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This paper addresses a predictive control strategy for a particular class of multi-agent formations with a time-varying
topology. The goal is to guarantee tracking capabilities with respect to a reference trajectory which is pre-specified for
an agent designed as the leader. Then, the remaining agents, designed as followers, track the position and orientation of
the leader. In real-time, a predictive control strategy enhanced with the potential field methodology is used in order to
derive a feedback control action based only on local information within the group of agents. The main concern is that the
interconnections between the agents are time-varying, affecting the neighborhood around each agent. The proposed method
exhibits effective performance validated through some illustrative examples.
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1. Introduction

Control and coordination of multi-agent systems, such as
pedestrians in a crowd, vehicles, spacecraft and unmanned
vehicles, are emerging as a challenging field of research.
The advances in network design, information, control
synthesis and sensors technology allow nowadays large
groups of agents to be coordinated and controlled in
an effective manner for various tasks in evaluating the
safety of social infrastructures (Helbing et al., 2000; Fang
et al., 2010), efficient flow of traffic (Van den Berg et al.,
2004; Baskar et al., 2006), water control for irrigation
canals, water supply and sewer networks (Overloop et al.,
2010; Negenborn et al., 2009) and deep space observation
(Mesbahi and Hadaegh, 2001; Massion et al., 2008). In
addition, there exist several classes of multi-agent systems
where the interconnections between the agents could be
time-varying (e.g., traffic control, pedestrian behavior,
etc.). Guaranteeing stability with the existing cooperative
control techniques is still an open problem for multi-agent
systems with time-varying (constrained) topologies. This
paper addresses a new methodology based on predictive

control in order to address some of these difficulties;
illustrative examples prove the proposed methodology
interesting.

Collision avoidance is often the most difficult
problem in the context of managing multiple agents, since
certain (static or dynamic) constraints are non-convex.
A common point of most publications dealing with
the collision avoidance problem is the hypothesis of
pointwise agents, which is far from the conditions in
real world applications. In many of them the relative
positioning between agents becomes important, such as
large interferometer construction from multiple telescopes
or air traffic management (two aircraft are not allowed to
approach each other closer than a specific alert distance).

A key idea for the treatment of collision avoidance
problems is represented by Mixed-Integer Programming
(MIP) (Osiadacz et al., 1990; Richards and How, 2002;
Bemporad and Morari, 1999), which has the ability to
include non-convex constraints and discrete decisions in
the optimization problem. However, despite its modeling
capabilities and the availability of good solvers, MIP has
serious numerical drawbacks. As stated by Garey and
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Johnson (1979), mixed-integer techniques are NP-hard,
i.e., the computational complexity increases exponentially
with the number of binary variables used in the problem
formulation. A method for reducing the number of
binary variables is detailed by Stoican et al. (2011) with
an application to the obstacle avoidance problem. Yet,
the fundamental limitation of MIP complexity remains
redoubtable.

A different class of methods for collision avoidance
problems uses artificial potential fields (Khatib, 1986)
to directly obtain feedback control actions steering the
agents over the entire workspace. One shortcoming of
this approach is the possible generation of traps (local
minima). Relevant research on generating the so-called
navigation functions that are free from local minima
is available in the literature (Rimon and Koditschek,
1992). However, generating a navigation function is
computationally involved and thus not suitable for many
navigation problems.

There is a large literature dedicated to the formation
control for collections of vehicles using the potential field
approach. Jadbabaie et al. (2003) and Tanner et al.
(2007) investigate the motions of vehicles modeled as
double integrators. Their objective is for the vehicles to
achieve a common velocity while avoiding collisions with
obstacles and/or agents assumed to be points. The derived
control laws involve graph Laplacians for an associated
undirected graph and also nonlinear terms resulting from
artificial potential functions. Roussos and Kyriakopoulos
(2010) consider a decentralized navigation of multiple
agents operating in a spherical workspace. Navigation
functions are used to derive control laws for point-wise
agents with an associated disk of a predefined radius
around them.

In the present paper, we revise the preliminary results
of Prodan et al. (2010; 2011) and introduce enhancements
in the control design method which enables decentralized
decision making for a leader/followers group of agents.
The aim of this work is twofold:

• First, to provide a generic framework for
non-point-wise shapes which may define obstacles
and/or safety regions around an agent.

• Second, to offer a novel control strategy derived from
a combination of a constrained receding horizon
and potential field techniques for the trajectory
tracking problem, applied to multi-agent systems
with time-varying topologies.

To the best of the authors’ knowledge, there does
not exist a similar method in the open literature. The
methods that we propose can be applied to various
practical applications (e.g., motion control of wheeled
mobile robots (Michałek et al., 2009), path following
control of nonholonomic mobile manipulators (Mazur and

Szakiel, 2009), the control of a mobile offshore base
viewed as a string of modules that have to be kept aligned
(Girard et al., 2001)).

First, we introduce two different constructions which
take into consideration the shape of the convex region
associated with a safety region of an agent or an obstacle.
The proposed constructions can be further used with the
various potential or navigation functions existing in the
literature in order to have a complete multi-agent system.
Second, through the rest of the paper a leader/followers
strategy for the trajectory tracking problem is proposed.
The agents are required to follow a pre-specified trajectory
while keeping a desired inter-agent formation in time.
We consider polyhedral safety regions for the agents
and obstacles. A specified trajectory is generated
for the leader using the differential flatness formalism
(Fliess et al., 1995). Differentially flat systems are
well suited to problems requiring trajectory planning as
they circumvents the complexity of differential equations
formalism by transforming the model description in
an algebraic form, more suitable for open-loop control
design. The most important aspect of flatness in our
context (predictive control) is that it reduces the problem
of trajectory generation to finding a trajectory of the
so-called flat output of the system through the resolution
of a system of algebraic equations. Furthermore, for
the followers, we propose a potential field method which
aims to follow the group leader and respect the formation
specifications. These are realized through the use of a
receding horizon approach (Camacho and Bordons, 2004;
Rossiter, 2003; Mayne et al., 2000), both for the leaders
and followers.

This paper is organized as follows. Section 2 presents
two constructions that take into account the shape of a
convex region defining an obstacle and/or a safety region
around an agent. Considering the dynamics of the agents,
Section 3 presents the trajectory tracking problem for
a leader/followers formation. A reference trajectory is
generated for the leader and, using predictive control, the
tracking error is minimized. For the followers, a potential
function is embedded within Model Predictive Control
(MPC) in order to achieve the group formation with a
collision free behavior. Further on, Section 4 presents
illustrative simulation results. Finally, several concluding
remarks are drawn in Section 5.

The following notation will be used throughout the
paper. Given a vector v ∈ R

n, ‖v‖∞ := maxi=1,...,n |vi|
denotes the infinity norm of v. Minkowski’s
addition of two sets X and Y is defined as
X ⊕ Y =

{
x+ y : x ∈ X , y ∈ Y}. The interior

of a set S, Int(S) is the set of all interior
points of S. The collection of all possible nc
combinations of binary variables is written as
{0, 1}nc = {(b1, . . . , bnc) : bi ∈ {0, 1} , ∀i = 1, . . . , nc}.
Denote by B

n
p = {x ∈ R

n : ‖x‖p ≤ 1} the unit ball
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of norm p, where ‖x‖p is the p-norm of a vector x. We
let xk+1|k denote the value of x at time instant k + 1,
predicted upon the information available at time k ∈ N.

2. Prerequisites

For safety and obstacle avoidance problems the feasible
region in the space of solutions is a non-convex set.
Usually this region is considered the complement of a
(union of) convex region(s) which describes an obstacle
and/or a safety region. Due to their versatility and
relative low computational complexity, the polyhedra are
the instrument of choice in characterizing these regions.

Let us define a bounded convex set in its polyhedral
approximation, a polytope S ⊂ R

n through the implicit
half-space description:

S =
{
x ∈ R

n : hax ≤ ka, a = 1, . . . , nh
}
, (1)

with ha ∈ R
1×n, ka ∈ R and nh being the number of

half-spaces. We focus on the case where ka > 0, meaning
that the origin is contained in the strict interior of the
polytopic region, i.e., 0 ∈ Int(S).

By definition, every supporting hyperplane for the set
S in (1),

Ha = {x ∈ R
n : hax = ka, a = 1, . . . , nh} , (2)

will partition the space into two disjoint1 regions:

R+(Ha) = {x ∈ R
n : hax ≤ ka} , (3)

R−(Ha) = {x ∈ R
n : −hax ≤ −ka} , (4)

where R+
a and R−

a denote in a simplified formulation the
complementary regions associated to the a-th inequality
of (1).

In the following, we are interested in measuring
the relative position of an agent with respect to such a
region. In other words, we require a function which
measures if and when a given state is inside or outside
the polyhedral set (1). The forthcoming constructions will
be introduced in a repulsive potential function to take into
account the shape of the convex region in terms of (1).
The repulsive potential will be further used in a predictive
control context in order to derive a control action such that
the collision avoidance inside the formation is satisfied.

2.1. Polyhedral function. Consider the class of
(symmetrical) piecewise linear functionals defined using
the specific shape of a polyhedral set. The following
definitions will be instrumental for the rest of the paper.

1The relative interiors of these regions do not intersect but their clo-
sures have as common boundary the affine subspace Ha.

Definition 1. (Minkowski function (Blanchini, 1995))
Any bounded convex set S induces a Minkowski function
defined as

μ(x) = inf
{
α ∈ R, α ≥ 0 : x ∈ αS

}
. (5)

Definition 2. (Polyhedral function (Blanchini, 1995))
A polyhedral function is the Minkowski function of the
polyhedral bounded convex set S defined in (1). This
function has the following expression:

μ(x) = ‖Fx‖∞, (6)

where F ∈ R
nh×n is a full column matrix with Fa =

ha/ka, a = 1, . . . , nh.
In fact, any polytope can be defined in terms of the

Minkowski function (5). Indeed, there always exists a full
column matrix F ∈ R

nh×n such that the polytope S in
(1) is equivalently defined as

S =
{
x ∈ R

n : μ(x) ≤ 1
}
, (7)

with μ(x) defined by (6). From the avoidance point of
view, the Minkowski function (5) denotes the inclusion
of a value x to the given polytope (7) if μ(x) ∈ [0, 1].
Conversely, if μ(x) > 1, then x is outside the polytope
(7).

Remark 1. Note that, if ka < 0 in (1), the origin is not
contained in the strict interior of the polytopic region, i.e.,
0 /∈ Int(S), then the polyhedral function can be brought
to the form (6) by imposing

Fa =
ha(x− xs)
ka − haxs

, a = 1, . . . , nh, (8)

with xs ∈ R
n being the analytic center of the polytope (1).

Note that the polyhedral function (6) is piecewise
affine and continuous. This means that each of the
inequalities which compose its definition can provide the
maximum, an explicit description of these regions being

Xa =
{
x ∈ R

n :
ha
ka
x >

hb
kb
x, ∀ a 	= b,

a, b = 1, . . . , nh
}
. (9)

The entire space can thus be partitioned in a union of
disjoint regions Xa which are representing in fact cones
with a common point at the origin (respectively, at xs for
the general case evoked in Remark 1).

Practically, the polyhedral function (5) can be
represented in the form

μ(x) = Fax, ∀ x ∈ Xa, a = 1, . . . , nh, (10)

and the piecewise affine gradient is defined as

∇μ(x) = Fa, ∀ x ∈ Xa, a = 1, . . . , nh. (11)
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Remark 2. Strictly speaking, the generalized gradient
(11) is multivalued (the Minkowski function induced by
a polytope is not differentiable in the classical sense, it
is rather differentiable almost everywhere). However, a
univocal candidate can be selected for the computations
and such an approach is used in the rest of the paper.
We mention that, alternatively, the explicit use of a
multivalued expression of the gradient would not bring
computational difficulties as long as the range of variation
is bounded and can be represented by the extreme values
in practice.

2.2. Sum function. The polyhedral functions
presented in the previous section represent the basis
for the construction of “exclusion” functions (or penalty
functions).

Consider again the polytope defined in (1), and a
piecewise linear function (introduced by Camacho and
Bordons (2004)):

ψ(x) =
nh∑

a=1

(hax− ka + |hax− ka|). (12)

The function (12) is zero inside the convex region (1) and
increases linearly in the exterior, as the distance to the
boundary increases.

The definition (12) describes in fact a continuous
piecewise affine function over a partition of the
state-space. Over each of the polyhedral cells composing
this partition, the absolute values of |hax − ka| are
constant resulting in a fixed affine form for ψ(x). In order
to explicitly describe the regions composing the partition,
several additional theoretical notions will be introduced.

Definition 3. (Hyperplane arrangements (Ziegler, 1995))
A collection of hyperplanes H = {Ha} with a =
1, . . . , nh partition the space as a union of disjoint cells
defined as follows:

A(H) =
⋃

l=1,...,γ(nh)

(
⋂

a=1,...,nh

Rσl(a)(Ha)

)

︸ ︷︷ ︸
Al

, (13)

where σl ∈ {−,+}nh denotes all feasible combinations
of the regions (3) and (4) obtained for the hyperplanes in
H and γ(nh) denotes the number of feasible cells.

Note that the number of regions in the hyperplane
arrangement is usually much greater than the number of
regions (9) associated with the polyhedral function (10).

Therefore, the piecewise affine function (12) can be
alternatively described as

ψ(x) = 2
nh∑

a=1
σl={+}

(hax− ka),

∀ x ∈ Al, l = 1, . . . , γ(nh).

(14)

The piecewise affine gradient of (14) is defined as

∇ψ(x) = 2
nh∑

a=1
σl={+}

hTa ,

∀ x ∈ Al, l = 1, . . . , γ(nh). (15)

2.3. Example of the construction of repulsive
potential functions. In this subsection the previous
theoretical tools will be integrated in order to describe
two types of piecewise affine functions which measure
the position of a state with respect to the boundary of a
polyhedral set defined in (1).

In order to exemplify their influence in a collision
avoidance problem, we propose several repulsive potential
functions constructed through the use of the formulations
(10) and (14). The potential functions take into account
the shape of a convex region as in Fig. 1, which can define
a safety region for an agent and/or an obstacle. For the
given convex region, Figs. 2 and 3 illustrate the polyhedral
function and the sum function defined according to (10)
and (14), respectively.

Fig. 1. Convex region.

Fig. 2. Polyhedral function (10) of the convex region in Fig. 1.

Furthermore, for control design, the construction
based on the polyhedral function defined in (10) is
proposed for the generation of a repulsive potential:

Vμ(μ(x)) = c1e
−(μ(x)−c2)2 , (16)
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Fig. 3. Sum function (14) of the convex region in Fig. 1.

Fig. 4. Repulsive potential using the polyhedral function in
Fig. 2.

Fig. 5. Repulsive potential using the sum function in Fig. 3.

where the parameters c1 and c2 are positive constants
representing the strength and effect ranges of the repulsive
potential.

An alternative repulsive potential using the sum
function described in (14) will be given by

Vψ(ψ(x)) =
c3

(c4 + ψ(x))2
, (17)

with c3 and c4 being positive constants representing the
strength and effect ranges of the repulsive potential (17).

Figures 4 and 5 illustrate the proposed functions (16)
and (17), respectively, for the given convex region in
Fig. 1. As can be seen, both the functions have a high
value inside the polytopes and a low value outside them.

The repulsive potential will be further used in order to
derive a control action such that the collision avoidance
inside the formation is satisfied.

3. Trajectory tracking for
a leader/followers formation

This section presents the formation trajectory tracking
problem. The agents are required to follow a pre-specified
trajectory while preserving a tight inter-agent formation
in time. Each agent has an associated polyhedral safety
region as defined in (1). Using a leader/followers
approach, we generate a reference trajectory for the
leader and formulate a receding horizon optimization
problem in order to minimize the tracking error. For the
followers, we propose a gradient method combined with
a receding horizon approach which aims to follow the
group leader and respect the collision avoidance formation
specifications.

A set of Na linear systems (vehicles, pedestrians
or agents in a general form) will be used to model the
behavior of individual heterogeneous agents. The i-th
system is described by the following continuous time
dynamics:

ẋi(t) = Ac,ix
i(t) +Bc,iu

i(t), i = 1, . . . , Na, (18)

where xi(t) ∈ R
n are the state variables and ui(t) ∈

R
m is the control input vector for the i-th agent. The

components of the state are the position pi(t) and the
velocity vi(t) of the i-th agent such that xi(t) =
[pi(t) vi(t)]T .

The problem of generating a reference trajectory for
the leader (i.e., i = l in (18)) is next summarized, along
the line in the work of Van Nieuwstadt and Murray (1998).

3.1. Trajectory generation. The idea is to find a
trajectory (xl(t), ul(t)) that steers the model of the leader
(18) with i = l from an initial state x0 to a final state xf ,
over a fixed time interval [t0, tf ]. Using flatness theory
(Fliess et al., 1995; Van Nieuwstadt and Murray, 1998;
Suryawan et al., 2010), the system is parameterized in
terms of a finite set of variables zl(t) and a finite number
of their derivatives:

xl(t) = ξ(zl(t), żl(t), . . . , zl,(q)(t)), (19)

ul(t) = η(zl(t), żl(t), . . . , zl,(q)(t)),

where

zl(t) = Υ(xl(t), ul(t), u̇l(t), . . . , ul,(q)(t))

is called the flat output2. The generation of a reference
trajectory will be based on the class of polynomial

2Hereafter, we assume that the characteristics necessary for flat tra-
jectory (controllability and the existence of a flat output) are respected
for the leader agent.
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functions. Using the parametrization (19) and imposing
boundary constraints for the evolution of the differentially
flat systems (De Doná et al., 2009), one can generate a
reference trajectory zlref(t) by solving a system of linear
equations. Therefore, the corresponding reference state
and input for the system (18), with i = l, are obtained by
replacing the reference flat output zlref(t), with t ∈ [t0, tf ]
in (19):

xlref(t) = ξ(zlref(t), ż
l
ref(t), . . . , z

l,(q)
ref (t)), (20)

ulref(t) = η(żlref(t), z̈
l
ref(t), . . . , z

l,(q)
ref (t)),

where t ∈ [t0, tf ].
In the rest of the paper, we use the discrete analog

to the reference signals in (20). That is, a discrete-time
model corresponding to Eqn. (18) is constructed upon
a chosen sampling period Ts by considering the time
instants tk = kTs:

xi(k + 1) = Aix
i(k) +Biu

i(k),
k ∈ N, i = 1, . . . , Na, (21)

where xi(0) corresponds to the boundary condition in (20)
and ui(k) = ui(tk). The pairs (Ai, Bi) are given by

Ai = eAc,iTs , Bi =
∫ Ts

0

eAc,i(Ts−θ)Bc,i dθ.

Considering the discrete-time model of the leader
(21) with i = l, we compare the measured state and input
variables with the reference trajectory (xlref(k), u

l
ref(k))

which satisfies the nominal dynamics:

xlref(k + 1) = Alx
l
ref(k) +Blu

l
ref(k). (22)

Further on, the tracking error between the leader’s
state (21) and the state reference (22) becomes

x̃l(k + 1) = Alx̃
l(k) +Blũ

l(k), (23)

with ũl(k) = ul(k) − ulref(k), x̃
l(k) = xl(k) − xlref(k).

Since the reference trajectory is available
beforehand, an optimization problem which minimizes
the tracking error for the leader can be formulated
in a predictive control framework (Goodwin
et al., 2006; Maciejowski, 2002). Consequently, the
leader must follow the reference trajectory from the
initial position to the desired one, using the available
information over a finite time horizon in the presence of
constraints 3.

3The flat trajectory can also be generated to enforce obstacle avoid-
ance at the trajectory planning stage. In this framework the obstacles
can be modeled in terms of a convex safety region around each agent,
as in (1). Even if the reference trajectory is generated over the entire
interval [t0, tf ], intermediary points can be added along the trajectory in
order to avoid obstacles on a specific time subinterval by redesigning the
flat trajectory.

3.2. Predictive control for the leader. In what
follows we present the predictive control problem, where
optimization is performed to compute the control law for
the leader. The discrete model of the leader (i.e., i = l in
(21)) is used in a predictive control context which allows
for the minimization of the tracking error.

A finite receding horizon implementation of the
optimal control law is typically based on the real-time
construction of a control sequence

ũl = {ũl(k|k), ũl(k + 1|k), · · · , ũl(k +Nl − 1|k)}
that minimizes the finite horizon quadratic objective
function:

ũ∗

= arg min
ũl

(‖x̃l(k +Nl|k)‖P (24)

+
Nl−1∑

s=1

‖x̃l(k + s|k)‖Q +
Nl−1∑

s=0

‖ũl(k + s|k)‖R),

subject to
⎧
⎪⎨

⎪⎩

x̃l(k + s+ 1|k) = Alx̃
l(k + s|k) +Blũ

l(k + s|k),
x̃l(k + s|k) ∈ Xl, s = 1, . . . , Nl,
ũl(k + s|k) ∈ Ul, s = 1, . . . , Nl.

(25)
Here Q = QT � 0, R � 0 are positive definite

weighting matrices, P = PT � 0 defines the terminal
cost and Nl denotes the prediction horizon for the leader.
The optimization problem (24) has to be solved subject to
the dynamical constraints (25). At the same time, other
security or performance specifications can be added to the
system trajectory. These physical limitations (velocity,
energy or forces) are stated in terms of hard constraints
on the internal state variables and input control action as in
(25). Note that the setsXl andUl have to take into account
the reference tracking type of the problem delineated in
(24). Thus, the absolute limitations have to be adjusted
according to the reference signals. In the original state
space coordinates, these constraints will describe a tube
around the reference trajectory. A finite horizon trajectory
optimization is performed at each sample instant, the
first component of the resulting control sequence being
effectively applied. Then, the optimization procedure is
reiterated using the available measurements based on the
receding horizon principle (Camacho and Bordons, 2004).

3.3. Decentralized predictive control for the follow-
ers. In this subsection, we present a control strategy
which is a combination of MPC and the potential field
control approach. The goal is to control the agents
to achieve a formation while following the specified
trajectory. The repulsive potential functions introduced
in (16) and (17) produce a potential field. The negative
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gradient of this potential is the key element towards
a collision free behavior for the agents. Globally, an
attractive component of the potential function aims at
maintaining a given formation. In this context, we
provide a practical control design method which enables
decentralized decision making for a leader/followers
group of agents. The proposed method exhibits
effective trajectory tracking performances while avoiding
the centralized design which can be computationally
demanding4.

Assume that each agent has an associated convex
safety region as defined in (1). Before actually defining
the potential function, let us recall a general result
relative to convex sets which will be further used in the
optimization problem.

Proposition 1. For any two convex sets S1, S2 ∈ R
n, the

following relations are equivalent:

1. S1 ∩ S2 = ∅,

2. {0} /∈ S1 ⊕ {−S2}.

Proof. (Sketch) It suffices to note that if the origin is
inside the set S1 ⊕ {−S2}, then, necessarily, there exist
x1 ∈ S1 and x2 ∈ S2 such that x1 − x2 = 0. �

Corollary 1. Consider Agents i and j with the associated
safety regions Si, Sj as defined in (1). Agent i with the
associated position pi does not intersect Agent j with the
position pj if an only if pi /∈ Sij(pj), where

Sij(pj) � {pj} ⊕ Sj ⊕ {−Si}, (26)

with i = 1, . . . , Na, i 	= j.

Remark 3. For the ease of the computation, the agents
are considered unidimensional points in the position
space. Even if they are characterized by a nonempty
region Ri ⊂ R

n, one can define the set in (1) as
S̃i � Si ⊕Ri, whereRi denotes the region describing the
i-th agent.

Let us now assume the steering policy for each
follower agent (i.e., i 	= l in (21)) based only on local
state information from its nearest neighbors.

Definition 4. (Neighboring graph (Tanner et al., 2007))
An undirected graph G = {V , E} represents the nearest
neighboring relations and consists of

• a set of vertices (nodes) V = {n1, n2, . . . , nNa}
indexed by the agents in the group;

4Besides computational expenses, the logistic difficulties can be
mentioned: a centralized approach means that there exists a center which
needs information from all the agents and has to send the control action
to all agents. Such a construction may be difficult to implement and be
prone to errors (e.g., the case of a radio linked system of agents and a
non-neglected physical obstacle which cuts the communication inside a
subgroup).

• a set of edges E = {(ni, nj) ∈ V × V : ni ↔ nj},
containing unordered pairs of nodes that represent
neighboring relations.
The set of neighbors of Agent i with i = 1, . . . , Na

and i 	= l can be defined as follows:

Ni(k) � {j = 1, . . . , Na : ‖pi(k) − pj(k)‖ ≤ r, i 	= j},
(27)

where r is the radius of the ball centered in pi. Since the
agents are in motion, their relative distances can change
with time, affecting their neighboring sets (27). For each
agent i, we define an inter-agent potential function which
aims to accomplish the following objectives:

(i) collision avoidance between agents;

(ii) convergence to a group formation and following the
leader.

To be specific, in our problem, the following inter-agent
potential function is used:

Vi(pi, vi) = βrV
r
i (pi)+βaV

a
i (pi, vi), ∀i ∈ Ni. (28)

The two components of the potential function account for
the objectives presented above and βr, βa are weighting
coefficients for each objective. For the i-th agent the
total potential is formed by summing the potentials terms
corresponding to each of its neighbors. Consequently,
in our approach, the potential functions are designed as
follows:

(i) V ri (pi) denotes the repulsive potentials that Agent i
sense from its neighbors:

V ri (pi) =
∑

j∈Ni

V rij(p
i). (29)

To implement this, the concepts introduced in
Section 2.3, specifically the potential functions (16)
or (17), are taken into account:

V rij(p
i) =

c3
(c4 + ψij(pi))2

, i 	= j, i 	= l, (30)

where ψij(pi) is the sum function (14) induced by
the polyhedral set defined in (26). Note that the
repulsive component (30) takes into account the
safety regions (26) associated with both the followers
and the leader.

(ii) V ai (pi, vi) denotes the attractive component between
agents in order to achieve a formation and to follow
the leader:

V ai (pi, vi) =
∑

j∈Ni

V aij(p
i, vi) + ‖pl − pi‖, (31)

for all i ∈ Ni and i 	= l.
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The second component denotes the relative distance
between the leader and the followers. The first
component V aij(xi) has the following form:

V aij(p
i, vi) = log(ψ2

ij(p
i)) + βv(vi − vj), (32)

where βv denotes a weighting coefficient for which
the agents velocities are synchronizing.

As can be observed in similar works based on
potential function methods, the parameters of the potential
field have to be tuned experimentally. It will be seen
in the simulations that collision avoidance is realized for
the chosen parameters. Also note that, for a potential
function, a piecewise affine gradient can be computed
using the results in Section 2. As in the works of Rimon
and Koditschek (1992), as well as Tanner et al. (2007),
the negative value of the gradient can be applied in order
to derive a control action for Agent i. The direct approach
has several shortcomings mentioned in Section 1.

In the following, we reformulate the optimization
problem (24) for the followers, by using the
potential-based cost function described in (28): Find
a control sequence

ui = {ui(k|k), ui(k + 1|k), · · · , ui(k +Nf − 1|k)}

which minimizes the finite horizon nonlinear objective
function:

u∗ = arg min
ui

⎛

⎝
Nf∑

s=0

Vi(pi(k + s|k), vi(k + s|k)
⎞

⎠ .

(33)
Here Nf denotes the prediction horizon for the followers.
In the optimization problem (33) we need to know the
future values of the neighboring graph and the values
of the state for the corresponding neighbors. All these
elements are time-varying and difficult to estimate. For
the ease of computation, we assume the following:

• The neighboring graph is considered to be constant
along the prediction horizon, that is,

Ni(k + s|k) � Ni(k). (34)

• The future values of the followers state are
considered constant,

xj(k + s|k) � xj(k). (35)

• An estimate of the leader’s state is provided by (23),

xl(k + s|k) � x̃lref(k + s). (36)

Equations (34)–(36) represent only a rough
approximation of the future state of the agents.

Obviously, the MPC formulation can be improved
by using prediction of the future state of the neighboring
agents. Where feasible, this prediction may be provided
by the agents themselves (Dunbar and Murray, 2006).
Here a simplified approach was implemented for the
followers (by assuming constant predictions) and using
the reference trajectory for the leader.

Remark 4. The time-varying nature of the neighboring
graph and the fact that the future values of the neighboring
states and the leader state are unknown represent some
of the computational limitations of the presented scheme.
Moreover, the resulting cost function is nonlinear and,
what is more, non-convex. This means that the numerical
solution may suffer from the hardware limitations and
may not correspond to the global optimum.

Remark 5. The receding horizon technique (33) uses
a discrete-time optimal control sequence parameterized
by the discrete counterpart of the reference trajectory
(20). As such, the usual performance, stability and
robustness properties of the predictive control can be
evoked only for the discrete time closed-loop behavior.
The approach presented in this paper does not consider
the intersample phenomena which can be handled using
polytopic inclusions or alternative over-approximations
(see Gielen et al., 2010; Heemels et al., 2010).

4. Simulations

This section proposes two simulation examples in order to
better illustrate the proposed techniques.

Consider a set of Na heterogeneous agents in two
spatial dimensions with the dynamics described by

Ai =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 0 − νi

mi
0

0 0 0 − νi

mi

⎤

⎥
⎥
⎦ ,

Bi =

⎡

⎢
⎢
⎣

0 0
0 0
1
mi

0
0 1

mi

⎤

⎥
⎥
⎦ ,

(37)

where [xi yi vix viy]
T , [uix uiy]

T are the state and the
input of each system. The components of the state are
the position (xi, yi) and the velocity (vix, v

i
y) of the i-th

agent, i = 1, . . . , Na. The parametersmi, νi are the mass
of Agent i and the damping factor, respectively5.

In the first example, we consider a pointwise agent
operating in an environment with obstacles designed
as convex regions. Then, for controlling the agent to

5Note that the matrices Ai and Bi correspond to the continuous sys-
tem (18). After the initial stage of computing a flat trajectory, we will use
discretized matrices, obtained as in Subsection 3.1 with a discretization
time Ts = 0.1 s.
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maneuver successfully in the hostile environment we use
first a gradient approach. Second, we introduce the
potential function in a predictive control optimization
problem such that the collision avoidance is satisfied. In
the second example, we illustrate the trajectory tracking
of a leader/followers formation. For avoiding collisions
inside the formation, we consider agents with associated
safety regions designed also as convex sets.

Example 1. Consider one agent (i.e., Na = 1 in
(37)) in two spatial dimensions described by the dynamics
(37), with m1 = 45 kg, ν1 = 15 Ns/m. Let the
position component of the agent be constrained by three
obstacles defined by (1). We consider a potential function
as in (28) (βr = 1, βa = 1) with two components: a
repulsive potential (17) with c3 = 1, c4 = 0.25 and an
attractive potential (32). The potential function generates
a potential field depicted in Fig. 6. First, we calculate
the gradient of the potential function which is piecewise
affine as in (15). The negative value of the gradient is
applied in order to derive a control action for the agent.
We obtain that the obstacles are usually avoided, but there
are situations when the constraints are not satisfied, or the
control action obtained through the negative gradient has
unrealistic values. For these reasons, we introduce the
potential function in a predictive control framework as in
(33), with a prediction horizonNf = 2. We obtain that the
obstacles are always avoided. Figure 7 illustrates several
trajectories of the agent with a random initial position.

�

Fig. 6. Potential field in a workspace with three obstacles.

Example 2. Consider five agents (i.e., Na = 5 in
(37)) described by the dynamics (37), with m1 = 45 kg,
m2 = 60 kg, m3 = 30 kg, m4 = 50 kg, m5 = 75
kg, ν1 = 15 Ns/m, ν2 = 20 Ns/m, ν3 = 18 Ns/m,
ν4 = 35 Ns/m, ν5 = 23 Ns/m. The initial positions and
velocities of the agents are chosen randomly. We associate
with each agent a polyhedral safety region as in (1). For
the sake of illustration, we shall choose identical safety
zones for each agent. We take arbitrarily l = 1 to be the

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x

y

Fig. 7. Agent trajectories using predictive control.

leader which has to be followed by the rest of the agents
i = 2, . . . , 5 (i 	= l). Figure 8 illustrates the potential field
generated for the group of agents considered.

For the leader we generate through flatness methods,
state and input references (20), and for both types of
agents we use MPC in order to construct the control
action. A quadratic cost function as defined in (24) is used
for the leader. Figure 9 illustrates the reference trajectory
and the time evolution of the leader along the trajectory.
Satisfactory tracking performances for the given reference
trajectory are obtained with a prediction horizonNl = 10.

For the followers we consider a potential function
as the cost function in the optimization problem (33),
with a prediction horizon Nf = 2. The potential will
be constructed such that both the following of the leader
and the maintaining of a formation are respected. The
neighborhood radius is set to r = 8 m, the weighting
coefficients are βr = 1, βa = 10, c3 = 1, c4 = 0.25,
βv = 15. The effectiveness of the present algorithm is
confirmed by the simulation depicted in Fig. 9, where the
evolution of the agents is represented at three different
time instances. The agents successfully reach a formation
and follow the leader without trespassing each other’s
safety regions.

We note that we prefer a smaller prediction horizon
for the followers than the one used for the leader. This
is justified by the fact that the trajectory of the leader is
more important and that any additional prediction step
for the potential function (which is not quadratic) incurs
significant computational complexity. �

Example 3. We build upon the previous example and we
consider additionally obstacle avoidance. Furthermore,
we redesign the reference trajectory such that it avoids
stationary and a priori known obstacles. More precisely,
we add control points which steer the reference trajectory
from the interdicted region (for further details, see
footnote 3 and the results of Prodan et al. (2012)).

In Fig. 10 the original reference illustrates the flat
trajectory which does not take into account the obstacle.
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On the other hand, by adding an additional control point,
we were able to construct a trajectory which avoids the
obstacle. Satisfactory tracking performances for the given
reference trajectory are obtained with a prediction horizon
Nl = 10, as well as in the previous example. �

Fig. 8. Potential field in a workspace with five agents.
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Fig. 9. Trajectory tracking of the leader/followers formation at
different time instances with their safety regions.

5. Conclusions

This paper presents the trajectory tracking problem of
multiple agents. Convex safety regions are associated
with each agent in order to solve the collision avoidance
problem. First, the notion of a polyhedral function is
recalled and further introduced in a potential function
which accounts for the associated safety region. Second,
in real-time, a receding horizon control design and a
leader/followers strategy are adopted for driving the
agents into a formation with a collision free behavior.
For the leader, a flat trajectory is generated and a
receding horizon optimization problem is solved in order
to minimize the tracking error. For the followers, a
decentralized control method is introduced by combining

Fig. 10. Obstacle avoidance and trajectory tracking of the
leader/followers formation at different time instances
with their safety regions.

the model predictive control and potential field concepts.
Two kinds of potential terms are distinguished in the cost
function of the followers. The repulsive potential term
accounts for collision avoidance between the agents, and
the attractive potential term guarantees the convergence to
a formation and the following of the leader.

Future work will focus on the investigation of
the robust stability properties of the multi-agent system
in presence of disturbances and uncertainties, problem
being known to be particularly intricate without strict
assumptions on the time-varying properties of the
interconnection graph.
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