞

n(ti; mk, pk, qk) = 0, i = 2, . . . , K,

and therefore in this subcase we would have

F � = lim
k→∞

F (mk, pk, qk) ≥
K∑

i=2

wiy
2
i .

Subcase (c): Arguing similarly as in subcases (a) and (b),
it can be shown that

lim
k→∞

n(ti; mk, pk, qk) = 0,

i ∈ {1, . . . , K} \ {i0, i0 + 1},

and therefore in this subcase we would have

F � = lim
k→∞

F (mk, pk, qk) ≥
K∑

i=1
i�=i0,i0+1

wiy
2
i .

Since according to Lemma 1 in each of
Subcases (a)–(c) there exists a point in P at
which the functional F attains a value smaller than
limk→∞ F (mk, pk, qk), our functional F cannot attain
its infimum in either of these three subcases, regardless of
whether m� = 0 or m� = ∞.

So far we have shown that 0 < m� < ∞, and this
will be used in the sequel.

Step 2. Let us first show that p� + q� > 0. We prove this
by contradiction. Suppose on the contrary that p� + q� =
0. Then from the inequalities

1 <
1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

< e(pk+qk)ti , i = 1, . . . , K

it follows that

lim
k→∞

1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

= 1, i = 1, . . . , K.

Accordingly, now it is easy to show that

lim
k→∞

n(ti; mk, pk, qk)

= lim
k→∞

mkpk

[ 1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

]2
e−(pk+qk)ti = 0,

i = 1, . . . , K , and therefore from (10) it would follow
that F � =

∑K
i=1 wiy

2
i . Since according to Lemma 1

there exists a point in P at which functional F attains a
value smaller than

∑K
i=1 wiy

2
i , this means that in this way

functional F cannot attain its infimum. Thus, we have
proved that p� + q� > 0.

The proof that p� + q� < ∞ can be given by
contradiction. To do this, it is sufficient to proceed as in
Case (iii) from Step 1.

In this way we have completed the proof that 0 <
p� + q� < ∞.

Step 3. It remains to show that p� > 0. Suppose on the
contrary that p� = 0. Then from the inequalities 0 <
p� + q� < ∞ it follows that q� > 0, and consequently
limk→∞ qk

pk
= ∞. Now it is easy to conclude that

lim
k→∞

n(ti; mk, pk, qk)

= lim
k→∞

mkpk

[ 1 + qk

pk

1 + qk

pk
e−(pk+qk)ti

]2
e−(pk+qk)ti = 0,

i = 1, . . . , K . As shown in Step 2, in this way functional
F cannot attain its infimum. Thus, we proved that p� > 0
and herewith we have completed the proof. �
Proof. (Theorem 3) The proof of Theorem 3 is similar to
that of Theorem 1; just replace the l2 norm with the ls
norm. Thereby all parts of the proof remain the same.

3. Numerical experiments

In the following examples, the obtained estimates of
the optimal parameters (m�, p�, q�) will be denoted by
(m̄�, p̄�, q̄�).

Example 1. To illustrate the accuracy of the parameter
estimate approach for the Bass model based on the LS
fitting adoption curve, we start with the following data
which satisfy the exact solution (m = 1000, p =
0.001, q = 0.2) of the differential equation (1):

τi = i, Ni = N(τi; 1000, 0.001, 0.2),

i = 1, . . . , 53. These data have a point of inflection where

tI =
1

p + q
ln(q/p) = 26.3598.

We analyzed three sets of data: the data up to the
point just before the point of inflection (K = 26), the data
up to the point just after the point of inflection (K = 27),
and the data up to the ceiling (K = 53). The results of
the LS fitting Bass adoption curve to corresponding data
obtained by using the centered finite approximation are
given in Table 1. For all weights wi we took 1. �

Example 2. Let (τi, Ni), i = 1, . . . , K , be the data where

K = 50, τi = i, i = 1, . . . , K,

Ni = N(τi; 1000, 0.001, 0.2)+ εi, εi = N (0, σ2).

As measures of the quality of fitting, we will use
the Mean Absolute Relative Error (MARE) and the Root
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Table 1. Accuracy of parameter estimates.
m̄�

∣∣ m̄�−m
m

∣∣ · 100 p̄�
∣∣ p̄�−p

p

∣∣ · 100 q̄�
∣∣ q̄�−q

q

∣∣ · 100
K = 26 999.486 0.0514 0.00100308 0.3080 0.199901 0.0495
K = 27 999.636 0.0364 0.00100313 0.3130 0.199886 0.0570
K = 53 1000.060 0.0060 0.00100355 0.3550 0.199830 0.0850

Mean Squared Relative Error (RMSRE):

MARE =
1
K

K∑
i=1

∣∣∣Ni − N̂i

Ni

∣∣∣,

RMSRE =

√√√√ 1
K

K∑
i=1

(Ni − N̂i

Ni

)2

,

where K , Ni and N̂i denote the number of data points, the
observed values and the estimated values, respectively.

In a large number of numerical experiments it was
confirmed that, in terms of the MARE and RMSRE,
minimization of the functional F defined by (7) (with data
obtained by the centered finite difference approximation
method) provides a much better fit than minimization of
functional S defined by (4). For example, the results of
one experiment with σ2 = 0.3 are shown in Table 2.

�

Example 3. We are going to fit the Bass model
to real diffusion data for seven products: room
air conditioners, color televisions, clothes dryers,
ultrasound, mammography, foreign language, and
accelerated program (Table 3). These data, taken from
Mahajan et al. (1986), have been used extensively
in the diffusion modeling literature to illustrate the
efficiency of estimation procedures (see Mahajan et
al., 1986; Schmittlein and Mahajan, 1982; Scitovski and
Meler, 2002; Srinivasan and Mason, 1986).

For each product or service, we estimated the
unknown parameters m, p and q by minimizing functional
F defined by (7), as well as by minimizing functional S
defined by (4). For all weights wi we took 1. Parameter
estimates and fit statistics are reported in Tables 4 and 5.

As can be seen, in terms of the MARE, minimization
of functional F provides a better fit for five products
(room air conditioners, color televisions, mammography,
foreign language, and accelerated program). In terms of
the RMSRE, minimization of the functional F provides
a better fit for two products (a foreign language, and an
accelerated program). �

4. Conclusions

The best-known and widely used model in diffusion
research is the Bass model. It has three parameters:
the coefficient of innovation (p > 0), the coefficient of

imitation (q ≥ 0), and the total market potential (m > 0).
In practice, the unknown parameters p, q and m are not
known in advance and must be estimated from the actual
adoption data. There is no unique way to estimate the
unknown parameters and many different methods have
been proposed in the literature.

In this paper, we have considered the parameter
estimation approach for the Bass model based on the
nonlinear weighted least squares fitting of the Bass
adoption curve. We have shown that the best least squares
estimate for the Bass adoption curve does not necessarily
exist (Proposition 1). As our main results, we present
two theorems (Theorems 1 and 2) on the existence of
the least squares estimate, as well as their generalizations
in the ls norm (1 ≤ s < ∞). Theorem 1 gives a
necessary and sufficient condition for the existence of the
least squares estimate. For practical purposes, Theorem 2
is extremely important, as it guarantees the existence of
the least squares estimate in the case when parameter
m is bounded above. Some numerical experiments are
included to illustrate the efficiency of our estimation
approach.
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Table 2. Accuracy of parameter estimates.
by minimizing F by minimizing S

(m̄�, p̄�, q̄�) = (999.99, 0.001005, 0.199791) (m̂, p̂, q̂) = (999.94, 0.001001, 0.199962)
MARE 0.008468 0.049424
RMSRE 0.026829 0.077858

Table 3. Data listing.
Product

Room air Color Foreign Accelerated
conditioners televisions Clothes dryers Ultrasound Mammography language program

τi Year Ni(10
3) Year Ni(10

3) Year Ni(10
3) Year Ni Year Ni Year Ni Year Ni

1 1949 96 1963 747 1949 106 1965 5 1965 2 1952 1.25 1952 0.67
2 1950 291 1964 2227 1950 425 1966 8 1966 4 1953 2.02 1953 1.15
3 1951 529 1965 4873 1951 917 1967 10 1967 6 1954 2.88 1954 3.26
4 1952 909 1966 9991 1952 1552 1968 15 1968 9 1955 3.36 1955 3.55
5 1953 1954 1967 15768 1953 2289 1969 22 1969 13 1956 4.70 1956 6.14
6 1954 3184 1968 21750 1954 3179 1970 34 1970 22 1957 8.26 1957 8.35
7 1955 4451 1969 27712 1955 4576 1971 40 1971 29 1958 11.62 1958 25.15
8 1956 6279 1970 32343 1956 6099 1972 56 1972 45 1959 17.86 1959 36.19
9 1957 7865 1957 7393 1973 72 1973 68 1960 23.81 1960 50.59

10 1958 9538 1958 8633 1974 100 1974 92 1961 30.05 1961 57.02
11 1959 11338 1959 10058 1975 128 1975 107 1962 34.94 1962 63.17
12 1960 12918 1960 11318 1976 149 1976 113 1963 36.19 1963 64.32
13 1961 14418 1961 12554 1977 162 1977 118
14 1978 168 1978 119

Table 4. Parameter estimates and fit statistics obtained by minimizing functional F (our approach).
Product m̄� p̄� q̄� MARE RMSRE

Room air conditioners 18.72 × 106 0.00953 0.37328 0.30810 0.50741
Color televisions 39.69 × 106 0.01889 0.60920 0.10506 0.16738
Clothes dryers 16.50 × 106 0.01367 0.32565 0.19744 0.43997
Ultrasound 167.44 0.00136 0.61627 0.43294 0.53512
Mammography 111.51 0.00045 0.84864 0.43308 0.55568
Foreign language 37.62 0.00199 0.68890 0.35119 0.47026
Accelerated program 64.61 0.00084 0.90948 0.28898 0.42592

Table 5. Parameter estimates and fit statistics obtained by minimizing functional S (NLS approach).
Product m̂ p̂ q̂ MARE RMSRE

Room air conditioners 18.71 × 106 0.00944 0.37476 0.30984 0.47103
Color televisions 39.66 × 106 0.01847 0.61586 0.11028 0.15061
Clothes dryers 16.50 × 106 0.01360 0.32670 0.19525 0.42240
Ultrasound 167.38 0.00132 0.62060 0.41165 0.50388
Mammography 111.39 0.00041 0.86065 0.44583 0.55339
Foreign language 37.56 0.00189 0.69676 0.40617 0.52545
Accelerated program 64.43 0.00074 0.92828 0.76973 1.15919

Demidenko, E.Z. (2006). Criteria for global minimum of sum of
squares in nonlinear regression, Computational Statistics
& Data Analysis 51(3): 1739–1753.

Demidenko, E.Z. (1996). On the existence of the least squares
estimate in nonlinear growth curve models of exponential
type, Communications in Statistics—Theory and Methods
25(1): 159–182.

Dennis, J.E. and Schnabel, R.B. (1996). Numerical Methods
for Unconstrained Optimization and Nonlinear Equations,
SIAM, Philadelphia, PA.

Gill, P.E., Murray, W. and Wright, M.H. (1981). Practical Opti-
mization, Academic Press, London.

Gonin, R. and Money, A.H. (1989). Nonlinear Lp-Norm Esti-
mation, Marcel Dekker, New York, NY.
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