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Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of
tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present
paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC),
based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis
by simultaneously minimizing a set of closed loop performances (the overshoot and the settling time for each output
of the MIMO system). First, we adopt the Weighted Sum Method (WSM), which is an aggregative method combined
with a Genetic Algorithm (GA) used to minimize a single criterion generated by the WSM. Second, we use the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) as a Pareto method and we compare the results of both the methods.
The performance of the two strategies in the adjustment of multivariable predictive control is illustrated by a simulation
example. The simulation results confirm that a multiobjective, Pareto-based GA search yields a better performance than a
single objective GA.

Keywords: closed loop performance, coupled multivariable system, generalized predictive control, multiobjective opti-
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1. Introduction

Industrial processes are essentially coupled multivariable
systems. The Generalized Predictive Control (GPC)
strategy offers an effective way to deal with problems
in multivariable control systems by including the process
model in the computation of control actions. Without any
doubt, the ability of GPCs regarding this kind of processes
attracted notable attention in industry over the past few
years (Qin and Badgwell, 2003).

In order to control a multivariable system, some
works used multivariable predictive controllers in a
completely decentralized fashion (Zenghui et al., 2006;
Al-Gherwi et al., 2010). To realize that, it is necessary
to design decoupling compensators to eliminate the
interactions, and then the MIMO system is treated as
a set of independent SISO systems and individual GPC
controllers for the different subsystems are operated.
In such cases, satisfactory results are obtained if the
interactions are negligible. But in many cases, industrial
systems are strongly coupled and more than one input
variable is coupled with the outputs. Consequently,
closed-loop performances may be significantly decreased

since some or all interactions are ignored (Al-Gherwi
et al., 2010). In this case, the system must be considered
truly multivariable and some type of multivariable control
has to be applied to achieve satisfactory performances.

It is evident that distributed GPC strategies have a
simpler structure but their performance is expected to
be generally poorer as compared with centralized GPC
strategies which will be applied in this work. The
design of multivariable predictive controllers requires the
specification of synthesis parameters, namely, prediction
horizons, control horizons and cost weighting factors. But
there are not exact rules giving the values of the required
parameters. In this context, some works (Bemporada
and Munoz de la Penab, 2009; Muldera et al., 2009;
Królikowski and Jerzy, 2001) were interested in tuning of
the MPC parameters using multiobjective optimization.

A new Model Predictive Control (MPC) scheme
based on multiparametric multiobjective linear
programming was presented (Bemporada and Munoz
de la Penab, 2009). In the work of Muldera et al. (2009),
a method for the synthesis of a simultaneous linear
and anti-windup controller using multiobjective convex
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optimization is described and tested using a benchmark
problem. Also, some works deal with the automatic
tuning of MPC, e.g., Ben Abdennour et al. (1998) present
an on-line adjustment of GPC synthesis parameters using
fuzzy logic. Therefore the objective of this work is to
adjust the synthesis parameters of multivariable predictive
controllers to make a compromise between closed loop
performances. To realize this the optimization problem
treated in this work is a multiobjective one and the
performance criteria of this problem correspond to the
closed loop performances.

In this paper, we make use of Multi-Objective
Optimization (MOO) based on the minimization of all
performance criteria simultaneously. MOO leads to a
set of optimal solutions, i.e., Pareto optimal solutions or
non-dominated solutions (Colette and Siarry, 2002). In
this context, many works (e.g., Bemporada and Munoz
de la Penab, 2009; Muldera et al., 2009; Popov et al.,
2005; Yang and Pedersen, 2006; Behroozsarand and
Shaffei, 2010) were focused on the synthesis of controllers
based on multiobjective optimization, which has received
growing interest.

In this work, we suggest two strategies to achieve our
purpose. The first one is a combination of an aggregative
method, namely, the weighted sum method, allowing
the transformation of the criteria in only one criterion,
and a GA whose role is to minimize the generated
single criterion by the WSM. The second strategy uses
NSGA-II as a multiobjective Pareto-based GA. NSGA-II
is a modified version of the popular NSGA to rectify all
the above issues of the latter. In fact, NSGA-II has a better
sorting algorithm (O(MN2) instead of O(MN3), where
M is the number of objectives and N is the population
size), incorporates elitism and no sharing parameter needs
to be chosen a priori (Deb, 2002; Srinivas and Deb, 1995).
The performance criteria to be simultaneously minimized
are the overshoot and the settling time for each MIMO
system output.

This paper is organized as follows. The problem is
formulated in Section 2, where the key elements needed
to formulate a centralized MIMO predictive control
law are given. Both strategies allowing the design of
the multivariable multiobjective predictive controller are
described in Section 3. The obtained simulation results
and discussion are presented in Section 4. Conclusions
and perspectives are given in the last section.

2. Centralized multivariable generalized
predictive control

This section is an extension of the GPC proposed by
Clarke et al. (1987) to multivariable systems.

2.1. Multivariable system representation. We
consider a multivariable linear system with n inputs

ul(k), l = 1, . . . , n and m outputs yj(k), k = 1, . . . , m
given by

y(k) = H(z−1)u(k), (1)

where u(k) = [u1(k),u2(k), . . . , un(k)]T ∈ R
n is the

control vector, y(k) = [y1(k),y2(k), . . . , ym(k)]T ∈ R
m

is the output vector and

H(z−1) =

⎛
⎜⎝

H11(z−1) · · · H1n(z−1)
...

. . .
...

Hm1(z−1) · · · Hmn(z−1)

⎞
⎟⎠

is the m × n transfer function matrix.
In this section, the basic principles of the

multivariable GPC control design are discussed, based on
ARMA dynamics models. The system given by (1) can be
written in the matrix form (Camacho and Bordons, 1995)
as Eqn. (2) with

Ajj(z−1) = 1 + ajj(1)z−1 + ajj(2)z−2 + . . .

+ ajj(nAjj )z
−nAjj , j = 1, 2, . . . , m,

(3)

Bjl(z−1) = bjl(0) + bjl(1)z−1 + . . .

+ bjl(nBjl
)z−nBjl , l = 1, 2, . . . , n. (4)

2.2. Objective function. MGPC is based on the
minimization of a quadratic criterion, with a first term
corresponding to the difference between the predicted
output sequence and the future set points sequence and
a second term corresponding to the future weighted
control increments (Clarke et al., 1987; Richalet et al.,
2005; Mohtadi et al., 1987; Kinnaert, 1989) given by the
following expression:

JGPC =
m∑

j=1

Hpj∑
i=1

(rj(k + i) − ŷj(k + i/k))2 (5)

+
n∑

l=1

ρl

Hcl
−1∑

i=0

(Δul(k + i))2,

where Hpj is the prediction horizon for the scalar output
yj , Hcl

is the control horizon for the input ul and ρl is the
weighting factor of control increments or, equivalently,

JGPC = (r̂ − ŷ)T (r̂ − ŷ) + ΔuTΛΔu, (6)

where
r̂ =

[
r̂T
1 r̂T

2 . . . r̂T
m

]T ∈ R
Hp

is an augmented set-point vector composed of

Hp=
m∑

j=1

Hpj
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⎡
⎢⎢⎢⎣

A11(z−1) 0 . . . 0
0 A22(z−1) . . . 0
...

...
. . .

...
0 0 . . . Amm(z−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1(k)
y2(k)

...
ym(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B11(z−1) B12(z−1) . . . B1n(z−1)
B21(z−1) B22(z−1) . . . B2n(z−1)

...
...

. . .
...

Bm1(z−1) Bm2(z−1) . . . Bmn(z−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1(k − 1)
u2(k − 1)

...
un(k − 1)

⎤
⎥⎥⎥⎦ ,

(2)

rows obtained by stacking the sub-vectors

r̂j =
[
rj(k + 1) rj(k + 2) . . . rj(k+Hpj )

]T ∈ R
Hpj ,

j = 1, 2, . . . , m,

which specify the desired future set-point trajectories for
each output

ŷ =
[
ŷT
1 ŷT

2 . . . ŷT
m

]T ∈ R
Hp

is the augmented vector of predicted future outputs which
contains the predicted future values of the m outputs, and
is composed of the sub-vectors

ŷj =
[
ŷj(k + 1/k) . . . ŷj(k+Hpj /k)

]T ∈ R
Hpj ,

j = 1, 2, . . . , m.

The augmented vector

Δû =
[
ΔûT

1 ΔûT
2 . . . ΔûT

n

]T ∈ R
Hc ,

composed of

Hc=
n∑

l=1

Hcl

rows, contains all the input-increment values required to
produce, and it contains the sub-vectors

Δûl = [Δul(k) . . . Δul(k+Hcl
−1)]T ∈ R

Hcl ,

l = 1, 2, . . . , n.

The input-weighting matrix

Λ ∈ R
HcxHc

is given by

Λ = diag {ρ1 IHc1 , ρ2IHc2 , . . . , ρnIHcn}

with scalars ρl ≥ 0, l = 1, 2, . . . , n.
In this work, only the weighting coefficients for

future control increments and their influence on the
closed loop performance are taken into account. We
can also introduce weights for predicted control errors in
the performance function to illustrate their influence on
overshoots and settling times.

2.3. Design of a MIMO predictor via Diophan-
tine equations. We consider m MISO systems resulting
from (1),

Ajj(z−1)yj(k) =
n∑

l=1

Bjlul(k − 1),, (7)

j = 1, . . . , m. A predictor form can be derived from (7)
by solving the set of Diophantine equations

Fj,i(z−1)ΔAjj(z−1)+z−iGj,i(z−1) = 1 (8)

and

Fj,i(z−1)Bjl(z−1) =Qjl,i(z−1)+z−iRjl,i(z−1). (9)

The predictor is written in this vector-matrix form as

ŷ = ŷ0 + QΔû. (10)

The dynamic matrix appearing in (10) is of the form

Q =

⎡
⎢⎢⎢⎣

Q12 . . . Q1n

Q22 . . . Q2n
...

. . .
...

Qm1 Qm2 . . . Qmn

⎤
⎥⎥⎥⎦ ∈ R

Hp×Hc , (11)

where

Qjl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qjl(0)
qjl(1)
qjl(2)

...

...
qjl(Hpj−1)

0 . . . 0

qjl(0)
. . .

...

qjl(1)
. . . 0

...
. . . qjl(0)

...
. . .

...
qjl(Hpj−2) . . . qjl(Hpj−Hcl

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
Hpj

×Hcl (12)
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The vector ŷ0 is given by

ŷ0 = G(z−1)y(k) + z−1R(z−1)Δu(k), (13)

where

Gj(z−1) =

⎡
⎢⎢⎢⎣

Gj,1(z−1)
Gj,2(z−1)

...
Gj,Hpj

(z−1)

⎤
⎥⎥⎥⎦ ∈ R

Hpj
×1 (14)

and

Rj =

⎡
⎢⎢⎢⎣

Rj1,1(z−1)
Rj1,2(z−1)

...
Rj1,Hpj

(z−1)

Rj2,1(z−1) . . . Rjn,1(z−1)
Rj2,2(z−1) . . . Rjn,1(z−1)

...
. . .

...
Rj2,Hpj

(z−1) . . . Rjn,Hpj
(z−1)

⎤
⎥⎥⎥⎦

∈ R
Hpj

×n. (15)

2.4. Optimal control solution. The solution of the
problem described by (6) is given by

Δûopt = Z(r̂ − ŷ0), (16)

where

Z = (QT Q + Λ)−1QT ∈ R
Hc×Hp (17)

Using the receding horizon principle, only
the elements of the first row of Δûopt which
corresponds to the current instant k are used.
These elements are collected in the vector
Δu(k) = [Δu1(k) Δu2(k) . . .Δun(k)] ∈ R

n. Then we
have the vector matrix MIMO predictive law

Δu(k) = K(r̂ − ŷ0), (18)

where the gain matrix K ∈ R
n×Hp contains the rows of Z

that are labelled with 1, 1+Hc1 , 1+Hc1+Hc2 and so on.

3. Design of the multiobjective tuning of
GPC parameters

MOO can be defined as the problem of finding a vector of
parameters X = [x1, . . . , xe]T , which optimizes a vector
of objective functions (J1(X), . . . , Jf (X)) (Berro, 2001;
Talbi, 2001; Coello Coello et al., 2002). In general, the
MOO problem can be formulated as follows:

min J = (J1(X), J2(X), . . . , Jf (X))

subject to

gi(X) ≤ 0 for i = 1, . . . , ng, (19)

hj(X) = 0 for j = 1, . . . , nh,

where J ∈ F (the objective vector field), X ∈ Ω is a
vector of decision variables, f is the number of objective
functions, ng is the number of inequality constraints and
nh is the number of equality constraints.

In single objective optimization problems, the aim
is to determine the global optimal solution, if it exists.
Unlike in single objective optimization, in optimization
with conflicting objectives there is no single optimal
solution and it is often necessary to determine a set
of points that all fit a predetermined definition for the
optimum. Usually, for multiobjective optimality the
following definition given by Pareto is accepted (Gambier,
2008).

Definition 1. A point X∗ ∈ Ω ∈ R
e is Pareto optimal

with respect to Ω iff there does not exist another point
X ∈ Ω such that J(X) ≤ J(X) and Ji(X) ≤ Ji(X∗) for
at least one function, i.e., there is no way to improve upon
a Pareto optimal point without increasing the value of at
least one of the other objective functions.

MOO leads to a set of solutions known as a Pareto
set. This set is also called that of non-dominated solutions.
When the non-dominated solutions are collectively plotted
in the criterion space, they constitute the Pareto front
(Gambier, 2008; Veldhuizen and Lamont, 2000). All
points of the Pareto front are an equally acceptable
solution for the problem.

The determination of the Pareto set is only a first step
in the solution of multiobjective problems, which needs
secondly the choice of a solution from this optimal set
according to the decision-maker’s preferences to be able
to implement the controller. This choice takes generally
three forms: a priori, posterior and interactive (Talbi,
2001). In this work, we opt for the posterior decision,
which consists in choosing a single optimal solution from
among the non dominated solutions after generating all
optimal ones. This approach is useful if the cardinality of
the Pareto set is reduced (Berro, 2001).

Thus, the work developed in this paper can be
divided into two main phases as given in Fig. 1: the
first phase named the “evaluation phase” is a phase that
allows off-line generation of optimal solutions. In this
phase, we make use of the model describing the real
system, MGPC and an MOO method. For each set
of the MGPC parameters we evaluate the closed loop
performances. Then, the synthesis parameters giving the
minimum values of objective functions are generated and
form the Pareto front. Once all non-dominated solutions
are obtained, we proceed to the second phase called the
“implementation phase (real time)”. In this phase, the
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Fig. 1. Principal steps to design the multivariable multiobjective
controller.

decision-maker selects a unique solution according to the
user preferences in order to implement the multivariable
predictive controller and control the real system.

At present, a very huge number of methods to solve
MOO problems can be found in the literature (Berro,
2001; Talbi, 2001; Coello Coello et al., 2002; Gambier,
2008; Veldhuizen and Lamont, 2000). In our work,
we compare two multiobjective methods to design the
multivariable predictive controller. The first one is the
Weighted Sum Method (WSM), which is an aggregative
one, and the second is NSGA-II, which is a Pareto method.

The quality of a control applied to a multivariable
process is generally evaluated by the obtained closed
loop performance indices for each output. Among
these performance, we choose as objective functions to
optimize the following ones:

• The overshoot Dj% corresponding to the j-th output

Dj% = 100
yjmax − rj

rj
, (20)

where yjmax is the maximum value of the j-th output
and rj is the j-th set-point value.

• The settling time Tsj : it is the first instant after which
the j-th system output does not exceed ±5% of the
set-point value.

3.1. Weighted sum method. This method allows the
transformation of the objective function vector into a

single objective function. It is known for its efficiency and
suitability to generate a strongly non-dominated solution
that can be used as an initial solution for other techniques
(Gambier, 2007). The single criterion is obtained by the
sum of the weighted criteria as follows (Gambier, 2007):

n∑
i=1

wiJi(X), (21)

where the weights are chosen such that

n∑
i=1

wi = 1, 0 ≤ wi ≤ 1. (22)

Thus, applying the WSM, we obtain the following
criterion:

J = w1D1%+w2Ts1+w3Vu1+ . . . +w3m−2Dm%

+ w3m−1Tsm + w3mVum , (23)

such that w1 + w2 + · · · + w3m = 1 and 0 ≤ wi ≤
1, i = 1, . . . , 3m, with m being the number of outputs of
the multivariable system.

Then, to determine the multivariable GPC synthesis
parameters, we make use of genetic algorithms to
minimize (23) (Mohtadi et al., 1987). Consequently,
this proposed method described by Algorithm 1 consists
essentially of the combination of the WSM and the GA to
determine the GPC synthesis parameters by minimizing
the closed loop performance indices stated previously.
The GA population is formed by the synthesis parameters
(Hpj , Hcl

, ρl). The initial population is produced by
arbitrary values, such as 1 ≤ Hpj ≤ 20, 1 ≤ Hcl

≤ 3
and 0 ≤ ρl ≤ 10 .

After fixing an interval of iterations, for each
individual of the population, we use the multivariable
process model and the multivariable generalized
predictive control in order to compute, for a given
set point, the output sequence. Then, we evaluate the
performance indices (Dj% and Tsj ) and the fitness
given by (23) obtained over this interval as shown
in (2). To obtain the new population, we use the
roulette wheel as a selection operator. To acquire more
information in the new population, the crossover and
mutation operators are needed. This procedure will be
repeated until a stop criterion (e.g., a maximal number
of generation) is reached. Then, we obtain the best
individual (optimal values of Hpj , Hcl

and ρl) that
minimizes the performance indexes.

The steps used to compute the best synthesis
parameters are given in Algorithm 1. These steps are
repeated for each set of weights. In this algorithm, we
design by ‘max-gen’ the maximum number of generations
and by ‘max-pop’ the maximum number of individuals.
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Fig. 2. Evaluation of closed loop performances.

Algorithm 1. First method principal steps to find the best
multivariable predictive controller parameters.
Require: Form the initial population

1: for j = 1 to max-gen do
2: for i = 1 to max-pop do
3: Take the i-th individual of population
4: Use the multivariable GPC with the

multivariable ARMA process model
5: Compute the model outputs and the control

signals
6: Evaluate the criteria Dj% and Tsj

7: Evaluate the fitness using (23)
8: end for
9: Use the GA operators (selection, crossover and

mutation) to form the new population.
10: end for
11: Take the best individual (Hpj , Hcl

, ρl).

3.2. Pareto method (NSGA-II). The Non-dominated
Sorting Genetic Algorithm (NSGA) proposed by Deb
(2002) was one of most successful methods to solve
multiobjective optimization problems. The main criticism
of the NSGA is the high computational complexity of
non-dominated sorting, the lack of elitism and the need for
specifying a sharing parameter. Therefore, an improved
version of NSGA, called NSGA-II, was suggested by Deb
(2002) to address all the above issues. The proposed
NSGA-II algorithm is an elitist one, in which the sharing
function approach is replaced by the crowding-distance
so there is no need for the specification of the sharing
parameter. This algorithm requires only computations.

NSGA-II begins as usual with the creation of a
random parent population of size N . After initializing
the population, the individuals are sorted based on
non-domination into each front and each solution is
assigned a fitness (or rank) equal to its non-domination
level. Individuals in the first front are given a fitness

value of 1 and individuals in the second front are assigned
a fitness value of 2, and so on. The binary tournament
selection, recombination, and mutation operators are used
to create an offspring population of size N . After the
first generation, the offspring population is combined with
the current generation population. Since all the previous
and current best individuals are added in the population,
elitism is ensured (Deb, 2002).

The remaining members of the population are chosen
from subsequent non-dominated fronts in the order of
their ranking. The solutions from the set are chosen first,
followed by solutions from the set, and so on, until the
population size exceeds the current population size. Since
it is necessary to choose exactly N solutions, the crowding
distance, which is a measure of density of solutions
in the neighborhood, is calculated and the solutions of
the last front are sorted using the crowding distance in
descending order. To select an individual, we use the
binary tournament selection, but the selection criterion
is based on the rank and the crowding distance while an
individual is selected if its rank is less than that the other
individual or if the crowding distance is greater than of
the other one. To create a new population, the crossover
and mutation operators are used. Since the population
composed of the current one and current offspring is
formed, the obtained population is sorted again based on
the non-domination and only the best N individuals are
selected based on the rank and the crowding distance on
the last front. For the real-coded NSGA-II applied in
this work, we need to use the simulated binary crossover
(SBX) operator and the polynomial mutation (Deb, 2002).

Simulated binary crossover. The simulated binary
crossover operator is designed to simulate the operation
of a single-point binary crossover on real variables. Many
works suggest that real-coded GAs with the SBX operator
are able to perform as well as, or better than, binary-coded
GAs with the single-point crossover (Deb and Agrawal,
1995). A spread factor β ≥ 0 is defined as the ratio of the
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absolute difference in children values to that of the parent
values:

β =
c2
i − c1

i

p2
i − p1

i

, (24)

where c1
i and c2

i are the generated offspring and p1
i and p2

i

are the selected parents. With the above definition of the
spread factor, crossovers are classified as

• contracting crossovers (β < 1): the parent points
enclose the children points;

• expanding crossovers (β > 1): the children points
enclose the parent points;

• stationary crossovers (β = 1): the children points are
the same as the parent points.

The probability distribution function of β in SBX is
defined by

p(βq) =

⎧⎨
⎩

0.5(ηc + 1)βηc
q if 0 ≤ βq ≤ 1,

0.5(ηc + 1)
1

βηc+2
q

if βq > 1,
(25)

with ηc being the distribution index for crossover which
determines how well spread the children will be from
their parents. To get a value of β, noted as βq , first a
random number x between 0 and 1 is created. From the
specified distribution function given by (25), the ordinate
βq is found so that the area under the probability curve
from 0 to βq is equal to the chosen random number x and
βq is calculated as follows:

βq =

⎧⎨
⎩

(2u)
1

η+1 if u ≤ 0.5,[ 1
2(1 − u)

] 1
η+1

otherwise,
(26)

After obtaining βq from the above probability
distribution, the children solutions are calculated as
follows:

ci
1 = 0.5[(1 − βq)p1

i + (1 + βq)p2
i ], (27)

ci
2 = 0.5[(1 + βq)p1

i + (1 − βq)p2
i ]. (28)

Polynomial mutation. The polynomial mutation is given
by

ck = pk + (pu
k − pl

k)δk, (29)

where ck is the child and pk is the parent, with pu
k and

pl
k being respectively the upper and the lower bound on

the parent component, and δk is a small variation which
is calculated from a polynomial distribution using the
equations below:

δk =

{
(2rk)

1
ηm+1 − 1 if rk < 0.5,

1 − [2(1 − rk)]
1

ηm+1 if rk ≥ 0.5,
(30)

where rk is a random number from the interval (0, 1) and
ηm is the mutation distribution index. In the present work,
the efficiency of the NSGA-II algorithm is illustrated by
the tuning of a GPC multivariable controller. In fact,
this algorithm is used to minimize simultaneously a set of
objectives (overshoot and settling time for each output) for
generating the multivariable GPC synthesis parameters.

4. Simulation results

As a simulation example, we choose a MIMO system
characterized by the next transfer function matrix with
sampling time Te = 1 s:

H(z−1) =

⎡
⎢⎣

0.09z−1

1 − 0.9z−1

0.03z−1

1 − 0.7z−1

0.07z−1

1 − 0.5z−1

0.06z−1

1 − 0.9z−1

⎤
⎥⎦ . (31)

The multiobjective optimization problem treated is given
by

min
X∈Ω

J = (D1(X),Ts1(X),D2(X),Ts2(X))

with
X = [Hp1 ,Hc1 ,ρ1,Hp2 ,Hc2 ,ρ2] such as

(32)

1 ≤ Hpj ≤ 20, j = 1, 2,

1 ≤ Hcl ≤ 3, l = 1, 2,

0 < ρl ≤ 10, l = 1, 2.

To implement the evaluation phase using both
proposed strategies, we choose two different intervals for
each output of the given MIMO system. For the first
output, we evaluate the overshoot D1(%) and the settling
time Ts1 for k ∈ [1500, 2000] . For the second output, the
overshoot D2(%) and the settling time Ts2 are evaluated
for k ∈ [3000, 3500] .

4.1. First strategy. To apply the genetic algorithm,
we choose a population of 50 individuals and with 1,
10 and 100 generations. The crossover and the mutation
probabilities are fixed respectively to cp = 0.7 and mp =
1
6 . To use the WSM, we vary w1 between 0 and 0.98, and
wi, i = 2, . . . , 4, are computed by

wi =
1 − w1

3
. (33)

For every set of wi, i = 1, . . . , 4, the genetic algorithm
evaluates the criterion given by (23) and generates the
best individual (Hpj , Hcl

and ρl) which will be used
to implement the multivariable predictive controller. In
Table 1, we reported the values of the best individuals
corresponding to every set of weights obtained with a
maximum number of generations equal to 100.
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Table 1. Results of an optimization problem using the WSM.
Poids w1 0 0.98
Poids w2 1/3 0.006

Weights w3 1/3 0.006
Poids w4 1/3 0.006

Solutions optimales Hp1 2 3
Solutions optimales Hc1 1 2
Solutions optimales ρ1 0.8367 0.1
Optimal solutions Hp2 4 3

Solutions optimales Hc2 1 1
Solutions optimales ρ2 1.1238 1.052

Valeurs des fonctions objectif D%1 2.594 6.473
Valeurs des fonctions objectif Ts1 53 40

Objective function values D%2 8.2958 25.422
Valeurs des fonctions objectif Ts2 129 54

Figures 3 and 4 describe respectively the
non-dominated solutions which constitute the Pareto
front for the first and the second outputs with 1, 10 and
100 generations. From these figures, we notice that this
strategy does not guarantee the diversity of solutions in
the Pareto front which results in the clustering of the
obtained non-dominated solutions in some areas of the
Pareto surface. On the other hand, this method is not able
to generate all optimal solutions of the problem, which
may cause the loss in good solutions. Also, it is clear that
the increase in the maximum number of generations leads
to the closeness of the solutions to the ideal one.

Fig. 3. Pareto front for the first output obtained using the WSM.

4.2. Second strategy. The optimization problem
involves the four mentioned objective functions, which
have different behaviours. The objective functions were
optimized fulfilling the bounds given in Eqn. (32).
As stated earlier, the NSGA-II algorithm was used for
obtaining the Pareto-optimal solutions. The NSGA-II
algorithm allows evolving a set of non-dominated
solutions that are all equally well suited for solving the
specific problem. In this work, the chosen NSGA-II
parameters are given in Table 2.

Fig. 4. Pareto front for the second output obtained using the
WSM.

Table 2. NSGA-II parameters.
Parameters Values

Number of decision variables 6
Number of objective functions 4

Population size 50
Maximum generations 1 or 10 or 100

Distribution indexes for crossover 20
Distribution indexes for mutation 20

Crossover probability 0.7
Mutation probability 1/6

Applying NSGA-II with 100 generations, we obtain
the results given in Table 3 where for each population
we present the obtained synthesis parameters and the
corresponding closed-loop performances. Then, in Figs. 5
and 6, we have respectively the Pareto front for the
first and second outputs with 1, 10 and 100 generations.
These figures show good diversity and distribution of the
non-dominated solutions along the Pareto surface. On
the other hand, the increase in the maximum number of
generations leads to the closeness of the solutions to the
ideal one.

To make a better comparison between the
performances of both adopted strategies, the Pareto
fronts obtained using the first method and the second

Table 3. Results of an optimization problem using NSGA-II.
N of solution 1 2 49 50

Hp1 4 10 15 14
Hc1 1 2 2 2
ρ1 0.7782 4.8291 6.456 7.4284

Hp2 17 5 13 12
Hc2 3 2 2 2
ρ2 6.0209 2.2686 2.386 2.1736

D%1 3.494 0.166 1.194 0.4713
Ts1 1 86 29 44
D%2 6.9627 0 0.404 0.0094
Ts2 14 153 74 107
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Fig. 5. Pareto front for the first output obtained using NSGA-II.

Fig. 6. Pareto front for the second output obtained using
NSGA -II.

method, with a maximum number of generations equal to
100, are shown together in Figs. 7 and 8.

From these figures, we notice that NSGA-II gives
a better approximation of the Pareto front. In fact,
the resulting solutions on the Pareto surface generated
by the WSM are clustered in three areas for the first
and second outputs, which results in gaps in Pareto
surfaces. In contrast to the aggregative method, the
uniform distribution gives an indication of a good spread
of solutions along the Pareto surface obtained with
NSGA-II and thanks to the concept of crowding distance;
we succeed to maintain the diversity in the obtained set of
solutions. It is also important to note that to obtain optimal
solutions, which is an off-line procedure, the WSM needs
82554 seconds, whereas NSGA-II needs only 10513
seconds. This means that NSGA-II is approximately 8
times faster than the aggregative method.

4.3. MGPC implementation. Since all the optimal
solutions are elaborated, it is necessary to choose only
one solution to implement the MGPC. This choice is
made by the decision-maker: if he or she decides to
give the priority to the minimization of overshoot, the
solution yielding the smallest value of the overshoot

Fig. 7. Pareto fronts obtained with the WSM and NSGA-II for
the first output and selected points for implementation.

Fig. 8. Pareto fronts obtained with the WSM and NSGA-II for
the second output and selected points for implementa-
tion.

will be chosen. If the most important criterion to be
minimized for the user is the settling time, the solution
yielding the minimum settling time will be chosen. The
solution making a compromise between all the closed
loop performances can also be chosen. Therefore, after
generating the possible optimal solutions, three of the
solutions, numbered from 1 to 3 in Figs. 7 and 8,
were chosen. The point number 1 is chosen to give the
minimum values of overshoots D1 and D2. The solution
number 2 is chosen to give the minimum values of Ts1

and Ts2 . And the solution 3 is chosen to make a trade-off
between D1 and Ts1 and a compromise between D2 and
Ts2 . The synthesis parameters corresponding to each
selected point are presented in Table 4.

Table 4. Synthesis parameters corresponding to each selected
point.

Solutions Hp1 Hc1 ρ1 Hp2 Hc2 ρ2

1 10 2 5.479 5 2 2.445
2 17 2 5.474 17 2 6.020
3 14 2 7.958 17 1 3.205
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Then, the equivalent simulation results which present
the evolution of the system outputs and the set points
and the evolution of the control signals for each chosen
solution are given in Figs. 9–11.

Fig. 9. Simulation results for Point 1.

Fig. 10. Simulation results for Point 2.

In Table 5, we present the closed loop performances
obtained with each chosen solution. From these results,
we note that the obtained closed loop performances are
equivalent to the preferences of the user and correspond
to the choice of the decision-maker made previously. In
addition, from the obtained results in Table 5, we conclude
that, if we specify the closed-loop performances for the
first output (/second output), the synthesis parameter
adjustment done to obtain these desired performances
has an influence on the closed loop performances of the
second output (first output). This is due to interactions
present in the treated system.

5. Conclusion

Two GA search techniques, aggregation into a single
objective (WSM) and a Pareto-method (real-coded
NSGA-II), have been used to adjust a centralized
multivariable predictive controller parameters. Simulation
results prove that NSGA-II yields a better approximation

Fig. 11. Simulation results for Point 3.

Table 5. Values of the overshoots and settling times obtained
with each selected solution.
Solutions D%1 Ts1 D%2 Ts2

1 0 140 0 293
2 3.925 1 2.25 30
3 1.6201 20 1.1621 53

of the Pareto front than the WSM. The numerical results
show the performance of the tuned controller with the
NSGA-II method to control the treated multivariable
process and to obtain closed loop performances
corresponding to the decision-maker preferences.
Therefore, it is concluded that NSGA-II is very effective
in the tuning of MGPC synthesis parameters, is able
to maintain a better spread of solutions and converges
better in the obtained non-dominated front compared with
the WSM. These results encourage the application of
NSGA-II to more complex and real world multiobjective
optimization problems. It is also important to note that
the controllers considered are unconstrained ones and
the proposed methodology can be applied to constrained
predictive controllers.
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